Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Electron. j. biotechnol ; 13(4): 5-6, July 2010. ilus, tab
Article in English | LILACS | ID: lil-577110

ABSTRACT

An efficient protocol has been established for rapid multiplication and in vitro production of leaf biomass in Kaempferia galanga L, a rare medicinal plant. Different plant growth regulators like Benzyladenine (BA), Indoleacetic acid (IAA), Indolebutyric acid (IBA), Napthaleneacetic acid (NAA) and adenine sulphates (Ads) have been tried for induction of multiple shoots using lateral bud of rhizome as explants. The highest rate of shoot multiplication (11.5 +/- 0.6) shoot/explant as well as leaf biomass production (7.4 +/- 0.3) gram/explant was observed on Murashige and Skoog medium supplemented with Benzyladenine (1 mg/l) and Indoleacetic acid (0.5 mg/l). Data of shoot multiplication and leaf biomass production were statistically analysed. Upon excission of leaves after 2 months of culture under sterile condition, the base of each plantlet was transferred to fresh media which could produce the same leaf biomass within another 2 months in a 50 ml culture tube containing 20 ml and 250 ml conical flasks containing 30 ml Murashige and Skoog medium. The rate of multiplication and leaf biomass production remained unchanged in subsequent subcultures. The regenerated plantlets were acclimatized in greenhouse and subsequently transferred to the field. Survival rate of the plantlets under ex vitro condition was 95 percent. Genetic fidelity of the regenerants was confirmed using random amplified polymorphic DNA (RAPD) marker. The protocol could be commercially utilized for large scale production of true-to-type plantlets and as an alternative method of leaf biomass production in Kaempferia galanga.


Subject(s)
Rhizome/physiology , Zingiberaceae/physiology , Adaptation, Biological , Biomass , Culture Media , Random Amplified Polymorphic DNA Technique , Regeneration , Plant Growth Regulators/pharmacology , Rhizome , Rhizome/genetics , Zingiberaceae , Zingiberaceae/genetics
2.
Rev. bras. plantas med ; 12(2): 179-187, abr.-jun. 2010. ilus, tab
Article in Portuguese | LILACS | ID: lil-578952

ABSTRACT

Devido a grande potencialidade na utilização de Hedychium coronarium, na medicina popular e também como biorremediadora no tratamento de efluentes, objetivou-se uma diagnose dos órgãos, folha e rizoma, para elucidar resultados estruturais e fitoquímicos. A folha é anfiestomática, com predominância de estômatos na face abaxial. Em ambas as superfícies foliares há projeções de cera epicuticular sobre as paredes anticlinais das células epidérmicas. O mesofilo dorsiventral apresenta hipoderme multisseriada (3 camadas) em ambos os lados. O parênquima clorofiliano é diferenciado em paliçádico (1-2 camadas) e lacunoso (4-5 camadas) com muitos espaços intercelulares e ocorrência de idioblastos cristalíferos. Na nervura central, o aerênquima ocorre em único arco na região abaxial. Os feixes vasculares distribuem-se aleatoriamente e são de diferentes tamanhos, pequenos, médios e grandes, envolvidos por fibras. Os feixes menores localizam-se no lado abaxial da nervura. A triagem fitoquímica das folhas mostrou a presença de saponinas e ausência de taninos, antraquinonas, alcalóides e flavonóides. Por meio de Cromatografia em Camada Delgada foram identificadas as presenças de cariofileno e mirceno no óleo essencial bruto obtido a partir das folhas de H. coronarium.


Due to the great potentiality regarding the use of Hedychium coronarium in folk medicine and also as a bioremediator in effluent treatment, this study aimed to diagnose leaf and rhizome in order to elucidate structural and phytochemical results. Hedychium coronarium leaf is amphistomatal, with predominance of stomata on the abaxial surface. On both leaf surfaces, there are epicuticular wax projections over the anticlinal walls from epidermal cells. The dorsiventral mesophyll presents multiseriate (3 layers) hypoderm on both sides. The chlorophyllian parenchyma is differentiated into palisade (1-2 layers) and spongy (4-5 layers) with many intercellular spaces and some crystalliferous idioblasts. In the midrib, the aerenchyma occurs in a single arc on the abaxial surface. The vascular bundles are randomly distributed and present different sizes: small, medium and large, involved by fibers. The smallest bundles are found on the abaxial rib surface. The leaf phytochemical analysis showed the presence of saponins and lack of tannins, anthraquinones, alkaloids and flavonoids. Using thin-layer chromatography, the presence of caryophyllene and myrcene was detected in the crude essential oil obtained from H. coronarium leaves.


Subject(s)
Plant Leaves/growth & development , Rhizome/growth & development , Zingiberaceae/growth & development , Zingiberaceae/physiology , Plant Leaves/anatomy & histology , Plants, Medicinal/anatomy & histology , Rhizome/anatomy & histology
3.
Indian J Exp Biol ; 2009 Feb; 47(2): 140-6
Article in English | IMSEAR | ID: sea-60322

ABSTRACT

A protocol has been devised for enhanced in vitro regeneration of critically endangered Mantisia spathulata Schult. and Mantisia wengeri Fischer. Highest Bud Forming Capacity (BFC) of 6.10 +/- 0.55 with an average of 19.93 +/- 3.19 roots was obtained for M. spathulata within 5-6 weeks in Murashige and Skoogs (MS) medium supplemented with a combination of 10.0 microM of N6-benzyladenine (BA) and 2.5 microM of alpha-naphtalene acetic acid (NAA). For M. wengeri, BFC of 7.82 +/- 0.73 and 20.86 +/- 1.65 roots was achieved in MS media supplemented with a combination of 5.0 microM BA and 2.5 microM of NAA RAPD markers were used to evaluate the genetic stability of in vitro raised hardened plantlets. Similarity coefficient among the regenerated plants ranged between 0.85-0.98 for M. spathulata and 0.83-0.98 for M. wengeri. Maximum of 88 and 90% genetic similarity were obtained between in vitro raised hardened plantlets and mother stock of M. spathulata and M. wengeri, respectively through RAPD analysis. The hardened plantlets after RAPD analysis on being transferred to soil of experimental garden showed no marked phenotypic variations in vegetative or floral characteristics.


Subject(s)
Agriculture/methods , DNA, Plant/analysis , Gene Expression Regulation, Plant , Genetic Markers , Random Amplified Polymorphic DNA Technique/methods , Regeneration , Rhizome/anatomy & histology , Rhizome/physiology , Zingiberaceae/anatomy & histology , Zingiberaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL