Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
1.
Journal of Experimental Hematology ; (6): 1704-1709, 2021.
Article in Chinese | WPRIM | ID: wpr-922321

ABSTRACT

OBJECTIVE@#To investigate the effect of ursane triterpenoids 3β,19α-dihydroxyursu-12-ene-23,28-dicarboxylic acid (Rotundioic acid, RA) on the sensitivity of adriamycin-resistant K562 cells (K562/ADM Cell) anti-tumor drug, and to explore the effect and mechanism of RA on the multidrug resistance of K562/ADM cells.@*METHODS@#CCK-8 method was used to detect the effect of RA on the sensitivity of K562 cells and K562/ADM cells to anti-tumor drug. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression level of mRNA and the protein in K562 and K562/ADM cells, and the effect of RA on the expression of MDR1 mRNA and P-gp in K562/ADM cells was also detected; Western blot was used to detect the expression of p-JNK, p-p38 and p-ERK1/2 in K562/ADM cells.@*RESULTS@#RA could increased the sensitivity of K562/ADM cells to adriamycin(the reversal factor was 1.61 times), the difference showed statistically significantly (P<0.05); the resistance factor of K562/ADM to ADM was 41.76 times. The expression of MDR1 mRNA in K562 cells was extremely low, and the protein product P-glycoprotein (P-gp) was almost not expressed; MDR1 mRNA and P-gp in K562/ADM cells were highly expressed; RA could down-regulate the expression levels of MDR1 and P-gp in K562/ADM cells. In addition, RA could upregulate the phosphorylation levels of p38 and ERK1/2 in K562/ADM cells, but it has no effect on the expression of p-JNK.@*CONCLUSION@#RA may participate in the regulation of MAPK signaling pathway by upregulating the expression levels of p-p38 and p-ERK1/2 in K562/ADM cells, and thus inhibit the transcription and translation levels of MDR1, and finally reverse the multidrug resistance of leukemia cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , K562 Cells
2.
Braz. j. med. biol. res ; 53(11): e10068, 2020. tab, graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132499

ABSTRACT

Diabetes mellitus (DM) has a high prevalence in patients with pancreatic cancer (PaC), but the prognostic value of DM in PaC remains controversial. Alterations of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) contribute to multidrug resistance and intestinal metabolism in a variety of cancer types, which may be implicated in DM development. This study aimed to explore the potential prognostic value of P-gp and CYP3A4 in PaC patients in the context of DM through long-term follow-up. We retrospectively reviewed the medical records of patients with PaC admitted at The First People's Hospital of Changzhou, Jiangsu, China, from January 2011 to November 2019 and identified two cohorts of adult patients with PaC, including 24 with DM and 24 without DM (non-DM). The baseline clinical characteristics and outcomes were compared. Immunohistochemistry showed that protein expression of P-gp, but not CYP3A, in duodenum tissues was significantly upregulated in PaC patients with DM compared with those without DM. Kaplan-Meier analysis and log-rank test showed that the survival of patients with PaC and DM/high expression of P-gp was not significantly reduced compared with that of patients without DM/low expression of P-gp. These findings suggested that P-gp expression levels were different in the DM and non-DM groups of patients with PaC, but DM and duodenal P-gp levels were not associated with the long-term survival of patients with PaC. It appears that the presence of DM or P-gp expression levels may not serve as effective prognostic markers for PaC.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Pancreatic Neoplasms , Diabetes Mellitus , China/epidemiology , Retrospective Studies , Follow-Up Studies , ATP Binding Cassette Transporter, Subfamily B, Member 1
3.
Article in English | WPRIM | ID: wpr-880597

ABSTRACT

OBJECTIVES@#To investigate the effect of adriamycin (ADM), idelalisib or ADM and their combination on cell proliferation and intracellular concentration of ADM, and to explore the reversal effect of idelalisib on drug resistance to ADM.@*METHODS@#The K562 and K562/ADM cells were respectively treated with ADM and idelalisib at different concentrations. The 50% inhibitory concentration (IC@*RESULTS@#The cell survival rates were significantly decreased in a dose-dependent manner when the cells were treated with different doses of ADM (0.001-10.000 mg/L ). The IC@*CONCLUSIONS@#Idelalisib exerts effect on inhibition of the proliferation in myeloid leukemia K562 and K562/ADM cells, which may partially reverse the drug resistance of K562/ADM cells to ADM. The mechanisms for the effect of idelalisib may be related to increasing the accumulation of ADM and inducing the cell apoptosis in the K562 and K562/ADM cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cell Proliferation , Doxorubicin/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , K562 Cells , Leukemia, Myeloid , Purines , Quinazolinones
4.
Article in English | WPRIM | ID: wpr-758991

ABSTRACT

BACKGROUND: P-glycoprotein (P-gp) transports many chemicals that vary greatly in their structure and function. It is normally expressed in renal proximal tubular cells. We hypothesized that P-gp expression influences light chain excretion. Therefore, we investigated whether renal tubular P-gp expression is altered in patients with plasma cell disorders. METHODS: We evaluated renal biopsy specimens from patients with plasma cell disorders (n = 16) and primary focal segmental glomerulosclerosis (the control group, n = 17). Biopsies were stained with an anti-P-gp antibody. Loss of P-gp expression was determined semi-quantitatively. Groups were compared for loss of P-gp expression, and clinical variables. RESULTS: P-gp expression loss was more severe in patients with plasma cell disorders than it was in those with glomerulonephritis (P = 0.021). In contrast, clinical and histological parameters including serum creatinine, level of urinary protein excretion, and interstitial fibrosis/tubular atrophy grade were not significantly different between the groups. P-gp expression loss increased with age in patients with plasma cell disorders (P = 0.071). This expression loss was not associated with serum creatinine, the level of urinary protein excretion or the interstitial fibrosis/tubular atrophy grade. There was no significant association between the severity of P-gp expression loss with the types and serum levels of light chains, isotypes and serum immunoglobulin levels. CONCLUSION: Renal tubular P-gp expression is significantly down-regulated in patients with plasma cell disorders characterized by nephrotic range proteinuria. Additional studies are needed to determine whether reintroduction of renal tubular P-gp expression would mitigate the proximal tubular injury that is caused by free-light chains.


Subject(s)
Amyloidosis , Atrophy , Biopsy , Creatinine , Glomerulonephritis , Glomerulosclerosis, Focal Segmental , Humans , Immunoglobulin Light Chains , Immunoglobulins , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Plasma Cells , Plasma , Proteinuria
5.
Article in English | WPRIM | ID: wpr-758887

ABSTRACT

Canine MDR1 gene mutations produce translated P-glycoprotein, an active drug efflux transporter, resulting in dysfunction or over-expression. The 4-base deletion at exon 4 of MDR1 at nucleotide position 230 (nt230[del4]) in exon 4 makes P-glycoprotein lose function, leading to drug accumulation and toxicity. The G allele of the c.-6-180T>G variation in intron 1 of MDR1 (single nucleotide polymorphism [SNP] 180) causes P-glycoprotein over-expression, making epileptic dogs resistant to phenobarbital treatment. Both of these mutations are reported to be common in collies. This study develops a more efficient method to detect these two mutations simultaneously, and clarifies the genotype association with the side effects of chemotherapy. Genotype distribution in Taiwan was also investigated. An oligonucleotide microarray was successfully developed for the detection of both genotypes and was applied to clinical samples. No 4-base deletion mutant allele was detected in dogs in Taiwan. However, the G allele variation of SNP 180 was spread across all dog breeds, not only in collies. The chemotherapy adverse effect percentages of the SNP 180 T/T, T/G, and G/G genotypes were 16.7%, 6.3%, and 0%, respectively. This study describes an efficient way for MDR1 gene mutation detection, clarifying genotype distribution, and the association with chemotherapy.


Subject(s)
Alleles , Animals , Dogs , Drug Therapy , Exons , Genotype , Introns , Methods , Oligonucleotide Array Sequence Analysis , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Phenobarbital , Taiwan
6.
Cancer Research and Treatment ; : 1167-1179, 2019.
Article in English | WPRIM | ID: wpr-763163

ABSTRACT

PURPOSE: The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. MATERIALS AND METHODS: A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. RESULTS: Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. CONCLUSION: In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.


Subject(s)
Animals , Apoptosis , Ataxia Telangiectasia , Biliary Tract Neoplasms , Biliary Tract , Cell Cycle , Cell Cycle Checkpoints , Cell Line , Cisplatin , Comet Assay , DNA Damage , DNA Repair , DNA , Humans , Mice , ATP Binding Cassette Transporter, Subfamily B, Member 1
7.
Säo Paulo med. j ; 136(2): 140-143, Mar.-Apr. 2018. tab, graf
Article in English | LILACS | ID: biblio-904151

ABSTRACT

ABSTRACT BACKGROUND: Right ventricular (RV) dysfunction may develop over the course of chronic obstructive pulmonary disease (COPD) and is an important predictor of morbidity and mortality. Polymorphism of the multidrug resistance-1 (MDR-1) gene has been correlated with worse clinical findings among patients with COPD. Our aim here was to investigate the relationship between MDR-1 C3435T gene polymorphism and RV dysfunction in COPD patients. DESIGN AND SETTING: This was a cross-sectional study investigating the relationship between RV dysfunction and genetic defects in COPD patients. METHODS: Forty-one consecutive patients diagnosed with COPD and hospitalized due to acute exacerbation were enrolled. Polymorphism was analyzed using the strip assay technique. RV parameters were evaluated, and RV dysfunction was identified via transthoracic echocardiography. Patients were categorized into three groups according to gene polymorphism: MDR-1 CC (wild type, n = 9), MDR-1 CT (heterozygote mutant, n = 21) or MDR-1 TT (homozygote mutant, n = 11). RESULTS: The study included 14 males and 27 females (mean age 65 ± 11 years). The mean systolic pulmonary artery pressure was 31.4 ± 8 mmHg in the wild-type group, 42.2 ± 12 mmHg in the heterozygote mutant group and 46.5±14 mmHg in the homozygote mutant group (P = 0.027). Presence of RV dilatation was significantly different among the three groups (33%, 71%, and 100%, respectively; P = 0.005). In multiple logistic regression analysis, MDR-1 C3435T gene polymorphism (OR = 9.000, P = 0.019) was an independent predictor of RV dysfunction after adjustment for potential confounders. CONCLUSION: MDR-1 C3435T gene polymorphism was associated with RV dysfunction in patients with COPD.


Subject(s)
Humans , Male , Female , Middle Aged , Polymorphism, Genetic/genetics , Ventricular Dysfunction, Right/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Pulmonary Disease, Chronic Obstructive/complications , Echocardiography , Cross-Sectional Studies , Ventricular Dysfunction, Right/complications , ATP Binding Cassette Transporter, Subfamily B/genetics
8.
Article in Chinese | WPRIM | ID: wpr-690926

ABSTRACT

<p><b>OBJECTIVE</b>To establish the adriamycin(ADR)-resistant ALL cell lines and to investigate their drug-resistan mechanisms.</p><p><b>METHODS</b>The drug-resistant cell lines SUP-B15/ADR and RS4;11/ADR were derived by exposing the parental cells [SUP-B15(Ph) and RS4;11(Ph)] to the ascending concentrations of ADR. The cell viability was detected by CCK-8 method. The expression of P-gp was examined by Western blot, and RT-qPCR was performed to detect the expression of MDR1.</p><p><b>RESULTS</b>The drug-resistant cell lines SUP-B15/ADR and RS4;11/ADR were successfully established, their resistance indexes were 14.088±0.763 and 10.473±1.024, respectively. After the cryopreserved SUP-B15/ADR and RS4;11/ADR cells were resuscitated, their survival rates were 88.4±1.2% and 89.3±1.6% respectively, while their resistance indexes were 13.976±0.967 and 10.342±0.846 respectively (P>0.05). When the drug-resistant cells were cultured in the medium without ADR for 1 month, their drug-resistance indexes dropped down to 12.893±1.255 and 9.327±0.321 respectively(P<0.05). Drug-resistant cell lines had the cross-resistance to cytarabine and etoposide. The expression of P-gp and MDR1 in drug-resistant cells was significantly higher than that in wild-type cells.</p><p><b>CONCLUSION</b>Two drug-resistant ALL cell lines have been successfully established by exposing to the ascending concentration of ADR. The over-expression of MDR1 and P-gp in drug-resistant cells may be one of the mechanisms underlying the drug resistance.</p>


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cell Line , Cytarabine , Doxorubicin , Drug Resistance, Neoplasm , Etoposide , Precursor Cell Lymphoblastic Leukemia-Lymphoma
9.
São Paulo; s.n; s.n; 2017. 407 p. tab, ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-881505

ABSTRACT

Para fármacos administrados por via oral, o controle da extensão e da velocidade de absorção depende basicamente de duas importantes etapas: solubilidade do fármaco nos líquidos fisiológicos e sua permeabilidade através das membranas biológicas. Assim, o Sistema de Classificação Biofarmacêutica (SCB) foi proposto como uma ferramenta para o desenvolvimento de novos fármacos, de novas formulações e para auxiliar nos processos de bioisenção. No entanto, outro fator relacionado à biodisponibilidade e que deve ser considerado nos estudos biofarmacêuticos é o metabolismo. Desta forma, o Sistema de Classificação Biofarmacêutica de Distribuição de Fármacos (SCBDF) foi proposto com a finalidade de classificar os fármacos de acordo com suas características de solubilidade e de metabolismo de modo que seja possível avaliar e predizer o comportamento do fármaco in vivo. O metabolismo tem sido amplamente investigado, sobretudo as enzimas do citocromo P450, as quais estão presentes também nos enterócitos. Além disso, o SCBDF oferece um suporte quanto à avaliação dos mecanismos de permeabilidade envolvidos nos processos de absorção, interações fármaco-fármaco e interações fármaco-alimento. Assim, o presente trabalho teve como objetivo elucidar os mecanismos envolvidos na permeabilidade de fármacos antirretrovirais por meio dos modelos ex vivo (câmaras de difusão vertical tipo Franz) e in vitro (PAMPA, MDCK-MDR1 e microssomas) considerando os aspectos relacionados ao metabolismo intestinal e ao efluxo destes fármacos. Dada a importância da utilização de fármacos antirretrovirais na terapia medicamentosa contra a Síndrome da Imunodeficiência Adquirida (SIDA) e que estes medicamentos são normalmente administrados cronicamente, a compreensão dos mecanismos envolvidos na permeabilidade é de suma importância, uma vez que estes não estão totalmente esclarecidos e poucas informações são encontradas na literatura. Além disso, a biodisponibilidade de fármacos como estavudina, lamivudina e zidovudina indica variação na permeabilidade, necessitando de uma investigação científica mais aprofundada dos processos absortivos. Assim, segmentos de jejuno provenientes de ratos machos Wistar foram utilizados para a avaliação da permeabilidade intestinal dos referidos antirretrovirais considerando a avaliação de efluxo pela glicoproteína-P e o metabolismo intestinal pela CYP3A. De maneira complementar, estudos in vitro com o emprego de membranas artificiais paralelas (PAMPA) e culturas celulares de MDCK-MDR1 foram realizados com a finalidade de auxiliar na elucidação dos mecanismos de permeabilidade dos fármacos antirretrovirais. Além disso, a avaliação do metabolismo dos referidos fármacos foi realizada com o emprego de microssomas a fim de verificar se tais substâncias são substratos de enzimas da família CYP3A e, assim, verificar o impacto do metabolismo intestinal na absorção. Os resultados de permeabilidade obtidos em PAMPA foram: 0,74±0,11 x 10-6 cm/s para a estavudina, 0,25±0,12 x 10-6 cm/s para a lamivudina e 1,14±0,25 x 10-6 cm/s para a zidovudina. Já no modelo ex vivo com o emprego de câmaras de difusão vertical tipo Franz, os resultados foram: 1,56±0,32 x 10-5 cm/s para a estavudina, 1,26±0,27 x 10-5 cm/s para a lamivudina e 2,54±0,49 x 10-5 cm/s para a zidovudina. Portanto, com base nos resultados obtidos a partir dos dois métodos empregados, sugere-se que 30 outro mecanismo de transporte que não envolva a permeabilidade por difusão transcelular passiva possa estar relacionado à permeabilidade dos fármacos antirretrovirais. Com relação aos estudos de efluxo, os resultados obtidos a partir dos experimentos realizados em câmaras de difusão vertical tipo Franz demonstraram o aumento significativo da permeabilidade dos três antirretrovirais quando o inibidor de P-gp foi empregado, sendo: de 15,6 x 10-6 para 42,5 x 10-6 cm/s para a estavudina, de 12,6 x 10-6 para 37,5 x 10-6 cm/s para a lamivudina e de 25,4 x 10-6 para 56,6 x 10-6 cm/s para a zidovudina. Em culturas celulares MDCK-MDR1, os resultados de permeabilidade foram utilizados para a obtenção das razões entre as direções B→A e A→B. Os valores de Papp na condição inibida para os fármacos estudados apresentaram razão menor do que 1. Já a razão B→A/A→B para cada fármaco nos ensaios sem inibidor apresentou-se igual ou maior que 2, evidenciando a interação fármaco-transportador. Com base nisso, o modelo ex vivo com o emprego de segmentos intestinais em câmaras de difusão vertical tipo Franz apresentou-se adequado na avaliação do mecanismo de efluxo dos fármacos antirretrovirais, o que foi confirmado com os estudos realizados em MDCK-MDR1. Assim, os fármacos antirretrovirais estudados apresentaram interação significativa com a P-gp. Em relação aos estudos de metabolismo realizados em câmaras de difusão vertical tipo Franz, os resultados demonstraram grande variação na permeabilidade dos três antirretrovirais quando o inibidor de CYP3A foi empregado, sendo: de 15,6 x 10-6 para 23,5 x 10-6 cm/s para a estavudina, de 12,6 x 10-6 para 27,3 x 10-6 cm/s para a lamivudina e de 25,4 x 10-6 para 40,5 x 10-6 cm/s para a zidovudina. Já no modelo que emprega microssomas, os resultados de metabolização na ausência e na presença de inibidor de CYP3A foram: de 16,56% para 19,79% para a estavudina, de 14,56% para 15,55% para a lamivudina e de 17,85% para 16,48% para a zidovudina. Com base nisso, sugerese o emprego de microssomas para a determinação de metabolismo, uma vez que o método ex vivo empregado demonstrou grande variação entre os valores obtidos. Desta forma, observou-se que, para cada fármaco, não houve influência significativa no metabolismo pré-sistêmico relacionado às enzimas do complexo CYP3A, o que indica que a absorção oral das referidas substâncias não é limitada por tais enzimas. Portanto, a utilização dos diferentes métodos empregados no desenvolvimento do presente trabalho permitiu compreender os mecanismos envolvidos no transporte dos fármacos antirretrovirais, o que se torna de grande relevância nas etapas de desenvolvimento farmacêutico de novas moléculas e na compreensão de eventos clínicos ainda não esclarecidos atualmente


For orally administered drugs, control of the extent and rate of absorption depends on two important steps: solubility of the drug in physiological liquids and their permeability across biological membranes. Thus, the Biopharmaceutics Classification System (BCS) has been proposed as a tool for the development of new drugs, new formulations and aid in the biowaiver processes. However, another factor related to bioavailability that should be considered in biopharmaceutic studies is the metabolism. Thus, the Biopharmaceutics Drug Disposition Classification System (BDDCS) has been proposed for drug classification according to their solubility and metabolism characteristics, so it is possible to evaluate and predict the in vivo behavior of a compound. Metabolism has been extensively investigated, especially cytochrome P450 enzymes, which are also expressed in enterocytes. Besides, BDDCS provides support in evaluating the permeability mechanisms involved in the absorption processes, drug-drug interactions and drug-food interactions. Thus, the present study aimed to evaluate the mechanisms of permeability of antiretroviral drugs through the ex vivo (Franz cells) and in vitro (PAMPA, MDCK-MDR1 and microsomes) models considering aspects related to the intestinal metabolism and efflux of these drugs. Given the importance of the use of antiretroviral drugs in drug therapy against Acquired Immune Deficiency Syndrome (AIDS) and that these drugs are usually administered in a long-term way, understanding the mechanisms involved in the permeability is of a great importance, since they are not totally elucidated and no information is found in the literature. In addition, drugs as stavudine, lamivudine and zidovudine indicate variation in the permeability, which require further scientific investigation of absorptive processes. Thus, jejunum segments from rats were used to evaluate the intestinal permeability of these antiretroviral drugs, considering the evaluation of efflux by P-glycoprotein and intestinal metabolism by CYP3A. In a complementary manner, in vitro studies using parallel artificial membranes (PAMPA) and cell cultures MDCK-MDR1 were performed to aid in the elucidation of the permeability mechanisms of antiretroviral drugs. Also, the evaluation of the metabolism was carried out using microsomes to verify if such substances are substrates of CYP3A, and verify the impact of the intestinal metabolism in the absorption. The permeability results obtained in PAMPA were: 0.74±0.11x10-6 cm/s for stavudine, 0.25±0.12x10-6 cm/s for lamivudine and 1.14±0.25x10-6 cm/s for zidovudine. In ex vivo method using the intestinal segments in Franz cells, the results were: 1.56±0.32x10-5 cm/s for stavudine, 1.26±0.27x10-5 cm/s for lamivudine and 2.54±0.49x10-5 cm/s for zidovudine. Thus, based on the results obtained from these two methods, it is suggested that the antiretroviral drugs present other transport mechanism that is different from transcellular passive diffusion. For efflux studies, results obtained from experiments performed in Franz cells shown the increase of the permeability of the three antiretroviral drugs when the P-gp inhibitor was used: from 15.6x10-6 to 42,5x10-6 cm/s for stavudine, from 12.6x10-6 cm/s to 37.5x10-6 cm/s for lamivudine, and 25.4x10-6 to 56.6x10-6 cm/s for zidovudine. In MDCK-MDR1, the permeability results were used for obtaining ratio values between the directions B→A and A→B. The Papp values obtained with 33 inhibitor shown a ratio less than 1. For ratio B→A/A→B for each drug in experiments without inhibitor, the values obtained was equal or greater than 2, which shows the interaction between drug and transporter. Based on that, the ex vivo model using intestinal segments in Franz cells seems to be adequate for evaluation of efflux mechanism of antiretroviral drugs, which was confirmed by MDCK-MDR1 studies. Thus, the antiretroviral drugs presented interaction with P-gp. For metabolism studies in intestinal segments in Franz cells, a wide range of standard deviation was observed for the three antiretroviral drugs when the CYP3A inhibitor was used: from 15.6x10-6 cm/s to 23.5x10-6 cm/s for stavudine, from 12.6x10-6 cm/s to 27.3x10-6 cm/s for lamivudine, and from 25.4x10-6 cm/s to 40.5x10-6 cm/s for zidovudine. In experiments in microsomes, the results of metabolization in the absence and presence of CYP3A inhibitor were: from 16.56 to 19.79% for stavudine, from 14.56 to 15.55% for lamivudine and from 17.85 to 16.48% for zidovudine. Based on that, it is suggested the use of microsomes for metabolism evaluation, since the ex vivo method presented high variability between the results obtained. For each drug, no significative influence in pre-systemic metabolism related to CYP3A enzymes was observed, which indicates that the oral absorption of the drugs is not limited by these enzymes. The use of different methods in this work allowed to understand the mechanisms involved in the transport of antiretroviral drugs, which is of a great relevance in drug development and in the understanding of clinical events currently not clarified


Subject(s)
Animals , Male , Rats , Anti-Retroviral Agents/analysis , Metabolism , Permeability , Acquired Immunodeficiency Syndrome , Analytical Methods/methods , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Caco-2 Cells , Cytochrome P-450 CYP3A/analysis , Diffusion Chambers, Culture/statistics & numerical data , Madin Darby Canine Kidney Cells , Oral Mucosal Absorption
10.
São Paulo; s.n; s.n; 2017. 407 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-846682

ABSTRACT

Para fármacos administrados por via oral, o controle da extensão e da velocidade de absorção depende basicamente de duas importantes etapas: solubilidade do fármaco nos líquidos fisiológicos e sua permeabilidade através das membranas biológicas. Assim, o Sistema de Classificação Biofarmacêutica (SCB) foi proposto como uma ferramenta para o desenvolvimento de novos fármacos, de novas formulações e para auxiliar nos processos de bioisenção. No entanto, outro fator relacionado à biodisponibilidade e que deve ser considerado nos estudos biofarmacêuticos é o metabolismo. Desta forma, o Sistema de Classificação Biofarmacêutica de Distribuição de Fármacos (SCBDF) foi proposto com a finalidade de classificar os fármacos de acordo com suas características de solubilidade e de metabolismo de modo que seja possível avaliar e predizer o comportamento do fármaco in vivo. O metabolismo tem sido amplamente investigado, sobretudo as enzimas do citocromo P450, as quais estão presentes também nos enterócitos. Além disso, o SCBDF oferece um suporte quanto à avaliação dos mecanismos de permeabilidade envolvidos nos processos de absorção, interações fármaco-fármaco e interações fármaco-alimento. Assim, o presente trabalho teve como objetivo elucidar os mecanismos envolvidos na permeabilidade de fármacos antirretrovirais por meio dos modelos ex vivo (câmaras de difusão vertical tipo Franz) e in vitro (PAMPA, MDCK-MDR1 e microssomas) considerando os aspectos relacionados ao metabolismo intestinal e ao efluxo destes fármacos. Dada a importância da utilização de fármacos antirretrovirais na terapia medicamentosa contra a Síndrome da Imunodeficiência Adquirida (SIDA) e que estes medicamentos são normalmente administrados cronicamente, a compreensão dos mecanismos envolvidos na permeabilidade é de suma importância, uma vez que estes não estão totalmente esclarecidos e poucas informações são encontradas na literatura. Além disso, a biodisponibilidade de fármacos como estavudina, lamivudina e zidovudina indica variação na permeabilidade, necessitando de uma investigação científica mais aprofundada dos processos absortivos. Assim, segmentos de jejuno provenientes de ratos machos Wistar foram utilizados para a avaliação da permeabilidade intestinal dos referidos antirretrovirais considerando a avaliação de efluxo pela glicoproteína-P e o metabolismo intestinal pela CYP3A. De maneira complementar, estudos in vitro com o emprego de membranas artificiais paralelas (PAMPA) e culturas celulares de MDCK-MDR1 foram realizados com a finalidade de auxiliar na elucidação dos mecanismos de permeabilidade dos fármacos antirretrovirais. Além disso, a avaliação do metabolismo dos referidos fármacos foi realizada com o emprego de microssomas a fim de verificar se tais substâncias são substratos de enzimas da família CYP3A e, assim, verificar o impacto do metabolismo intestinal na absorção. Os resultados de permeabilidade obtidos em PAMPA foram: 0,74±0,11 x 10-6 cm/s para a estavudina, 0,25±0,12 x 10-6 cm/s para a lamivudina e 1,14±0,25 x 10-6 cm/s para a zidovudina. Já no modelo ex vivo com o emprego de câmaras de difusão vertical tipo Franz, os resultados foram: 1,56±0,32 x 10-5 cm/s para a estavudina, 1,26±0,27 x 10-5 cm/s para a lamivudina e 2,54±0,49 x 10-5 cm/s para a zidovudina. Portanto, com base nos resultados obtidos a partir dos dois métodos empregados, sugere-se que 30 outro mecanismo de transporte que não envolva a permeabilidade por difusão transcelular passiva possa estar relacionado à permeabilidade dos fármacos antirretrovirais. Com relação aos estudos de efluxo, os resultados obtidos a partir dos experimentos realizados em câmaras de difusão vertical tipo Franz demonstraram o aumento significativo da permeabilidade dos três antirretrovirais quando o inibidor de P-gp foi empregado, sendo: de 15,6 x 10-6 para 42,5 x 10-6 cm/s para a estavudina, de 12,6 x 10-6 para 37,5 x 10-6 cm/s para a lamivudina e de 25,4 x 10-6 para 56,6 x 10-6 cm/s para a zidovudina. Em culturas celulares MDCK-MDR1, os resultados de permeabilidade foram utilizados para a obtenção das razões entre as direções B→A e A→B. Os valores de Papp na condição inibida para os fármacos estudados apresentaram razão menor do que 1. Já a razão B→A/A→B para cada fármaco nos ensaios sem inibidor apresentou-se igual ou maior que 2, evidenciando a interação fármaco-transportador. Com base nisso, o modelo ex vivo com o emprego de segmentos intestinais em câmaras de difusão vertical tipo Franz apresentou-se adequado na avaliação do mecanismo de efluxo dos fármacos antirretrovirais, o que foi confirmado com os estudos realizados em MDCK-MDR1. Assim, os fármacos antirretrovirais estudados apresentaram interação significativa com a P-gp. Em relação aos estudos de metabolismo realizados em câmaras de difusão vertical tipo Franz, os resultados demonstraram grande variação na permeabilidade dos três antirretrovirais quando o inibidor de CYP3A foi empregado, sendo: de 15,6 x 10-6 para 23,5 x 10-6 cm/s para a estavudina, de 12,6 x 10-6 para 27,3 x 10-6 cm/s para a lamivudina e de 25,4 x 10-6 para 40,5 x 10-6 cm/s para a zidovudina. Já no modelo que emprega microssomas, os resultados de metabolização na ausência e na presença de inibidor de CYP3A foram: de 16,56% para 19,79% para a estavudina, de 14,56% para 15,55% para a lamivudina e de 17,85% para 16,48% para a zidovudina. Com base nisso, sugerese o emprego de microssomas para a determinação de metabolismo, uma vez que o método ex vivo empregado demonstrou grande variação entre os valores obtidos. Desta forma, observou-se que, para cada fármaco, não houve influência significativa no metabolismo pré-sistêmico relacionado às enzimas do complexo CYP3A, o que indica que a absorção oral das referidas substâncias não é limitada por tais enzimas. Portanto, a utilização dos diferentes métodos empregados no desenvolvimento do presente trabalho permitiu compreender os mecanismos envolvidos no transporte dos fármacos antirretrovirais, o que se torna de grande relevância nas etapas de desenvolvimento farmacêutico de novas moléculas e na compreensão de eventos clínicos ainda não esclarecidos atualmente


For orally administered drugs, control of the extent and rate of absorption depends on two important steps: solubility of the drug in physiological liquids and their permeability across biological membranes. Thus, the Biopharmaceutics Classification System (BCS) has been proposed as a tool for the development of new drugs, new formulations and aid in the biowaiver processes. However, another factor related to bioavailability that should be considered in biopharmaceutic studies is the metabolism. Thus, the Biopharmaceutics Drug Disposition Classification System (BDDCS) has been proposed for drug classification according to their solubility and metabolism characteristics, so it is possible to evaluate and predict the in vivo behavior of a compound. Metabolism has been extensively investigated, especially cytochrome P450 enzymes, which are also expressed in enterocytes. Besides, BDDCS provides support in evaluating the permeability mechanisms involved in the absorption processes, drug-drug interactions and drug-food interactions. Thus, the present study aimed to evaluate the mechanisms of permeability of antiretroviral drugs through the ex vivo (Franz cells) and in vitro (PAMPA, MDCK-MDR1 and microsomes) models considering aspects related to the intestinal metabolism and efflux of these drugs. Given the importance of the use of antiretroviral drugs in drug therapy against Acquired Immune Deficiency Syndrome (AIDS) and that these drugs are usually administered in a long-term way, understanding the mechanisms involved in the permeability is of a great importance, since they are not totally elucidated and no information is found in the literature. In addition, drugs as stavudine, lamivudine and zidovudine indicate variation in the permeability, which require further scientific investigation of absorptive processes. Thus, jejunum segments from rats were used to evaluate the intestinal permeability of these antiretroviral drugs, considering the evaluation of efflux by P-glycoprotein and intestinal metabolism by CYP3A. In a complementary manner, in vitro studies using parallel artificial membranes (PAMPA) and cell cultures MDCK-MDR1 were performed to aid in the elucidation of the permeability mechanisms of antiretroviral drugs. Also, the evaluation of the metabolism was carried out using microsomes to verify if such substances are substrates of CYP3A, and verify the impact of the intestinal metabolism in the absorption. The permeability results obtained in PAMPA were: 0.74±0.11x10-6 cm/s for stavudine, 0.25±0.12x10-6 cm/s for lamivudine and 1.14±0.25x10-6 cm/s for zidovudine. In ex vivo method using the intestinal segments in Franz cells, the results were: 1.56±0.32x10-5 cm/s for stavudine, 1.26±0.27x10-5 cm/s for lamivudine and 2.54±0.49x10-5 cm/s for zidovudine. Thus, based on the results obtained from these two methods, it is suggested that the antiretroviral drugs present other transport mechanism that is different from transcellular passive diffusion. For efflux studies, results obtained from experiments performed in Franz cells shown the increase of the permeability of the three antiretroviral drugs when the P-gp inhibitor was used: from 15.6x10-6 to 42,5x10-6 cm/s for stavudine, from 12.6x10-6 cm/s to 37.5x10-6 cm/s for lamivudine, and 25.4x10-6 to 56.6x10-6 cm/s for zidovudine. In MDCK-MDR1, the permeability results were used for obtaining ratio values between the directions B→A and A→B. The Papp values obtained with 33 inhibitor shown a ratio less than 1. For ratio B→A/A→B for each drug in experiments without inhibitor, the values obtained was equal or greater than 2, which shows the interaction between drug and transporter. Based on that, the ex vivo model using intestinal segments in Franz cells seems to be adequate for evaluation of efflux mechanism of antiretroviral drugs, which was confirmed by MDCK-MDR1 studies. Thus, the antiretroviral drugs presented interaction with P-gp. For metabolism studies in intestinal segments in Franz cells, a wide range of standard deviation was observed for the three antiretroviral drugs when the CYP3A inhibitor was used: from 15.6x10-6 cm/s to 23.5x10-6 cm/s for stavudine, from 12.6x10-6 cm/s to 27.3x10-6 cm/s for lamivudine, and from 25.4x10-6 cm/s to 40.5x10-6 cm/s for zidovudine. In experiments in microsomes, the results of metabolization in the absence and presence of CYP3A inhibitor were: from 16.56 to 19.79% for stavudine, from 14.56 to 15.55% for lamivudine and from 17.85 to 16.48% for zidovudine. Based on that, it is suggested the use of microsomes for metabolism evaluation, since the ex vivo method presented high variability between the results obtained. For each drug, no significative influence in pre-systemic metabolism related to CYP3A enzymes was observed, which indicates that the oral absorption of the drugs is not limited by these enzymes. The use of different methods in this work allowed to understand the mechanisms involved in the transport of antiretroviral drugs, which is of a great relevance in drug development and in the understanding of clinical events currently not clarified


Subject(s)
Anti-Retroviral Agents/supply & distribution , Evaluation Studies as Topic/classification , Permeability , Pharmaceutical Preparations/administration & dosage , Analytical Methods/methods , Biopharmaceutics/classification , Cytochrome P-450 CYP3A/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Spectrophotometry/methods , Validation Study
11.
National Journal of Andrology ; (12): 302-308, 2017.
Article in Chinese | WPRIM | ID: wpr-812769

ABSTRACT

Objective@#To explore the effect of the AXL expression on the chemosensitivity of prostate cancer PC-3 and DU145 cells to docetaxel and possible mechanisms.@*METHODS@#Using Western blot, we examined the expressions of the AXL protein, p-AXL and Gas6 in the docetaxel-resistant PC-3 (PC-3-DR) and DU145 (DU145-DR) cells stimulated with gradually increased concentrations of docetaxel. We transfected the PC-3 and DU145 cells with negative NC ShRNA and AXL-ShRNA, respectively, which were confirmed to be effective, detected the proliferation, apoptosis and cycle distribution of the cells by CCK8, MTT and flow cytometry after treated with the AXL-inhibitor MP470 and/or docetaxel, and determined the expression of the ABCB1 protein in the PC-3-DR and DU145-DR cells after intervention with the AXL-inhibitor R428 and/or docetaxel.@*RESULTS@#The expression of the AXL protein in the PC-3 and DU145 cells was significantly increased after docetaxel treatment (P <0.05). The expressions AXL and p-AXL were remarkably higher (P <0.05) while that of Gas6 markedly lower (P <0.05) in the PC-3 and DU145 than in the PC-3-DR and DU145-DR cells. The inhibitory effect of docetaxel on the proliferation and its enhancing effect on the apoptosis of the PC-3 and DU145 cells were significantly decreased at 48 hours after AXL transfection (P <0.05). MP470 obviously suppressed the growth and promoted the apoptosis of the PC-3-DR and DU145-DR cells, with a higher percentage of the cells in the G2/M phase when combined with docetaxel than used alone (P <0.05). R428 markedly reduced the expression of ABCB1 in the PC-3-DR and DU145-DR cells, even more significantly in combination with docetaxel than used alone (P <0.05).@*CONCLUSIONS@#The elevated expression of AXL enhances the docetaxel-resistance of PC-3 and DU145 prostate cancer cells and AXL intervention improves their chemosensitivity to docetaxel, which may be associated with the increased cell apoptosis in the G2/M phase and decreased expression of ABCB1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Metabolism , Antineoplastic Agents , Pharmacology , Apoptosis , Cell Count , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Docetaxel , Drug Resistance, Neoplasm , Humans , Intercellular Signaling Peptides and Proteins , Metabolism , Male , Prostatic Neoplasms , Drug Therapy , Metabolism , Pathology , Proto-Oncogene Proteins , Genetics , Metabolism , Pyrimidines , Pharmacology , RNA, Small Interfering , Receptor Protein-Tyrosine Kinases , Genetics , Metabolism , Taxoids , Pharmacology
12.
Article in Chinese | WPRIM | ID: wpr-317586

ABSTRACT

<p><b>OBJECTIVE</b>To predict and identify the target gene of miR-145, and to explore the underlying mechanism of the inhibition of miR-145 on drug resistance to Oxaliplatin (L-OHP) in human colorectal cancer cells.</p><p><b>METHODS</b>L-OHP-resistant human colorectal cancer cell line (HCT116/L-OHP) was established in vitro by exposing to increased concentrations of L-OHP in cell culture medium. MiR-145-mimics and its negative control (NC-miRNA) were transfected into HCT116/L-OHP cells using liposome to establish HCT116/L-OHPover-expressing miR-145 and HCT116/L-OHP. The target genes of miR-145 were predicted by bioinformatic analysis, and validated by dual luciferase activity assay. After determination of G protein coupled receptor 98(GPR98) as target gene, corresponding plasmids were constructed and transfected to establish HCT116/L-OHPover-expressing GPR98 and HCT116/L-OHP. HCT116/L-OHP cells over-expressing both GPR98 and miR-145 (HCT116/L-OHP) were acquired through modification of the binding sites of GPR98 cDNA with miR-145. CCK-8 assay was used to assess the proliferation (A value) and sensitivity to L-OHP (the lower the IC50, the stronger the sensitivity) in HCT116/L-OHP cells. Real-time quantitative PCR was used to measure the mRNA expression of miR-145 and GPR98. Western blot was used to examine the protein expression of GPR98 and drug-resistant associated protein, such as P-glycoprotein (gp), multiple drug-resistance protein 1(MRP1), cancer-inhibition gene PTEN.</p><p><b>RESULTS</b>HCT116/L-OHP cell line was successfully established with ICof (42.34±1.05) mg/L and miR-145 mRNA expression of 0.27±0.04, which was higher than (9.81±0.95) mg/L (t=39.784, P=0.000) and lower than 1.00±0.09 (t=13.021, P=0.000) in HCT116 cells. Based on HCT116/L-OHP cells, HCT116/L-OHPcells were established successfully, with relative miR-145 expression of 10.01±1.05, which was higher than 1.06±0.14 in HCT116/L-OHPand 1.00±0.16 in HCT116/L-OHP (F=161.797, P=0.000). GPR98 was identified to be the target gene of miR-145. The relative mRNA and protein expressions of GPR98 in HCT116/L-OHPcells were 8.48±0.46 and 1.71±0.09, respectively, which were higher than those in HCT116/L-OHP(mRNA: 3.65±0.40, protein: 1.21±0.10) and HCT116/L-OHP (mRNA: 3.49±0.35, protein: 1.22±0.08; all P<0.05). The A value was 1.31±0.10, and the relative protein expressions of P-gp and MRP1 were 1.53±0.18 and 1.49±0.20 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP (A value: 0.82±0.08, relative protein expression: 1.00±0.06 and 1.21±0.13, all P<0.05). The A value was 0.89±0.08, and the relative protein expressions of P-gp and MRP were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP(A value: 0.20±0.05, relative protein expression: 0.20±0.07, 0.55±0.10, all P<0.05). The relative protein expression of PTEN in HCT116/L-OHPcells was 0.12±0.03, which was lower than 1.25±0.14 in HCT116/L-OHP cells(P<0.05). In addition, relative protein expressions of P-gp and MRP1 were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHPcells (0.20±0.07 and 0.55±0.10), while PTEN expression in HCT116/L-OHPcells was lower as compared to HCT116/L-OHPcells (1.41±0.16 vs. 1.98±0.13, P<0.05).</p><p><b>CONCLUSION</b>MiR-145 inhibits drug resistance to L-OHP of HCT116 cells through suppressing the expression of target gene GPR98.</p>


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Cell Line, Tumor , Physiology , Colorectal Neoplasms , Down-Regulation , Genetics , Drug Resistance, Neoplasm , Genetics , Physiology , HCT116 Cells , Physiology , Humans , In Vitro Techniques , MicroRNAs , Genetics , Pharmacology , Multidrug Resistance-Associated Proteins , Organoplatinum Compounds , Pharmacology , PTEN Phosphohydrolase , RNA, Messenger , Receptors, G-Protein-Coupled , Genetics
13.
Article in English | WPRIM | ID: wpr-107202

ABSTRACT

Paclitaxel (PTX) is one of the most frequently used anticancer agent for treating refractory ovarian cancer, metastatic breast cancer and non-small cell lung cancer. However, its oral administration is impeded by very low bioavailability (<5%) due to the P-glycopprotein (P-gp) efflux pump effect. This study investigated in vitro and in vivo P-gp inhibitory effects of adamantyl derivatives AC-603 and AC-786 in rats. Two adamantyl derivatives tested in this study increased the cytotoxicity of daunomycin (DNM) in P-gp overexpressed cell line by inhibiting P-gp efflux function. Pharmacokinetics of PTX with orally co-administered P-gp inhibitors were assessed in rats to improve PTX absorption. The pharmacokinetic parameters of PTX were determined in rats after intravenous (2 mg/kg) or oral (25 mg/kg) administration in the presence or absence of verapamil (a positive control), AC-603 or AC-786 (0.5 mg/kg or 5 mg/kg). Compared to control group (PTX alone), experimental groups (PTX with AC-603 or AC-786) significantly increased the area under the plasma concentration-time curve of PTX following oral administration by 1.7–2.2 fold. The volume of distribution and total clearance of PTX were decreased, while other parameters were not significantly changed. In conclusion, co-administration of AC-603 or AC-786 enhanced the relative bioavailability of orally administered PTX as compared to control.


Subject(s)
Absorption , Administration, Oral , Animals , Biological Availability , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Cell Line , Daunorubicin , In Vitro Techniques , Ovarian Neoplasms , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Paclitaxel , Pharmacokinetics , Plasma , Rats , Verapamil
14.
Article in English | WPRIM | ID: wpr-127908

ABSTRACT

Oseltamivir is a substrate of P-glycoprotein, an efflux drug transporter encoded by ABCB1. The objective of this study was to assess the role of ABCB1 (c.1236C>T, c.2677G>T/A, and c.3435C>T) polymorphisms in the pharmacokinetics of oseltamivir and its active metabolite, oseltamivir carboxylate in humans. Nineteen healthy male subjects were enrolled, and their ABCB1 polymorphisms were evaluated. After the oral administration of 75 mg oseltamivir, the plasma concentrations of oseltamivir and oseltamivir carboxylate were measured. Pharmacokinetic analysis was carried out. Systemic exposure to oseltamivir and oseltamivir carboxylate was higher in the mutant group than in the wild-type and heterozygous groups. We suggest that ABCB1 polymorphisms affect the pharmacokinetics of oseltamivir in humans. Further studies in a large population are necessary to validate the results of this preliminary study (Clinical Trial Registration Information [CRIS] registry: http://cris.nih.go.kr, No. KCT0001903).


Subject(s)
Administration, Oral , Humans , Male , Oseltamivir , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Pharmacokinetics , Plasma
15.
Acta Physiologica Sinica ; (6): 179-184, 2016.
Article in Chinese | WPRIM | ID: wpr-331668

ABSTRACT

The aim of the present study was to develop three-dimensional (3D) culture model, a more pathologically relevant model, of human breast cancer for drug resistance study. MCF-7 cells were embedded within collagen gel to establish 3D culture model. Cellular morphology was observed using Carmine and HE staining. Cell proliferation was evaluated by CCK-8 assay, and cell activity was detected by Live/Dead staining kit. Drug sensitivities of the 3D culture to doxorubicin, carboplatin, 5-fluorouracil were assayed and compared with those of monolayer (2D) culture. In addition, the levels of drug resistance-related genes P-glycoprotein (P-gp), mrp2 mRNA expressions were detected by real time RT-PCR. Expression level of P-gp protein was detected by Western blot. The results showed that MCF-7 cells in 3D culture formed a number of cell aggregates, and most of them displayed good cell viability. The IC50 values of doxorubicin, carboplatin, 5-fluorouracil were all increased significantly in 3D culture compared with those in 2D culture. Moreover, compared with MCF-7 cells in 2D culture, the cells in 3D culture showed increased mRNA levels of P-gp and mrp2, as well as up-regulated protein expression of P-gp. These results suggest that in vitro collagen-embedded culture system of human breast cancer cells represents an improved pathologically relevant 3D microenvironment for breast cancer cells, providing a robust tool to explore the mechanism of drug resistance of cancer cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Breast Neoplasms , Cell Culture Techniques , Cell Proliferation , Cell Survival , Doxorubicin , Drug Resistance, Neoplasm , Humans , MCF-7 Cells
16.
Article in English | WPRIM | ID: wpr-201382

ABSTRACT

Cancer stem cells (CSCs) are a subset of tumor cells, which are characterized by resistance against chemotherapy and environmental stress, and are known to cause tumor relapse after therapy. A number of molecular mechanisms underlie the chemoresistance of CSCs, including high expression levels of drug efflux transporters. We investigated the role of the antioxidant transcription factor NF-E2-related factor 2 (NRF2) in chemoresistance development, using a CSC-enriched colonosphere system. HCT116 colonospheres were more resistant to doxorubicin-induced cell death and expressed higher levels of drug efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) compared to HCT116 monolayers. Notably, levels of NRF2 and expression of its target genes were substantially elevated in colonospheres, and these increases were linked to doxorubicin resistance. When NRF2 expression was silenced in colonospheres, Pgp and BCRP expression was downregulated, and doxorubicin resistance was diminished. Collectively, these results indicate that NRF2 activation contributes to chemoresistance acquisition in CSC-enriched colonospheres through the upregulation of drug efflux transporters.


Subject(s)
Breast Neoplasms , Cell Death , Doxorubicin , Drug Therapy , Neoplastic Stem Cells , NF-E2-Related Factor 2 , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Recurrence , Transcription Factors , Up-Regulation
17.
Article in English | WPRIM | ID: wpr-162231

ABSTRACT

OBJECTIVES: Banha-sasim-tang (BST), which consists of seven different herbs, is one of the most popular herbal formulae for treating gastrointestinal disorders in Eastern Asia. The commonly used herbal medicine is often co-administered with other therapeutic drugs, which raises the possibility of herb–drug interactions and may modify the clinical safety profile of therapeutic drugs. METHODS: We investigated the potential herb–drug interactions between BST extract and midazolam (MDZ) in mice. The area under the plasma concentration-time curve (AUC) of MDZ and 1ʹ-hydroxymidazolam (1ʹ-OH-MDZ) was evaluated for both oral and intraperitoneal administration of MDZ, following oral administration of BST (0.5 and 1 g/kg). RESULTS: It was found that the AUC of MDZ and 1ʹ-OH-MDZ was lower in case of oral administration of MDZ. Administration of BST extract was not associated with hepatic cytochrome P450 activity. BST extract induced a strong reduction in pH and it has been reported that oral mucosal absorption of MDZ is lower at low pH. The decreased absorption rate of MDZ might be caused by the ingredients of BST and may not be related to other factors such as increased excretion of MDZ by P-glycoprotein. CONCLUSIONS: The altered pharmacokinetics of midazolam caused by co-administration with BST in vivo could be attributed to a decrease in pH and subsequent reduction of MDZ absorption rate.


Subject(s)
Absorption , Administration, Oral , Animals , Area Under Curve , Cytochrome P-450 Enzyme System , Far East , Herb-Drug Interactions , Herbal Medicine , Hydrogen-Ion Concentration , Mice , Midazolam , Oral Mucosal Absorption , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Pharmacokinetics , Plasma , Stomach
18.
Article in English | WPRIM | ID: wpr-177269

ABSTRACT

This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2-75 µM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 µL/min while passive diffusion clearance was 0.31 µL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.


Subject(s)
Administration, Oral , Animals , Area Under Curve , Diffusion , Intestinal Absorption , Lactic Acid , LLC-PK1 Cells , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Pharmacokinetics , Phenformin , Plasma , Rats , Swine , Verapamil
19.
Yonsei Medical Journal ; : 50-57, 2016.
Article in English | WPRIM | ID: wpr-186123

ABSTRACT

PURPOSE: Traditional chemotherapy is the main adjuvant therapy for the treatment of non-small cell lung cancer (NSCLC). However, the emergence of multi-drug resistance (MDR) has greatly restricted the curative effect of chemotherapy. Therefore, it is necessary to find a method to treat MDR NSCLC clinically. It is worth investigating whether NSCLCs that are resistant to traditional chemotherapy can be effectively treated with tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR). MATERIALS AND METHODS: The expression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) was detected by immunohistochemistry, and mutations in EGFR (exons 19 and 21) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (exon 2) were detected by high-resolution melting analysis (HRMA) of surgical NSCLC specimens from 127 patients who did not undergo traditional chemotherapy or radiotherapy. A Pearson chi-square test was performed to analyze the correlations between the expression of P-gp and LRP and mutations in EGFR and KRAS. RESULTS: The expression frequencies of P-gp and LRP were significantly higher in adenocarcinomas from non-smoking patients; the expression frequency of LRP was significantly higher in cancer tissue from female patients. The frequency of EGFR mutations was significantly higher in well to moderately differentiated adenocarcinomas from non-smoking female patients. The frequency of EGFR mutations in the cancers that expressed P-gp, LRP, or both P-gp and LRP was significantly higher than that in cancers that did not express P-gp or LRP. CONCLUSION: NSCLCs expressing P-gp/LRP bear the EGFR mutation in exon 19 or 21 easily.


Subject(s)
Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Exons/genetics , Female , Humans , Lung Neoplasms/genetics , Middle Aged , Mutation , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , ErbB Receptors/genetics , Treatment Outcome , Vault Ribonucleoprotein Particles/genetics , ras Proteins/genetics
20.
Braz. j. pharm. sci ; 51(3): 745-753, July-Sept. 2015. graf
Article in English | LILACS | ID: lil-766324

ABSTRACT

The present study was planned to investigate the influence of polyethylene glycols (PEGs) on the activity and expression of P-glycoprotein (P-gp). Sub-toxic concentrations of PEGs in Caco-2 cells were determined using the MTT test assay. Then the measurement of Rhodamine-123 (Rho-123) uptake, a P-gp fluorescence substrate, in Caco-2 cells confronting PEG 400 (1% and 2% w/v), PEG 4000 (2% and 4% w/v), PEG 6000 (2% and 4% w/v), PEG 10000 (2% and 4% w/v), PEG 15000 (1% and 2% w/v), and PEG 35000 (2% and 4% w/v) overnight was taken to elucidate whether non-toxic concentrations of PEGs are able to impact P-gp activity. Furthermore, western blotting was carried out to investigate P-gp protein expression. The results showed that PEG 400 at concentrations of 1% (w/v) and 2% (w/v) and PEG 6000 at the concentration of 4% (w/v) are notably capable of blocking P-gp. Based on the obtained results it is concluded that the mentioned excipients could be used to obstruct P-gp efflux transporter in order to increase the bioavailability of co-administered substrate drug.


O presente estudo foi planejado para investigar a influência de polietileno glicóis sobre a atividade e expressão da P- glicoproteína (P-gp) . Concentrações sub-tóxicas de PGPs e em células Caco-2 foram determinadas por meio do ensaio de MTT. Em seguida, efetuou-se a a medida de captura de Rodamina-123 (Rho-123), um substrato fluorescente de P-gp, em células Caco-2, confrontando com PEG 400 (1% e 2% m/v), PEG 4000 (2% e 4% m/v) e PEG 6000 (2% e 4% m /v), PEG 10000 (2% e 4% w/v), PEG 15000 (1% e 2% m/v), e PEG 35000 (2% e 4% m/v). Essa medida foi efetuada durante a noite, para saber se as concentrações não tóxicas de excipientes são capazes de influenciar a actividade da P-gp. Além disso, realizou-se o western blotting para investigar a expressão da proteína P-gp. Os resultados mostraram que o PEG 400, nas concentrações de 1% (m/v) e 2% (m/v), e PEG 6000, na concentração de 4% (m/v) são capazes de bloquear P-gp. Com base nos resultados conclui-se que os excipientes mencionados poderiam ser utilizados para obstruir o efluxo por P-gp, a fim de aumentar a biodisponibilidade de do fármaco co-administrado.


Subject(s)
Caco-2 Cells , ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Polyethylene Glycols/analysis , Biological Availability , Excipients/classification , Rhodamine 123
SELECTION OF CITATIONS
SEARCH DETAIL