ABSTRACT
SUMMARY: This study evaluated the phytochemical screening, antioxidant capacity, and in vitro anticancer activities of four plants namely, Gypsophila capillaris, Anabasis lachnantha, Haloxylon salicornicum, and Horwoodia dicksoniae which belong to four different families: Caryophyllaceae, Amaranthaceae, Chenopodiaceae, Brassicaceae, respectively. The total phenolics, anthocyanins, saponins, total antioxidant capacity (TAC), and DPPH assays were determined by spectrophotometer. In vitro anticancer activity was assessed using two human cancer cell lines; hepatocellular carcinoma (HepG-2) and breast adenocarcinoma (MCF-7) to estimate the inhibition concentration 50 % (IC50). The results showed that H. dicksoniae has the highest concentrations of phenolics and saponins, while H. salicornicum has the highest DPPH. The highest concentration of TAC was found in G. capillaries. Among the tested extracts, G. capillaries and H. salicornicum have the potential activity against MCF-7 and HepG-2 cell lines in vitro. The content of polyphenols in G. capillaries was profiled by high-performance liquid chromatography (HPLC). The highest concentration among the phenolic compounds was chlorogenic (60.8 µg/ml) while the highest concentration among the flavonoid compounds was hesperidin (1444.92 µg/ml). In summary, G. capillaries and H. salicornicum extracts have potent anticancer activity against HepG-2 and MCF-7 cell lines.
Este estudio evaluó la detección fitoquímica, la capacidad antioxidante y las actividades anticancerígenas in vitro de cuatro plantas, Gypsophila capillaris, Anabasis lachnantha, Haloxylon salicornicum y Horwoodia dicksoniae, que pertenecen a cuatro familias diferentes: Caryophyllaceae, Amaranthaceae, Chenopodiaceae y Brassicaceae, respectivamente. Los ensayos de fenólicos totales, antocianinas, saponinas, capacidad antioxidante total (TAC) y DPPH se determinaron mediante espectrofotómetro. La actividad anticancerígena in vitro se evaluó utilizando dos líneas celulares de cáncer humano; carcinoma hepatocelular (HepG-2) y adenocarcinoma de mama (MCF- 7) para estimar la concentración de inhibición del 50 % (IC50). Los resultados indicaron que H. dicksoniae tiene las concentraciones más altas de fenólicos y saponinas, mientras que H. salicornicum tiene el DPPH más alto. La mayor concentración de TAC se encontró en G. capillaries. Entre los extractos probados, G. capillaries y H. salicornicum tienen actividad potencial contra líneas celulares MCF-7 y HepG-2 in vitro. El contenido de polifenoles en G. capillaries se perfiló mediante cromatografía líquida de alta resolución (HPLC). La concentración más alta entre los compuestos fenólicos fue clorogénica (60,8 µg/ml), mientras que la concentración más alta entre los compuestos flavonoides fue la hesperidina (1444,92 µg/ml). En resumen, los extractos de Gypsophila capillaris y H. salicornicum tienen una potente actividad anticancerígena contra las líneas celulares HepG-2 y MCF-7.
Subject(s)
Humans , Plants, Medicinal/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Phenols/analysis , Saponins/analysis , Saudi Arabia , In Vitro Techniques , Chromatography, High Pressure Liquid , Metabolomics , Hep G2 Cells/drug effects , MCF-7 Cells/drug effects , Phytochemicals , Anthocyanins/analysis , Antineoplastic Agents/pharmacology , Antioxidants/pharmacologyABSTRACT
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Subject(s)
Animals , Anthocyanins , DNA Shuffling , Flowers/genetics , Porifera , Prunus/genetics , Glutamine/analogs & derivatives , Plant ExtractsABSTRACT
Concentrações aumentadas de tecido adiposo corporal observadas no sobrepeso e obesidade, podem gerar a produção de diversos mediadores inflamatórios com ação direta ou indireta em influenciar a capacidade de proliferação e diferenciação das células hematopoéticas e, consequentemente, a complexa regulação que envolve os processos de migração celular. Sabe-se que o recrutamento contínuo de leucócitos durante vários estágios do processo inflamatório apresenta importante papel na gênese desse processo, participando intensamente na perpetuação da inflamação. Na literatura, vários estudos demostraram acapacidade anti-inflamatória das antocianinas sobre vários órgãos; contudo poucos estudos avaliam a influência das antocianinas sobre a migração celular. As antocianinas pertencem à ampla classe dos flavonoides que estão presentes em uma ampla variedade de frutas, vegetais e bebidas e são os compostos responsáveis pelas cores azul, violeta e vermelha desses alimentos. Sendo assim, pretende-se nesse estudo avaliar o efeito da delfinidina-3-glicosídeo, uma antocianina presente em abundância em diversas frutas com destaque para o suco de uva integral, sobre os processos de migração leucocitária. Para tanto esse trabalho foi dividido em duas etapas: (i) uma realizada em pacientes com sobrepeso que consumiram suco de uva integral e (ii) uma segunda etapa, in vitro, onde foi avaliado o efeito da delfinidina-3-glicosídeo sobre mecanismos envolvidos na modulação dos processos de migração leucocitária. Na etapa inicial com estudos in vivo, foram avaliados parâmetros bioquímicos, hematológicos, bem como a expressão de moléculas de adesão de células polimorfonucleares do sangue periférico e a quantificação de citocinas inflamatórias e alguns genes envolvidos nos processos de inflamação e migração celular. Na primeira etapa, a ingestão de suco de uva não alterou o perfil lipídico/inflamatório ou a contagem de leucócitos, entretanto, reduziu os valores circulantes de sICAM e sVCAM. Na segunda etapa, os resultados in vitro mostraram que a delfinidina reduziu a taxa de migração e a expressão de células CD11/CD18 positivas, reduziu a expressão gênica de ICAM-1 e a fosforilação e expressão gênica de NFkB, reduzindo também a produção de IL-6, IL-8 e CCL2
Increased concentrations of body adipose tissue observed in overweight and obesity may generate the production of several inflammatory mediators that can act directly or indirectly on the hematopoietic cells capacity of proliferation and differentiation and, consequently, the complex regulation that involves the processes of cell migration. It is known that the continuous recruitment of leukocytes during various stages of the inflammatory process plays an important role in the genesis of this process, intensely participating in the perpetuation of inflammation. In the literature, several studies have demonstrated the anti-inflammatory capacity of anthocyanins on various organs; however, few studies have evaluated the influence of anthocyanins on cell migration. Anthocyanins belong to the broad class of flavonoids that are present in a wide variety of fruits, vegetables and beverages and are the compounds responsible for the blue, violet and red colors of these foods. Thus, this study intends to evaluate the effect of delphinidin-3-glycoside, an anthocyanin present in abundance in several fruits, especially whole grape juice, on leukocyte migration processes. Therefore, this study was divided into two stages: (i) one performed in overweight patients who consumed whole grape juice and (ii) a second stage, in vitro, where the effect of delphinidin-3-glycoside on mechanisms involved in the modulation of leukocyte migration processes was evaluated. In the initial stage with in vivo studies, biochemical and hematological parameters were evaluated, as well as the expression of adhesion molecules of polymorphonuclear cells of peripheral blood and the quantification of inflammatory cytokines and some genes involved in the processes of inflammation and cell migration. In the first stage, the intake of grape juice did not alter the lipid/inflammatory profile or the leukocyte count, however, it reduced the circulating values of sICAM and sVCAM. In the second step, in vitro results showed that delphinidine reduced the migration rate and expression of CD11/CD18 positive cells, reduced ICAM-1 gene expression and NFkB phosphorylation and gene expression, and also reduced IL-6, IL-8 and CCL2 production
Subject(s)
Humans , Female , Adolescent , Adult , Women , Cell Movement , Eating , Fruit and Vegetable Juices , Overweight/classification , Inflammation/complications , Anthocyanins/agonistsABSTRACT
Background: Berberis commutata Eichler is a berry that grows in the Peruvian Andes and has been consumed in the Andes of South America since ancient times. The edible fruits have an intense purple color and are rich in anthocyanins and phenolic compounds that are available from February until May each year. The color of the fruits is a soft purple dye for natural fibers, and many birds use them as food. Objective: This study quantified the total phenolic, monomeric anthocyanin content and antioxidant activity of Berberis commutata Eichler berries. Methods: The total phenolic content was determined by the Folin-Ciocalteu colorimetric assay. Monomeric anthocyanin content was determined by the method is pH differential, and the antioxidant activity was measured using the Brand-Williams method. Results: The total phenolic content was 7,490 ± 0.85 mg GAE/100g, and the monomeric anthocyanin content was 70 ± 0.03 mg/100g. The antioxidant activity of the berries showed a tendency to increase with B. commutata extract concentration; an EC50 of 0.91 mg/mL was calculated, indicating a high antioxidant power. Conclusion: Our results showed that B. commutata E. has both high total phenolic content and monomeric anthocyanins comparable to other superfruits and high antioxidant activity, which means that it is possible to use this berberis species as a functional food.
Introducción: Berberis commutata Eichleres una baya que crece en los Andes peruanos. Los frutos comestibles tienen un intenso color púrpura rico en antocianinas y componentes fenólicos que están disponibles desde febrero hasta mayo de cada año. El color de sus frutos se utiliza como un suave colorante púrpura para las fibras naturales y muchas aves los utilizan como alimento. Sin embargo, desde la antigüedad los frutos de esta especie han sido consumidas en los Andes de Sudamérica. Objetivo: Este estudio cuantificó el contenido fenólico total, antocianinas monoméricas y la actividad antioxidante usando el método del radical DPPH de las bayas de Berberis commutata Eichler. Método: El contenido fenólico total se midió a través del ensayo colorimétrico de Folin-Ciocalteu, el contenido de antocianinas monoméricas se determinó mediante el método del pH diferencial y la actividad antioxidante se midió con el método de Brand-Williams. Resultados: El contenido fenólico total fue de 7,490 ± 0.85 mg GAE/100g y el contenido de antocianinas monoméricas fue de 70 ± 0.03 mg/100g. La actividad antioxidante de las bayas mostró una tendencia a aumentar con la concentración del extracto de B. commutata, se calculó un EC50 de 0.91 mg/mL que indica un alto poder antioxidante. Conclusión: Nuestros resultados mostraron que B. commutata E. tiene tanto un alto contenido fenólico total, así como antocianinas monoméricas comparables con otras superfrutas y una elevada actividad antioxidante, lo que significa que es posible utilizar esta especie de berberis como alimento funcional.
Subject(s)
Humans , Phenolic Compounds , Berberis , Anthocyanins , AntioxidantsABSTRACT
Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.
Subject(s)
Arabidopsis/metabolism , Rhododendron/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Phylogeny , Flavonoids/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolismABSTRACT
This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.
Subject(s)
NF-kappa B , Alzheimer Disease , Network Pharmacology , Anthocyanins , Berberis , Lipopolysaccharides , Molecular Docking Simulation , Myeloid Differentiation Factor 88 , Neuroinflammatory Diseases , Toll-Like Receptor 4 , I-kappa B ProteinsABSTRACT
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Subject(s)
Mice , Animals , Hyperuricemia/drug therapy , Diet, High-Fat/adverse effects , Anthocyanins/chemistry , Ipomoea batatas/chemistry , Fructose/adverse effects , Hyperglycemia/drug therapy , LipidsABSTRACT
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Subject(s)
Male , Mice , Animals , Antioxidants/pharmacology , Blueberry Plants , Anthocyanins/pharmacology , Mice, Inbred C57BL , Superoxide Dismutase , Plant Extracts/pharmacology , Superoxide Dismutase-1ABSTRACT
The flavonoids in Panax notoginseng were qualitatively analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS), and the content of three main flavonoids in P. notoginseng of different specifications and grades collected from different habitats was determined by HPLC-DAD. Flavonoids and anthocyanins were analyzed by UPLC-Q-TOF-MS/MS in the positive and negative ion modes, respectively. Twelve flavonoid glycosides and one anthocyanin glycoside in P. notoginseng were identified, but no flavonoid aglycones were detected. Among them, 12 compounds were identified in the underground part of P. notoginseng for the first time and eight compounds were first reported in this plant. Moreover, six and four compounds were identified in the Panax genus and the Araliaceae family for the first time, respectively. A method for simultaneous determination of three flavonoids in P. notoginseng was established by HPLC-DAD. The content of flavonoids in 721 P. notoginseng samples of 124 specifications and grades collected from 20 different habitats was simultaneously determined. Among three flavonoids determined, the content of quercetin-3-O-(2″-β-D-xylosyl)-β-D-galactoside was the highest with the average content in the tested samples of 161.0 μg·g~(-1). The content of compounds quercetin-3-O-hexosyl-hexoside and kaempferol-3-O-pentosyl-hexoside was relatively low, with the average content of 18.5 μg·g~(-1)(calculated as quercetin-3-O-sophoroside) and 49.4 μg·g~(-1)(calculated as kaempferol-3-O-sangbu diglycoside). There were significant differences in flavonoids content of samples from different production area. The content of flavonoids in spring P. notoginseng was significantly lower than that in winter P. notoginseng when the other influencing factors such as production areas, germplasm resources, and cultivation conditions were fixed. As for P. notoginseng of different specifications, the flavonoid content in the part connecting the taproot and the aboveground stem was significantly higher than that in other parts. The results of large-scale data showed that the flavonoid content gradually increased with the increase in the number of heads. There were significant differences between the flavonoid content in most specifications and grades, especially the 20-head P. notoginseng and countless head P. notoginseng, whose content was significantly lower and significantly higher than that of other specifications and grades, respectively. This study provides a scientific basis for the study of the effective components and quality control of P. notoginseng from the perspective of flavonoids.
Subject(s)
Flavonoids/analysis , Anthocyanins/analysis , Quercetin , Chromatography, High Pressure Liquid/methods , Kaempferols , Tandem Mass Spectrometry/methods , GlycosidesABSTRACT
Purpose: To investigate the role of cyanidin-3-O-glucoside (C3G) in renal ischemia/reperfusion (I/R) injury and the potential mechanisms. Methods: Mouse models were established by clamping the left renal vessels, and in vitro cellular models were established by hypoxic reoxygenation. Results: Renal dysfunction and tissue structural damage were significantly higher in the I/R group. After treatment with different concentrations of C3G, the levels of renal dysfunction and tissue structural damage decreased at different levels. And its protective effect was most pronounced at 200 mg/kg. The use of C3G reduced apoptosis as well as the expression of endoplasmic reticulum stress (ERS)-related proteins. Hypoxia/reoxygenation (H/R)-induced apoptosis and ERS are dependent on oxidative stress in vitro. In addition, both AG490 and C3G inhibited the activation of JAK/STAT pathway and attenuated oxidative stress, ischemia-induced apoptosis and ERS. Conclusions: The results demonstrated that C3G blocked renal apoptosis and ERS protein expression by preventing reactive oxygen species (ROS) production after I/R via the JAK/STAT pathway, suggesting that C3G may be a potential therapeutic agent for renal I/R injury.
Subject(s)
Animals , Mice , Reperfusion Injury , MAP Kinase Signaling System , Janus Kinases , Acute Kidney Injury/physiopathology , Ischemia , Anthocyanins/analysisABSTRACT
BACKGROUND: The phytochemical content present in blueberries has generated great interest, especially in the nutra-pharmaceutical industry, where it is known as the "super fruit" due to its prevention and treatment of neurodegenerative diseases (cardiovascular diseases, diabetes, and cancer, among others). OBJECTIVES: This study evaluated the functional potential of fresh blueberries and dried blueberries using forced convection by measuring phytochemical content to conclude if this drying technology is convenient for prolonging the product's shelf life. METHODS: For this purpose, antioxidant activity, phenolic content, total anthocyanins, and total flavonoids of 'Biloxi' blueberry cultivars were determined. Fresh and dried blueberries' results were studied. Fruit extracts were analyzed to determine antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) as a free radical, total phenolic content with Folin-Ciocalteu reagent, total anthocyanins by pH differential method, and total flavonoids by Aluminum Chloride method. RESULTS: Results for fresh blueberries yielded ranges of antioxidant activity (90.8-93.9% Free radical scavenging rate), total phenolic content (275 to 645mgGAE/100gFW), total anthocyanins content (28.55 to 43.75mgCy3G/100gFW) and total flavonoids content (159.92 to 335.75mgQE/100gFW). For the forced convection oven process, ranges of antioxidant activity (85.5-92.6% Free radical scavenging rate), total phenolic content (261 to 308mgGAE/100gFW), total anthocyanins content (4.74 to 5.12mgCy3G/100gFW) and total flavonoids content (30.66±0.38mgQE/100gFW) were obtained. CONCLUSIONS: In general, blueberries studied proved to have similar concentrations of functional properties compared to a wide variety of cultivars grown around the globe. Furthermore, higher concentrations of phytochemical content than those reported previously for strawberries, blackberries, and raspberries were evidenced. Although dried blueberries studied proved to have diminished phytochemical content, this functional component content stands out among the fruits market and give nutritional value to end consumers. Drying processes could potentially increase the commerce of blueberries by significantly reducing their perishable nature
CONTEXTO: El contenido fitoquímico presente en los arándanos ha generado gran interés, especialmente en la industria nutra-farmacéutica donde es conocido como una "super fruta" debido a su ayuda en la prevención y tratamiento de enfermedades neurodegenerativas, enfermedades cardiovasculares, diabetes, cáncer, entre otras. OBJETIVOS: Este estudio evaluó el potencial funcional de arándanos frescos y deshidratados por convección forzada mediante la determinación de su contenido fitoquímico con el objetivo de concluir si esta tecnología de secado es conveniente para aumentar la vida útil del producto. MÉTODOS: Para este propósito, se determinó la actividad antioxidante, el contenido fenólico, las antocianinas totales y los flavonoides totales de cultivos de arándanos 'Biloxi' La información recopilada de la literatura fue analizada. Se estudió el contenido en compuestos funcionales en arándanos frescos y deshidratados. Los extractos de fruta fueron analizados para determinar actividad antioxidante por medio de 2,2-Difenil-1-Picrilhidrazilo (DPPH) como radical libre, fenólicos totales con el reactivo Folin-Ciocalteu, antocianinas totales usando el método diferencial de pH y flavonoides totales con el método de Cloruro de Aluminio. RESULTADOS: Para los arándanos frescos se obtuvieron rangos de actividad antioxidante de 90.8-93.9% Tasa de captación de radicales libres, contenido fenólico total de 275-645mgEAG/100gPF, contenido de antocianinas totales de 28.55-43.75mgCy3G/100gPF y contenido total de flavonoides de 159.92-335.75mgEQ/100gPF. Para los arándanos deshidratados por convección forzada, se obtuvieron rangos de actividad antioxidante de 85.5-92.6% Tasa de captación de radicales libres, contenido fenólico total de 261-308mgEAG/100gPF, contenido de antocianinas totales de 4.74-5.12mgCy3G/100gPF y contenido total de flavonoides de 30.24-30.96mgEQ/100gPF. CONCLUSIONES: En general, los arándanos estudiados probaron tener concentraciones similares de propiedades funcionales comparados con una amplia variedad de cultivos alrededor del mundo. Además, fueron evidenciadas concentraciones más altas de contenido fitoquímico comparadas con las reportadas previamente para fresas, moras y frambuesas. Aunque los arándanos secos estudiados demostraron tener menor contenido fitoquímico, la cantidad de estos componentes funcionales destaca dentro del mercado de las frutas y dan valor nutricional a los consumidores. Los procesos de secado pueden potencialmente incrementar el comercio de arándanos derivado de una disminución significativa en su naturaleza perecedera
Subject(s)
Flavonoids/analysis , Blueberry Plants/chemistry , Phenolic Compounds , Anthocyanins/analysis , Antioxidants/analysis , ConvectionABSTRACT
Plant metabolites are important for plant development and human health. Plants of celery (Apiumgraveolens L.) with different-colored petioles have been formed in the course of long-term evolution. However, the composition, content distribution, and mechanisms of accumulation of metabolites in different-colored petioles remain elusive. Using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), 1159 metabolites, including 100 lipids, 72 organic acids and derivatives, 83 phenylpropanoids and polyketides, and several alkaloids and terpenoids, were quantified in four celery cultivars, each with a different petiole color. There were significant differences in the types and contents of metabolites in celery with different-colored petioles, with the most striking difference between green celery and purple celery, followed by white celery and green celery. Annotated analysis of metabolic pathways showed that the metabolites of the different-colored petioles were significantly enriched in biosynthetic pathways such as anthocyanin, flavonoid, and chlorophyll pathways, suggesting that these metabolic pathways may play a key role in determining petiole color in celery. The content of chlorophyll in green celery was significantly higher than that in other celery cultivars, yellow celery was rich in carotenoids, and the content of anthocyanin in purple celery was significantly higher than that in the other celery cultivars. The color of the celery petioles was significantly correlated with the content of related metabolites. Among the four celery cultivars, the metabolites of the anthocyanin biosynthesis pathway were enriched in purple celery. The results of quantitative real-time polymerase chain reaction (qRT-PCR) suggested that the differential expression of the chalcone synthase (CHS) gene in the anthocyanin biosynthesis pathway might affect the biosynthesis of anthocyanin in celery. In addition, HPLC analysis revealed that cyanidin is the main pigment in purple celery. This study explored the differences in the types and contents of metabolites in celery cultivars with different-colored petioles and identified key substances for color formation. The results provide a theoretical basis and technical support for genetic improvement of celery petiole color.
Subject(s)
Humans , Anthocyanins , Apium/metabolism , Chlorophyll/metabolism , Color , Gene Expression Regulation, Plant , Metabolomics , Plant Proteins/genetics , Tandem Mass SpectrometryABSTRACT
OBJECTIVE@#To study the protective effect of anthocyanins extracted from Vaccinium Uliginosum (VU) on retinal 661W cells against microwave radiation induced retinal injury.@*METHODS@#661W cells were divided into 6 groups, including control, model [661W cells radiated by microwave (30 mW/cm2, 1 h)] and VU groups [661W cells pretreated with anthocyanins extracted from VU (25, 50, 100 and 200 µg/mL, respectively) for 48 h, and radiated by microwave 30 mW/cm2, 1 h]. After treatment with different interventions, the cell apoptosis index (AI) was determined using Heochst staining; contents of malonaldehyde (MDA), glutataione (GSH), and activity of superoxide dismutase (SOD) were measured. mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1(HO-1) were detected by real time quantitative polymerase chain reaction, and the expression of HO-1 protein was examined by Western blot analysis. Nucleus and cytoplasm were separated and Nrf2 protein expression was further verified by Western blot analysis.@*RESULTS@#There was significant difference in AI among the groups (F=322.83, P<;0.05). Compared with the control group, AI was significantly higher in the model group and was lower in 4 VU-pretreated groups (P<;0.05). Linear regression analysis showed the decline of AI was in a dose-dependent manner with VU treatment (r=0.8419, P<;0.05). The MDA and GSH contents of 661W cells in VU-treated groups were significantly lower than the model group (P<;0.05). Compared with the model group, the SOD activity in the VU-treated groups (50, 100 and 200 µg/mL) was significantly higher (all P<;0.05). The Nrf2 and HO-1 mRNA expressions were slightly increased after irradiation, and obviously increased in 100 µg/mL VU-treated group. After irradiation, the relative expressions of HO-1 and Nrf2 proteins in nucleus were slightly increased (P<;0.05), and the changes in cytoplasm were not obvious, whereas it was significantly increased in both nucleus and cytoplasm in the VU treatment groups.@*CONCLUSIONS@#Anthocyanins extracted from VU could reduce apoptosis, stabilize cell membrane, and alleviate oxidant injury of mouse retinal photoreceptor 661W cells. The mechanism might be through activating Nrf2/HO-1 signal pathway and inducing HO-1 transcription and translation.
Subject(s)
Animals , Mice , Anthocyanins/therapeutic use , Blueberry Plants/metabolism , Heme Oxygenase-1/metabolism , Microwaves , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Superoxide Dismutase/metabolismABSTRACT
This study aims to investigate the molecular mechanism of the transcription factor MYB10, which is involved in anthocyanin biosynthesis, in different colors of Ribes L. fruitification. Rapid amplification of cDNA ends (RACE) was used to clone the MYB10 genes from Ribes nigrum L. (RnMYB10), Ribes rubrum L. (RrMYB10), and Ribes album L. (RaMYB10), respectively. Phylogenetic analysis showed that RnMYB10 and RrMYB10 were evolutionarily homologous. Real-time quantitative PCR (RT-qPCR) showed that the expression of MYB10 in the fruits of Ribes nigrum L. was higher than that of Ribes rubrum L. and much higher than that of Ribes album L. The expression of RnMYB10 and RrMYB10 increased at first and then decreased as the fruit diameter increased and the fruit color deepened (the maximum expression level was reached at 75% of the fruit color change), while the expression level of RaMYB10 was very low. Overexpression of RnMYB10 and RrMYB10 in Arabidopsis thaliana resulted in purple petioles and leaves, whereas overexpression of RaMYB10 resulted in no significant color changes. This indicates that MYB10 gene plays an important role in the coloration of Ribes L. fruit.
Subject(s)
Anthocyanins , Cloning, Molecular , Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Ribes/geneticsABSTRACT
Anthocyanins are widely distributed water-soluble pigments that not only give the fruit colorful appearances, but also are important sources of natural edible pigments. In recent years, the interest on anthocyanins of solanaceous vegetables is increasing. This paper summarized the structure of anthocyanins and its biosynthetic pathway, the structural genes and regulatory genes involved in the biosynthesis of anthocyanins in solanaceous vegetables, as well as the environmental factors affecting the biosynthesis. This review may help clarify the synthesis and regulation mechanism of anthocyanins in solanaceous vegetables and make better use of anthocyanins for quality breeding of fruit colors.
Subject(s)
Anthocyanins/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Plant Breeding , Vegetables/geneticsABSTRACT
Morus alba, a traditional economic crop, is also a significant medicinal plant. The branches(Mori Ramulus), leaves(Mori Folium), roots and barks(Mori Cortex), and fruits(Mori Fructus) of M. alba are rich in chemical components, such as alkaloids, flavonoids, flavanols, anthocyanins, benzofurans, phenolic acids, and polysaccharides, and possess hypoglycemic, hypolipidemic, anti-inflammatory, anti-tumor, anti-microbial, liver protective, immunoregulatory, and other pharmacological activities. This study analyzed the sources, classification, and functions of the main chemical components in M. alba and systematically summarized the latest research results of essential active components in M. alba and their pharmacological effects to provide references for in-depth research and further development as well as utilization of active components in M. alba.
Subject(s)
Anthocyanins , Flavonoids/pharmacology , Morus , Plant Extracts/pharmacology , Plant LeavesABSTRACT
RESUMEN: En el semen criopreservado, los procesos de congelación/descongelación y posterior manipulación, dañan las células espermáticas provocando disminución de la capacidad fecundante de los espermatozoides descongelados. Estos procesos han sido asociados con el estado de estrés oxidativo (EO) inducido por altos niveles de especies reactivas de oxígeno (EROS), causando daño a la función y estructura espermática. Los espermatozoides descongelados pueden ser protegidos de este daño, con la adición de antioxidantes (AO) al medio de incubación. El fruto de Calafate (Berberis microphylla G. Forst.) posee una alta capacidad antioxidante, lo que hace interesante investigar el efecto de sus componentes antioxidantes en estos procesos biotecnológicos especialmente postdescongelación. El objetivo de este estudio fue determinar el efecto de la suplementación de extracto liofilizado de fruto de Calafate (ELC), sobre la calidad espermática post-descongelación. Previamente se caracterizó el ELC, determinando la actividad antioxidante y metabolitos como fenoles y antocianinas; posteriormente, espermatozoides de bovino descongelados fueron incubados en un medio base suplementado con diferentes concentraciones de ELC. Post-incubación se evaluó la motilidad progresiva; la viabilidad e integridad de la membrana plasmática (SYBR14- PI) y acrosomal (FITC-PNA/PI) y la peroxidación lipídica (BODIPY) por citometría de flujo. La caracterización de ELC demostró que tanto la actividad antioxidante como los fenoles y antocianinas incrementan concomitante con el aumento de la concentración de ELC. La adición de ELC al medio de incubación, dependiendo de la concentración y tiempo de incubación, sería eficaz en proteger la motilidad, viabilidad e integridad de la membrana plasmática y disminuir la lipoperoxidación en los espermatozoides de bovino descongelados.
SUMMARY: In cryopreserved semen, the freezing/thawing process following of manipulation, damage the sperm cell, decreasing the fertilizing capacity of the thawed sperm; being one of the main factors of this damage the oxidative stress. The sperm once thawed can be protected from this damage, with the addition of antioxidants to the incubation medium. The Calafate fruit (Berberis microphylla G. Forst.) has a high antioxidant capacity, making it an interesting resource for investigating the effect of its antioxidant components on biotechnological processes. The objective of this study was to determine the effect of supplementation of Calafate fruit lyophilized extract (ELC) on sperm quality. The lyophilized extract of the Calafate fruit was characterized, determining the antioxidant activity and metabolites such as phenols and anthocyanins; subsequently, thawed bovine sperm were incubated in a medium supplemented with different concentrations of ELC. Post-incubation, progressive motility was evaluated. By flow cytometry, the viability and integrity of the plasma (SYBR14-PI), and acrosomal (FITC-PNA / PI), as well as lipid peroxidation (BODIPY), was determined. The characterization of Calafate fruits lyophilized extract indicated that antioxidant activity, phenols and anthocyanins increased concomitantly with the increase of dose extract used. The addition of ELC to the incubation medium, depending on the concentration and incubation time, would be effective to protect motility, viability and integrity of the plasma membrane and decreased lipid peroxidation in thawed bovine sperm.
Subject(s)
Animals , Cattle , Semen/drug effects , Plant Extracts/pharmacology , Berberis/chemistry , Antioxidants/pharmacology , Phenols/analysis , Semen/physiology , Sperm Motility/physiology , Plant Extracts/chemistry , Lipid Peroxidation , Cryopreservation , Cell Membrane , Reactive Oxygen Species , Oxidative Stress , Incubators , Anthocyanins/analysis , Antioxidants/chemistryABSTRACT
Leaves of Euryale ferox are rich in anthocyanins. Anthocyanin synthesis is one of the important branches of the flavonoid synthesis pathway, in which flavonoid 3'-hydroxylase(F3'H) can participate in the formation of important intermediate products of anthocyanin synthesis. According to the data of E. ferox transcriptome, F3'H cDNA sequence was cloned in the leaves of E. ferox and named as EfF3'H. The correlation between EfF3'H gene expression and synthesis of flavonoids was analyzed by a series of bioinforma-tics tools and qRT-PCR. Moreover, the biological function of EfF3'H was verified by the heterologous expression in yeast. Our results showed that EfF3'H comprised a 1 566 bp open reading frame which encoded a hydrophilic transmembrane protein composed of 521 amino acid residues. It was predicted to be located in the plasma membrane. Combined with predictive analysis of conserved domains, this protein belongs to the cytochrome P450(CYP450) superfamily. The qRT-PCR results revealed that the expression level of EfF3'H was significantly different among different cultivars and was highly correlated with the content of related flavonoids in the leaves. Eukaryotic expression studies showed that EfF3'H protein had the biological activity of converting kaempferol to quercetin. In this study, EfF3'H cDNA was cloned from the leaves of E. ferox for the first time, and the biological function of the protein was verified. It provi-ded a scientific basis for further utilizing the leaves of E. ferox and laid a foundation for the further analysis of the biosynthesis pathway of flavonoids in medicinal plants.
Subject(s)
Anthocyanins , Cytochrome P-450 Enzyme System/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , TranscriptomeABSTRACT
Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.
Subject(s)
Anthocyanins , Cloning, Molecular , Color , Phylogeny , Scutellaria baicalensis/geneticsABSTRACT
Açaí (Euterpe oleraceaMart.) -a common tropical palm has high social, economic, and environmental importance in the Amazon region. In the light of increasing exploration to obtain the fruit and heart of this palms, comprehensive studies are warranted for conservation and genetic improvement. Here, we characterized açaí accessions using phenological, morphological, and agronomic descriptors and random amplified polymorphic DNA (RAPD)molecular markers for joint selection of accessions with greater productivity. Hundred accessions were analyzed using 18 morphoagronomic descriptors and 13 RAPD markers. The spathe and inflorescence emission phases during flowering and fruiting showed seasonality. Based on the coefficient of variation and mean squared error, the accessions exhibited high variability in the tested morphoagronomic descriptors and were distributed into seven groups. Fruit, seed, and pulp weights were important descriptors for the distinction of accessions and identification of those with greater productivity. The accessions presented >85% similarity, and 85 accessions, distributed in nine subgroups, could not be differentiated using RAPD markers. There was no correlation between grouping based on morphometric descriptors and RAPD markers. Panicle weight was 3.9-9.0 kg in 15 accessions and 100-fruit pulp weight was 35-50 g in six accessions. Therefore, accessions with high productivity could be selected.