Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Braz. j. biol ; 82: e240359, 2022. graf
Article in English | MEDLINE, LILACS, VETINDEX | ID: biblio-1285603

ABSTRACT

Abstract Hymenaea martiana is a species popularly known in Northeastern Brazil as "jatobá" and used in folk medicine to treat pain and inflammation. The aim of this work was to evaluate the antinociceptive and anti-inflammatory activity of H. martiana. In the present study, we carried out an investigation about the effects of the crude ethanolic extract (Hm-EtOH) and the ethyl acetate fraction (Hm-AcOEt) in models of nociception and inflammation in mice. Chemical (acetic acid-induced writhing and formalin) and thermal stimuli (hot plate) were used for the evaluation of antinociceptive activity, while for the anti-inflammatory profile paw edema induced by carrageenan was used, along with leukocyte migration to the peritoneal cavity. The presence of the flavonoid astilbin in the samples was characterized through HPLC-DAD-MS analysis. Hm-EtOH and Hm-AcOEt (100, 200 and 400 mg.kg-1, i.p.) significantly reduced the number of abdominal contortions and decreased the paw licking time in the formalin test. In the hot plate, the extract increased the latency time of animals. Hm-EtOH and Hm-AcOEt inhibited significantly the increase in the edema after the administration of carrageenan. Hm-EtOH and Hm-AcOEt inhibited leukocyte migration in the peritonitis test. HPLC-DAD-MS analysis of Hm-EtOH and Hm-AcOEt revealed the presence of the flavonoid astilbin in the samples. According to the results of this study, both Hm-EtOH and Hm-AcOEt have antinociceptive and anti-inflammatory activities, which could be related with the presence of flavonoid in the extracts. The results reinforce the popular use of this plant.


Resumo Hymenaea martiana é uma espécie popularmente conhecida no Nordeste do Brasil como "jatobá" e usada na medicina popular para tratar a dor e a inflamação. O objetivo deste trabalho foi avaliar a atividade antinociceptiva e anti-inflamatória de H. martiana. No presente estudo, foram avaliados os efeitos do extrato etanólico bruto (Hm-EtOH) e da fração acetato de etila (Hm-AcOEt) em modelos de nocicepção e inflamação em camundongos. Foram utilizados estímulos químicos (contorções abdominais induzidas por ácido acético e teste da formalina) e estímulo térmico (teste da placa quente) para avaliação da atividade antinociceptiva, enquanto no perfil anti-inflamatório foi utilizado o teste do edema de pata induzido por carragenina e migração de leucócitos para a cavidade peritoneal. A presença do flavonoide astilbina nas amostras foi caracterizada através de análise por CLAE-DAD-EM. Hm-EtOH e o Hm-AcOEt (100, 200 e 400 mg.kg-1, i.p.) reduziram significativamente o número de contorções abdominais e diminuíram o tempo de lambida da pata no teste da formalina. No teste da placa quente, houve aumento do tempo de latência dos animais. Hm-EtOH e Hm-AcOEt inibiram significativamente o aumento do edema após a administração de carragenina, bem como inibiram a migração de leucócitos no teste de peritonite. A análise por CLAE-DAD-EM de Hm-EtOH e Hm-AcOEt revelou a presença do flavonoide astilbina nas amostras. De acordo com os resultados deste estudo, tanto Hm-EtOH quanto o Hm-AcOEt possuem atividades antinociceptiva e anti-inflamatória, o que pode estar relacionado à presença do flavonoide. Os resultados reforçam o uso popular desta planta.


Subject(s)
Animals , Rabbits , Hymenaea , Fabaceae , Brazil , Plant Extracts/pharmacology , Carrageenan , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology
2.
Braz. j. med. biol. res ; 54(8): e10782, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249333

ABSTRACT

We explored the cascade effects of a high fat-carbohydrate diet (HFCD) and pioglitazone (an anti-diabetic therapy used to treat type 2 diabetes mellitus (T2DM)) on lipid profiles, oxidative stress/antioxidant, insulin, and inflammatory biomarkers in a rat model of insulin resistance. Sixty albino rats (80-90 g) were randomly divided into three dietary groups; 1) standard diet; 2) HFCD diet for 12 weeks to induce an in vivo model of insulin resistance; and 3) HFCD diet plus pioglitazone. Blood and tissue samples were taken to assess hepatic function, lipid profiles, oxidative biomarkers, malondialdehyde (MDA) levels, antioxidant defense biomarkers, including reduced glutathione (GSH), superoxide dismutase (SOD), and the inflammatory markers interleukin-6 (IL-6) and tumor necrotic factor (TNF-α). HFCD-fed rats had significantly (P≤0.05) increased serum triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein (LDL), alanine transaminase (ALT), and bilirubin levels, but decreased high-density lipoprotein (HDL) levels compared with the normal group. Moreover, serum leptin, resistin, TNF-α, and IL-6 levels were increased significantly in HFCD animals compared with controls. Similarly, HFCD-induced insulin resistance caused antioxidant and cytokine disturbances, which are important therapy targets for pioglitazone. Importantly, administration of this drug ameliorated these changes, normalized leptin and resistin and inflammatory markers by reducing TNF-α levels. Metabolic cascades of elevated lipid profiles, oxidative stress, insulin, and inflammatory biomarkers are implicated in insulin resistance progression. HFCD induced metabolic cascades comprising hypertriglyceridemia, hyperglycemia, insulin resistance, obesity-associated hormones, and inflammatory biomarkers may be alleviated using pioglitazone.


Subject(s)
Animals , Rats , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Carbohydrates/pharmacology , Oxidative Stress , Diet, High-Fat , Pioglitazone/metabolism , Pioglitazone/pharmacology , Insulin/metabolism , Liver/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology
3.
Braz. j. med. biol. res ; 54(8): e10841, 2021. graf
Article in English | LILACS | ID: biblio-1249329

ABSTRACT

The present study was conducted to investigate the underlying mechanisms and effective components of Polygonum hydropiper in ethanol-induced acute gastric mucosal lesions. The ethanol extract was purified on an AB-8 macroporous resin column and eluted with 60% ethanol and was then injected into the HPLC system for quantitative analysis. Sprague-Dawley rats were orally pretreated with P. hydropiper extract (PHLE; 50, 100, and 200 mg/kg) for 5 days and then absolute ethanol was administered to induce gastric mucosal damage. One hour after ethanol ingestion, the rats were euthanized and stomach samples were collected for biochemical analysis. Antioxidant enzymes and anti-inflammatory cytokines were quantified. Western blotting was used to detect the expression levels of proteins. Cell proliferation was assayed by CCK-8 assays. The proportion of total flavonoids in the final extract of P. hydropiper was 50.05%, which contained three major bioactive flavonoid constituents, including rutin, quercitrin, and quercetin. PHLE significantly increased cell viability and effectively protected human gastric epithelial cells-1 against alcohol-induced damage in vitro. PHLE pretreatment attenuated gastric mucosal injuries in a dose-dependent manner in rats, and increased the activity of superoxide dismutase, glutathione peroxidase, and glutathione, and decreased the levels of malondialdehyde in gastric tissue. Pretreatment with PHLE also reduced the generation of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β in gastric tissue by downregulating the expression of nuclear factor-kappa B. PHLE exerted protective effects against gastric injury through antioxidant and anti-inflammatory pathways. Flavonoids might be the main effective components of P. hydropiper against gastric mucosal injury.


Subject(s)
Animals , Rats , Polygonum , Antioxidants/pharmacology , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Ethanol/toxicity , Gastric Mucosa , Anti-Inflammatory Agents/pharmacology
4.
Braz. j. med. biol. res ; 54(7): e10520, 2021. graf
Article in English | LILACS | ID: biblio-1249321

ABSTRACT

Ischemia-reperfusion injury (IRI) has brought attention to flap failure in reconstructive surgery. To improve the prognosis of skin transplantation, we performed experimental IRI by surgical obstruction of blood flow and used sodium ferulate (SF) to prevent IRI in rats. After SF treatment, the morphological and histological changes of the skin flaps were observed by H&E and Masson's trichrome staining. We also detected the expression levels of COX-1, HO-1, and Ki67 by immunohistochemical and western blot analysis. Moreover, enzyme-linked immunosorbent assay was used to identify the content of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO) in peripheral blood and skin tissue. Compared with the model group, SF treatment significantly improved the recovered flap area (%) and promoted collagen synthesis. Cyclooxygenase-2 (COX-2) expression was significantly inhibited by heme oxygenase-1 (HO-1) induction after SF treatment. Furthermore, SF significantly inhibited the levels of TNF-α in peripheral blood, MPO and MDA in the skin tissue, and the increased synthesis of NO. Our results showed the protective effects of SF on IRI after flap transplantation and we believe that the protective effects of SF was closely related to the alleviation of the inflammatory response and the inhibition of the oxidative stress injury.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Oxidative Stress , Coumaric Acids/pharmacology , Anti-Inflammatory Agents/pharmacology
5.
Braz. arch. biol. technol ; 64: e21200179, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153293

ABSTRACT

HIGHLIGHTS L. duriusculum n-BuOH extract reduces inflammatory responses both in vitro and in vivo. L. duriusculum n-BuOH extract inhibits NF-κB-dependent transcriptional responses. L. duriusculum n-BuOH extract decreases the expression of TNF-α and IL-6 genes.


Abstract Limonium duriusculum is used in folk medicine to treat inflammatory disorders and has gained attention due to its richness in apigenin. The present investigation was performed to evaluate and confirm its anti-inflammatory properties, in cell lines and animal models. The potential anti-inflammatory properties of n-butanol (n-BuOH) extract of L. duriusculum (BEL) and isolated apigenins were examined on NF-κB transcriptional activity in TNFα- or LPS-stimulated cells, and on in vivo acute inflammatory models (carrageenan induced paw edema and peritonitis). BEL treatment was able to inhibit the activity of an NF-κB reporter gene in HCT116 cells both in the absence and in the presence of exogenous TNFα, used as NF-κB pathway inducer. This anti-inflammatory effect was even more potent compared to Apigenin (APG1) and was confirmed using monocyte-derived THP-1 cells treated with LPS to stimulate NF-κB-dependent transcription of IL-6 and TNFα mRNAs. Apigenin7-O-β-(6''-methylglucuronide) (APG2) was instead inactive both in HCT116 and THP-1 cells. BEL (oral, 200 mg/kg) led to paw swelling inhibition, vascular permeability and peritoneal leukocyte and PN migration diminution. Apigenins (intraperitoneal, APG1, APG2: 20 mg/kg) also evoked a significant anti-edema effect, early vascular permeability and leukocyte influx reduction. Collectively, this study demonstrates for the first time the effectiveness of L. duriusculum to inhibit NF-κB-dependent transcriptional responses in HCT116 and THP-1 cells. In vivo studies also established that L. duriusculum possesses a potential anti-inflammatory effect, confirm its traditional, empirical use, that could be attributed to its richness in apigenin.


Subject(s)
Humans , Animals , Male , Rats , Plant Extracts/pharmacology , Plumbaginaceae/chemistry , Immunomodulation/drug effects , Anti-Inflammatory Agents/pharmacology , Interleukin-6 , Rats, Wistar , Models, Animal , THP-1 Cells
6.
Article in Chinese | WPRIM | ID: wpr-888184

ABSTRACT

Indolealkylamines(IAAs) are the main hydrophilic substances in toad skin, mainly including free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine. In this study, the LPS-activated neutrophils were used to investigate the structure-activity relationship and anti-inflammatory mechanism of the above-mentioned five monomers from the toad skin in vitro. The neutrophils were divided into the control group, model group(1 μg·mL~(-1) LPS), positive drug group(100 μg·mL~(-1) indometacin), as well as the low-(50 μg·mL~(-1)), medium-(100 μg·mL~(-1)) and high-dose(200 μg·mL~(-1)) free N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine, dehydrobufotenine, and binding bufothionine groups. The levels of IL-6, TNF-α and IL-1β in the neutrophil supernatant of each group was measured by enzyme-linked immunosorbent assay(ELISA) after LPS stimulation, followed by the detection of apoptosis in each group after Annexin V/PI staining. The protein expression levels of caspase-3, Bax, Bcl-2, beclin1, LC3-I, and LC3-Ⅱ were assayed by Western blot. The results showed that IAAs reduced the excessive secretion of inflammatory cytokines caused by LPS compared with the model group. Besides, the activity of each free IAAs(N-methyl-5-hydroxytryptamine, bufotenine, bufotenidine and dehydrobufotenine), especially bufotenine, was stronger than that of the binding bufothionine. As revealed by Annexin V/PI staining, LPS delayed the early apoptosis of neutrophils compared with the control group, while bufotenine promoted the apoptosis of neutrophils in a dose-dependent manner, which might be related to the elevated expression of apoptosis-related protein Bax/Bcl-2. In addition, LPS activated the autophagy pathways in neutrophils. This study confirmed the efficacy of IAAs in reducing the secretion of inflammatory cytokines in neutrophils induced by LPS for the first time. For instance, bufotenine exerts the anti-inflammatory effect possibly by inducing the apoptosis of neutrophils.


Subject(s)
Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Bufonidae , Lipopolysaccharides/toxicity , Neutrophils , Skin
7.
Article in Chinese | WPRIM | ID: wpr-888041

ABSTRACT

To explore the mechanism of anti-inflammatory and analgesic effect of Zanthoxyli Pericarpium based on network pharmacology and inflammatory or pain mouse models. The effective components of Zanthoxyli Pericarpium were screened out by TCMSP database. And their potential corresponding targets were predicted by PharmMapper software. The possible targets relating to inflammation and pain were mainly collected through DrugBank, TTD and DisGeNET databases. The "active ingredient-gene-disease" network diagram was constructed by Cytoscape 3.7.0 software. The network pharmacology results showed 5 potential effective compounds, which were related to 29 targets; 132 targets relating to inflammation and pain were screened out in the DrugBank, TTD and DisGeNET databases. The network analysis results indicated that the phosphatidylinositol 3-kinase catalytic subunit gamma isoform(PIK3 CG) gene may be the key to the anti-inflammatory and analgesic effect of Zanthoxyli Pericarpium. The anti-inflammatory and analgesic effects of essential oil extract and dichloromethane extract of Zanthoxyli Pericarpium were explored through the mouse model of inflammation induced by xylene or carrageenan and the mouse model of pain induced by acetic acid or formalin. The experimental results showed that essential oil extract and dichloromethane extract of Zanthoxyli Pericarpium could reduce xylene-induced ear swelling and carrageenan-induced paw swelling and decrease the number of writhing responses in mice induced by acetic acid and the licking foot time of mice in phase Ⅱ induced by formalin. Western blot results showed that Zanthoxyli Pericarpium extract could inhibit the expressions of PIK3 CG, phosphonated nuclear factor kappaB(p-NF-κB) and phosphonated p38(p-p38 MAPK) protein. The present study showed the anti-inflammatory and analgesic effect of Zanthoxyli Pericarpium through multiple components and targets, so as to provide a pharmacodynamic basis for the study of Zanthoxyli Pericarpium and its mechanism.


Subject(s)
Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal , Edema/drug therapy , Inflammation/genetics , Mice , Oils, Volatile , Plant Extracts
8.
Article in Chinese | WPRIM | ID: wpr-888011

ABSTRACT

Thirteen compounds were isolated and purified from the leaves of Cinnamomum camphora by the macroporous resin,silica gel,and Sephadex LH-20 column chromatographies. Those compounds were further identified by IR,UV,MS,and NMR techniques:( 2 S)-1-( 3″,4″-methylenedioxy phenyl)-3-( 2',6'-dimethoxy-4'-hydroxyphenyl)-propan-2-ol( 1),( 2 R,3 R)-5,7-dimethoxy-3',4'-methylenedioxy flavanol( 2),9-hydroxysesamin( 3),sesamin( 4),piperitol( 5),kobusin( 6),(-)-aptosimon( 7),acuminatolide( 8),1β,11-dihydroxy-5-eudesmene( 9),lasiodiplodin( 10),vanillin( 11),p-hydroxybenzaldehyde( 12),and p-hydroxybenzoic acid ethyl ester( 13). Compound 1 was a novel compound,and compounds 2,6,7,9 and 10 were isolated from Cinnamomum plants for the first time. Compounds 4,7 and 10 were found to possess good inhibitory effect on IL-6 production in LPS-induced BV2 cells at a concentration of 20 μmol·L-1 in the in vitro bioassay,with inhibition rates of 51. 26% ± 4. 13%,67. 82% ± 3. 77% and85. 81%±1. 19%,respectively.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cinnamomum , Cinnamomum camphora , Plant Leaves
9.
Article in Chinese | WPRIM | ID: wpr-921694

ABSTRACT

Phenylpropanoids are one of the major chemical constituents in Zanthoxylum species. They include simple phenylpropanoids, coumarins, and lignans and possess anti-tumor, anti-inflammatory, anti-platelet aggregation, anti-bacterial, anti-viral, insecticidal, and antifeedant activities. This review summarizes the chemical constituents and pharmacological activities from the Zanthoxylum plants in hopes of providing reference for the research and application of phenylpropanoids from this genus.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coumarins/pharmacology , Lignans , Plant Extracts , Zanthoxylum
10.
Article in Chinese | WPRIM | ID: wpr-879160

ABSTRACT

Based on the heat-clearing and detoxifying effects of Gentianae Radix et Rhizoma, the network pharmacology is mainly used to predict the potential targets of Gentianae Radix et Rhizoma for anti-inflammatory activity and to perform the experimental verification. A method for detecting the biological potency of Gentianae Radix et Rhizoma based on verifiable targets has been established to provide a reference for improving the quality evaluation and control standards of Gentianae Radix et Rhizoma. High performance liquid chromatography can be used to construct chemical fingerprints of different batches of Gentianae Radix et Rhizoma. Constructing a component-target-disease network of Gentianae Radix et Rhizoma for its anti-inflammatory activity was applied to screen potential anti-inflammatory components and related targets of Gentianae Radix et Rhizoma, and to verify the target of Gentianae Radix et Rhizoma by using biological evaluation methods. Detecting the biological potency of different batches of Gentianae Radix et Rhizoma extracts was used to inhibit COX-2 enzyme activity based the verifiable target cyclooxygenase-2(COX-2). The results showed that different batches of Gentianae Radix et Rhizoma accorded with the pharmacopoeia testing regulations, and the chemical fingerprints have a high similarity(similarity>0.93), suggesting that there is no significant difference in the characteristics of the chemical components. Based on network pharmacology predictions, 18 candidate targets were found to have potential direct interactions with the ingredients in Gentianae Radix et Rhizoma. Among them, the most important target is COX-2. Based on the experimental verification of recombinant human COX-2 protease activity inhibition, Gentianae Radix et Rhizoma can inhibit the COX-2 enzyme activity in a dose-dependent manner. It can function with a low concentration(0.75 mg·mL~(-1)), which preliminarily confirmed the accuracy of network pharmacology prediction. The biological potency detection method of Gentianae Radix et Rhizoma based on COX-2 inhibitory activity was optimized and established. The qualitative response parallel line method was used to calculate the biological potency of anti-inflammatory activity, which ranged from 23.04 to 46.60 U·mg~(-1). For network pharmacology prediction, it can screen and clarify the possible targets of traditional Chinese medicine rapidly, which can guide the establishment of a biological evaluation method for the quality of medicinal materials with related activities. Compared with chemical fingerprints, the biological potency testing can better detect quality fluctuations of traditional Chinese medicine.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biological Assay , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , Quality Control , Rhizome
11.
Rev. bras. ter. intensiva ; 32(3): 337-347, jul.-set. 2020. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1138506

ABSTRACT

RESUMO Introdução: Os marcadores pró-inflamatórios desempenham papel importante na severidade de pacientes com COVID-19. Assim, terapêuticas anti-inflamatórias são agentes interessantes para potencialmente combater a cascata inflamatória descontrolada em tais pacientes. Delineamos um ensaio para testar tocilizumabe em comparação com o tratamento padrão, tendo como objetivo melhorar os desfechos por meio da inibição da interleucina 6, um importante mediador inflamatório na COVID-19. Métodos e análises: Este será um estudo aberto multicêntrico, randomizado e controlado, que comparará os desfechos de pacientes tratados com tocilizumabe mais tratamento padrão com o tratamento padrão isoladamente em pacientes com COVID-19 moderada a grave. Como critérios de inclusão, serão exigidos dois dos quatro critérios a seguir: dosagens de dímero D acima de 1.000ng/mL, proteína C-reativa acima de 5mg/dL, ferritina acima de 300mg/dL e desidrogenase lática acima do limite superior do normal. O objetivo primário será comparar a condição clínica no dia 15, conforme avaliação por meio de escala ordinal de 7 pontos aplicada nos estudos de COVID-19 em todo o mundo. O desfecho primário será avaliado por regressão logística ordinal assumindo razões de propensão proporcionais ajustadas pelas variáveis de estratificação (idade e sexo). Ética e disseminação: O TOCIBRAS foi aprovado pelos comitês de ética locais e central (nacional) do Brasil em conformidade com as atuais diretrizes e orientações nacionais e internacionais. Cada centro participante obteve aprovação do estudo por parte de seu comitê de ética em pesquisa, antes de iniciar as inscrições no protocolo. Os dados derivados deste ensaio serão publicados independentemente de seus resultados. Se tiver sua efetividade comprovada, esta estratégia terapêutica poderá aliviar as consequências da resposta inflamatória na COVID-19 e melhorar os resultados clínicos.


ABSTRACT Introduction: Pro-inflammatory markers play a significant role in the disease severity of patients with COVID-19. Thus, anti-inflammatory therapies are attractive agents for potentially combating the uncontrolled inflammatory cascade in these patients. We designed a trial testing tocilizumab versus standard of care intending to improve the outcomes by inhibiting interleukin-6, an important inflammatory mediator in COVID-19. Methods and analysis: This open-label multicentre randomized controlled trial will compare clinical outcomes of tocilizumab plus standard of care versus standard of care alone in patients with moderate to severe COVID-19. Two of the following four criteria are required for protocol enrolment: D-dimer > 1,000ng/mL; C reactive protein > 5mg/dL, ferritin > 300mg/dL, and lactate dehydrogenase > upper limit of normal. The primary objective will be to compare the clinical status on day 15, as measured by a 7-point ordinal scale applied in COVID-19 trials worldwide. The primary endpoint will be assessed by an ordinal logistic regression assuming proportional odds ratios adjusted for stratification variables (age and sex). Ethics and dissemination: The TOCIBRAS protocol was approved by local and central (national) ethical committees in Brazil following current national and international guidelines/directives. Each participating center had the study protocol approved by their institutional review boards before initiating protocol enrolment. The data derived from this trial will be published regardless of the results. If proven active, this strategy could alleviate the consequences of the inflammatory response in COVID-19 patients and improve their clinical outcomes.


Subject(s)
Humans , Pneumonia, Viral/drug therapy , Coronavirus Infections/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Pneumonia, Viral/physiopathology , Severity of Illness Index , Brazil , Interleukin-6/antagonists & inhibitors , Pandemics , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 , Anti-Inflammatory Agents/pharmacology
12.
Bol. latinoam. Caribe plantas med. aromát ; 19(3): 289-299, mayo 2020. ilus, tab
Article in English | LILACS | ID: biblio-1116296

ABSTRACT

Piper kadsura (Choisy) Ohwi which belongs to the family Piperaceae, is a well-known medicinal plant possessing high medicinal and various therapeutic properties. It is widely used in traditional Chinese medicine for the treatment of asthma and rheumatic arthritis. Numerous studies on this species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. The main chemical constituents which have been isolated and identified from P. kadsura are lignans and neolignans, which possess anti-inflammatory activities. The present article aims to provide a review of the studies done on the phytochemistry and antiinflammatory activities of P. kadsura. The scientific journals for this brief literature review were from electronic sources, such as Science Direct, PubMed, Google Scholar, Scopus, and Web of Science. This review is expected to draw the attention of the medical professionals and the general public towards P. kadsura and to open the door for detailed research in the future.


Piper kadsura (Choisy) Ohwi, perteneciente a la familia Piperaceae, es una planta medicinal conocida que posee importantes propiedades medicinales y diversas propiedades terapéuticas. Es ampliamente utilizada en la medicina tradicional china para el tratamiento del asma y la artritis reumática. Numerosos estudios sobre esta especie también han corroborado el destacado potencial antiinflamatorio de sus extractos y metabolitos secundarios. Los principales componentes químicos que se han aislado e identificado de P. kadsura son los lignanos y los neolignanos, que poseen actividades antiinflamatorias. El presente artículo tiene como objetivo proporcionar una revisión de los estudios realizados sobre las actividades fitoquímicas y antiinflamatorias de P. kadsura. Las revistas científicas para esta breve revisión de literatura fueron de fuentes electrónicas, como Science Direct, PubMed, Google Scholar, Scopus y Web of Science. Se espera que esta revisión atraiga la atención de los profesionales médicos y el público en general respecto de P. kadsura y abra la puerta a una investigación detallada en el futuro.


Subject(s)
Piper/chemistry , Anti-Inflammatory Agents/chemistry , Plants, Medicinal , Oils, Volatile/chemistry , Lignans/analysis , Piperaceae/chemistry , Kadsura , Alkaloids/analysis , Phytochemicals/analysis , Medicine, Chinese Traditional , Anti-Inflammatory Agents/pharmacology
13.
Braz. arch. biol. technol ; 63: e20180612, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132197

ABSTRACT

Abstract The present study aimed to evaluate the anti-inflammatory potential of a Lycium barbarum (L. barbarum) fruit extract in Wistar rats submitted to a palatable diet presenting systemic inflammation induced by lipopolysaccharides (LPS). Forty-two Wistar female rats (Rattus Novergicus) were used with 60 days old. The animals were feed for 60 days and divided in six groups (n=7): standard diet+water; standard diet+L. barbarum; palatable diet+water; palatable diet+L. barbarum; standard diet+water+LPS; standard diet+L. barbarum+LPS. A significant difference was shown between the analyzed groups concerning C-reactive protein, with the standard diet+water+LPS group presenting the highest inflammatory response in comparison to the other groups. Decreased inflammatory response was observed in the group administered a palatable diet along with the fruit extract when compared to the group that received only a palatable diet. Significant decrease in glutamic-oxaloacetic transaminase activity was observed in the standard diet+L. barbarum+LPS group compared to the standard diet+water group, as well as in the palatable diet+L. barbarum group compared to the palatable diet+water group. A significant increase in creatinine in the standard diet+water+LPS group was observed in according to the L. barbarum administration groups. The gene expression of the inflammatory markers genes in the liver showed a significant increase in TNF-α and IL-6 genes in the group treated with standard diet+L. barbarum+LPS when compared to the standard diet+LPS group. Thus, the administered L. barbarum extract displays the potential to reduce inflammatory responses induced by LPS and a palatable diet.


Subject(s)
Animals , Female , Rats , Lycium , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Plant Extracts , Lipopolysaccharides/adverse effects , Rats, Wistar , Alanine Transaminase , Disease Models, Animal , Inflammation/microbiology
14.
Braz. arch. biol. technol ; 63: e20190364, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132221

ABSTRACT

Abstract Chronic inflammation is a common indication of several diseases, e.g. asthma, chronic obstructive pulmonary disease (COPD), atherosclerosis, etc. Benzimidazole derivatives are preferable compounds to design new analgesic and anti-inflammatory substances due to their unique biological features. We aimed to investigate the effect of a newly synthesized benzimidazole derivative, ORT-83, on A549 human lung adenocarcinoma cell line. ORT-83 was synthesized, and a non-cytotoxic concentration of ORT-83 on A549 cells was detected with MTT assay. To analyze the anti-inflammatory effect of ORT-83, an inflammatory cell culture model was established by stimulating A549 cell line with IL1-β (10 ng/ml). After 2 hours of treatment with IL1-β to induce inflammation, A549 cells were exposed to ORT-83 (0.78 µg/ml) for 24 hours. Thereafter gene expression analyses were performed with qRT-PCR. We found that ORT-83 significantly suppressed the gene expression levels of the proinflammatory cytokines; IL-6, NFkB, and TNF-α. However, the increased levels of IL-10 (2.8 folds) by IL-1β induction did not change after ORT-83 and/or dexamethasone (Dex: positive control) treatments. While Dex; a COX-2 inhibitor, reduced the COX-2 expression level in inflammatory cells from 10.03 folds to 0.71 folds, ORT-83 reduced its level to 4.37 folds. iNOS expression levels did not change in any experimental groups. In conclusion, we showed that ORT-83 exerted its anti-inflammatory effects by repressing the gene expression of proinflammatory cytokines in the inflammation-induced A549 cell line. Although ORT-83 had a weaker COX-2 inhibitory effect compared to Dex, it was shown to be still a strong anti-inflammatory compound.


Subject(s)
Humans , Benzimidazoles/pharmacology , Drugs, Investigational , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Toxicity Tests , Reverse Transcriptase Polymerase Chain Reaction , A549 Cells
15.
Biol. Res ; 53: 48, 2020. graf
Article in English | LILACS | ID: biblio-1142415

ABSTRACT

BACKGROUND: Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyper-proliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. METHODS: HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. RESULTS: Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. CONCLUSIONS: Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


Subject(s)
Humans , Animals , Mice , Rabbits , Psoriasis/chemically induced , Psoriasis/drug therapy , Umbelliferones/pharmacology , Adjuvants, Immunologic/adverse effects , Imiquimod/adverse effects , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Keratinocytes , Cell Proliferation , Mice, Inbred BALB C
16.
Braz. j. med. biol. res ; 53(10): e10204, 2020. graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132473

ABSTRACT

Several isatin derivatives have shown important biological activities, which have attracted interest from researchers. For this reason, the present study aimed to evaluate the anti-inflammatory and antinociceptive effects of the isatin derivative (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenyl-hydrazinecarbothioamide (COPHCT) in mice. Three doses of this compound were tested: 1.0, 2.5, and 5.0 mg/kg. The anti-inflammatory activity was assessed using the carrageenan-induced paw edema model and the zymosan-induced air pouch model. The evaluation of the antinociceptive effect was performed through the formalin test and the acetic acid-induced abdominal writhing test. The paw edema assay demonstrated that all doses of the compound showed a significant reduction of the edema in the second hour evaluated, but a better response was observed in the fourth hour. The zymosan-induced air pouch model indicated that the compound, in all doses, significantly reduced leukocyte migration and total protein concentration levels. In the formalin test, the doses 1.0, 2.5, and 5.0 mg/kg of COPHCT showed activity only in the second phase, with reduction in paw pain time of 73.61, 79.46, and 73.85%, respectively. The number of abdominal writhings decreased with the increasing dose, but only 5.0 mg/kg COPHCT exhibited a significant response, with a reduction of 24.88%. These results demonstrated the ability of this compound to interfere in the anti-inflammatory activity of edema, vascular permeability, and cell migration. In addition, its possible antinociceptive effect may be related to the dose used.


Subject(s)
Animals , Male , Female , Rats , Analgesics/pharmacology , Isatin/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts , Carrageenan , Edema
17.
Bol. latinoam. Caribe plantas med. aromát ; 18(6): 566-576, nov. 2019. ilus, tab
Article in English | LILACS | ID: biblio-1102643

ABSTRACT

This paper reports for the first time volatile compounds, anti-nociceptive and anti-inflammatory activities of essential oils from the leaves of Waltheria indica L. (Stericullaceae) growing in Nigeria. The essential oil was hydro-distilled and characterized by gas chromatography-flame ionization detection (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS) analyses. The anti-inflammatory activity was evaluated on carrageenan induced rat paw edema while the anti-nociceptive test was based on hot plate model. The hydro-distillation afforded 0.41% (dry weight basis) of light green oil. Forty compounds representing 99.8% were identified in the oil. The main constituents of the oil were limonene (34.7%), sabinene (21.2%) and citronellal (9.7%). The anti-nociceptive property of the essential oils statically inhibited edema development (p<0.001) at a dose of 200 and 400 mg/kg independent of time of exposure. However, the 100 mg/kg Waltheria indica essential oils (WIEO) displayed a relatively low inhibition (p<0.01-p>0.5) which declines as exposure time increases. The anti-inflammatory activities shows a steady rate and non-dose dependent activity (p<0.001) up to the 3rd h of inflammation study. Conversely, a sharp reduction at the rate of p<0.5, 0.1 and 0.01 for the 100, 200 and 400 mg/kg WIEO doses respectively. Overall, the results presented sustain and establish the anti-nociceptive and anti-inflammatory properties and justifies the need for further evaluation and development of the essential oils from this plant.


Este artículo informa por primera vez de compuestos volátiles, actividades anti-nociceptivas y antiinflamatorias de aceites esenciales de las hojas de Waltheria indica L. (Stericullaceae) que crecen en Nigeria. El aceite esencial fue hidro-destilado y se caracterizó por cromatografía de gases-detección de ionización de llama (GC-FID) y cromatografía de gases junto con análisis de espectrometría de masas (GC-MS). La actividad antiinflamatoria se evaluó en el edema de pata de rata inducido por carragenano, mientras que la prueba antinociceptiva se basó en el modelo de placa caliente. La destilación hidráulica proporcionó 0,41% (en peso seco) de aceite verde claro. Cuarenta compuestos que representan el 99.8% fueron identificados en el aceite. Los principales componentes del aceite fueron el limoneno (34,7%), el sabineno (21,2%) y el citronelal (9,7%). La propiedad anti-nociceptiva de los aceites esenciales inhibió estáticamente el desarrollo del edema (p<0.001) a una dosis de 200 y 400 mg/kg independientemente del tiempo de exposición. Sin embargo, los aceites esenciales de Waltheria indica de 100 mg/kg (WIEO) mostraron una inhibición relativamente baja (p<0.01-p>0.5) que disminuye a medida que aumenta el tiempo de exposición. Las actividades antiinflamatorias muestran una tasa constante y una actividad no dependiente de la dosis (p<0.001) hasta la tercera hora del estudio de inflamación. Por el contrario, una fuerte reducción a una tasa de p<0.5, 0.1 y 0.01 para las dosis de 100, 200 y 400 mg/kg de WIEO respectivamente. En general, los resultados presentados sostienen y establecen las propiedades anti-nociceptivas y antiinflamatorias y justifican la necesidad de una mayor evaluación y desarrollo de los aceites esenciales de esta planta.


Subject(s)
Animals , Male , Female , Rats , Oils, Volatile/pharmacology , Malvaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Temperature , Carrageenan/toxicity , Chromatography, Gas/methods , Rats, Wistar , Monoterpenes/analysis , Flame Ionization , Analgesics/pharmacology , Inflammation/chemically induced
18.
Acta cir. bras ; 34(11): e201901104, Nov. 2019. graf
Article in English | LILACS | ID: biblio-1054677

ABSTRACT

Abstract Purpose: Myocardial ischemia/reperfusion (Ml/R) injury is a leading cause of damage in cardiac tissues, with high rates of mortality and disability. Biochanin A (BCA) is a main constituent of Trifolium pratense L. This study was intended to explore the effect of BCA on Ml/R injury and explore the potential mechanism. Methods: In vivo MI/R injury was established by transient coronary ligation in Sprague-Dawley rats. Triphenyltetrazolium chloride staining (TTC) was used to measure myocardial infarct size. ELISA assay was employed to evaluate the levels of myocardial enzyme and inflammatory cytokines. Western blot assay was conducted to detect related protein levels in myocardial tissues. Results: BCA significantly ameliorated myocardial infarction area, reduced the release of myocardial enzyme levels including aspartate transaminase (AST), creatine kinase (CK-MB) and lactic dehydrogenase (LDH). It also decreased the production of inflammatory cytokines (IL-1β, IL-18, IL-6 and TNF-α) in serum of Ml/R rats. Further mechanism studies demonstrated that BCA inhibited inflammatory reaction through blocking TLR4/NF-kB/NLRP3 signaling pathway. Conclusion: The present study is the first evidence demonstrating that BCA attenuated Ml/R injury through suppressing TLR4/NF-kB/NLRP3 signaling pathway-mediated anti-inflammation pathway.


Subject(s)
Animals , Male , Cardiotonic Agents/pharmacology , Myocardial Reperfusion Injury/prevention & control , NF-kappa B/drug effects , Genistein/pharmacology , Toll-Like Receptor 4/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Aspartate Aminotransferases/blood , Reference Values , Myocardial Reperfusion Injury/metabolism , Signal Transduction/drug effects , Blotting, Western , Reproducibility of Results , Cytokines/blood , NF-kappa B/metabolism , Rats, Sprague-Dawley , Creatine Kinase/blood , Lactate Dehydrogenases/blood , Toll-Like Receptor 4/metabolism , Anti-Inflammatory Agents/pharmacology
19.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 41(5): 419-427, Sept.-Oct. 2019. tab, graf
Article in English | LILACS | ID: biblio-1039115

ABSTRACT

Objective: To evaluate whether an animal model of mania induced by lisdexamfetamine dimesylate (LDX) has an inflammatory profile and whether immune activation by lipopolysaccharides (LPS) has a cumulative effect on subsequent stimuli in this model. We also evaluated the action of lithium (Li) on inflammatory and neurotrophic factors. Methods: Adult male Wistar rats were subjected to an animal model of mania. After the open-field test, they were given LPS to induce systemic immune activation. Subsequently, the animals' blood was collected, and their serum levels of brain-derived neurotrophic factor and inflammatory markers (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-1β, IL-10, and inducible nitric oxide synthase [iNOS]) were measured. Results: LDX induced hyperactivity in the animals, but no inflammatory marker levels increased except brain-derived neurotrophic factor (BDNF). Li had no effect on serum BDNF levels but prevented iNOS levels from increasing in animals subjected to immune activation. Conclusion: Although Li prevented an LPS-induced increase in serum iNOS levels, its potential anti-inflammatory effects in this animal model of mania were conflicting.


Subject(s)
Animals , Male , Bipolar Disorder/immunology , Disease Models, Animal , Lisdexamfetamine Dimesylate , Lithium/pharmacology , Anti-Inflammatory Agents/pharmacology , Nerve Growth Factors/drug effects , Time Factors , Bipolar Disorder/physiopathology , Bipolar Disorder/chemically induced , Enzyme-Linked Immunosorbent Assay , Lipopolysaccharides/pharmacology , Reproducibility of Results , Cytokines/blood , Treatment Outcome , Rats, Wistar , Brain-Derived Neurotrophic Factor/blood , Nitric Oxide Synthase Type II/blood , Locomotion/drug effects
20.
Arq. bras. oftalmol ; 82(4): 310-316, July-Aug. 2019. graf
Article in English | LILACS | ID: biblio-1019421

ABSTRACT

ABSTRACT Purpose: Chronic instillation of benzalkonium chloride, a preservative, has inflammatory effects on the ocular surface. However, addition of the anti-inflammatory agent cyclosporine to a therapeutic protocol may mitigate these effects. This study compared the toxic effects of a 0.1% benzalkonium chloride solution and the possible protective effect of 0.05% cyclosporine when applied topically to the rabbit conjunctiva. Methods: Fifteen age- and weight-matched, female New Zealand white rabbits were categorized into three groups and treated for 30 consecutive days. Group 1, 2, and 3 - benzalkonium chloride received 0.1% every 24 h, 0.05% cyclosporine every 6 h, and both treatments, respectively. In each rabbit, the left eye was subjected to treatment and the right eye was a control. The rabbits were euthanized at after the experiment. Goblet cells and blood vessels were then enumerated in conjunctival tissues stained with periodic acid-Schiff and hematoxylin-eosin, respectively. Differences between treated and untreated eyes and between groups were compared using the t-test and analysis of variance. Results: Benzalkonium chloride treatment, with and without cyclosporine, significantly reduced (p≤0.05) in the number of goblet cells in treatment eyes compared with that in respective control eyes. Alternatively, adding cyclosporine to benzalkonium chloride did not prevent the loss of conjunctival goblet cells, and a significant reduction in the number of goblet cells was noted. Benzalkonium chloride-induced significant increase in the number of new blood vessels was mitigated significantly by the addition of cyclosporine. Conclusion: This study demonstrated the magnitude of conjunctival injury caused by chronic instillation of benzalkonium chloride. Although cyclosporine did not mitigate the effects on goblet cells, its addition minimized inflammatory angiogenesis induced by benzalkonium chloride.


RESUMO Objetivo: A instilação crônica de cloreto de benzal­cônio, um conservante, tem efeitos inflamatórios na superfície ocular. No entanto, a adição do agente anti-inflamatório ciclosporina a um protocolo terapêutico pode atenuar esses efeitos. Este estudo comparou os efeitos tóxicos de uma solução de cloreto de benzalcônio a 0,1% e o possível efeito protetor de ciclosporina a 0,05% quando aplicado topicamente à conjuntiva de coelho. Métodos: Quinze coelhos fêmeas brancos da raça Nova Zelândia, pareados por idade e peso, foram categorizados em três grupos e tratados por 30 dias consecutivos. Os grupos 1, 2 e 3 - receberam cloreto de benzalcônio 0,1% a cada 24h, ciclosporina a 0,005% a cada 6h e ambos os tratamentos, respectivamente. Em cada coelho, o olho esquerdo foi submetido a tratamento e o olho direito foi controle. Os coelhos foram submetidos à eutanásia após o experimento. Células caliciformes e vasos sanguíneos foram então enumerados em tecidos conjuntivais corados com ácido periódico-Schiff e hematoxilina-eosina, respectivamente. As diferenças entre os olhos tratados e não tratados e entre os grupos foram comparadas usando o teste t e análise de variância. Resultados: O tratamento com cloreto de benzalcônio, com e sem ciclosporina, reduziu significativamente (p£0,05) o número de células caliciformes nos olhos tratados em comparação com os olhos controle correspondentes. Alternativamente, a adição de ciclosporina ao cloreto de benzalcônio não impediu a perda de células caliciformes conjuntivais, e foi observada uma redução significativa no número de células caliciformes. O aumento significativo induzido pelo cloreto de benzalcônio no número de novos vasos sanguíneos foi significativamente mitigado pela adição da ciclosporina. Conclusão: Este estudo demonstrou a magnitude da lesão conjuntival resultante da instilação crônica de cloreto de benzalcônio. Embora a ciclosporina não tenha atenuado os efeitos nas células caliciformes, sua adição minimizou a angiogênese inflamatória induzida pelo cloreto de benzalcônio.


Subject(s)
Animals , Female , Rats , Preservatives, Pharmaceutical/adverse effects , Benzalkonium Compounds/adverse effects , Cyclosporine/pharmacology , Conjunctiva/drug effects , Protective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Time Factors , Random Allocation , Reproducibility of Results , Treatment Outcome , Conjunctiva/pathology , Goblet Cells/drug effects , Angiogenesis Inducing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL