Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chinese Journal of Biotechnology ; (12): 304-317, 2023.
Article in Chinese | WPRIM | ID: wpr-970376

ABSTRACT

Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.


Subject(s)
Humans , Candida albicans , Antimicrobial Peptides , Proteomics , Peptides/pharmacology , Transcription Factors/metabolism , Antifungal Agents/pharmacology
2.
Chinese Journal of Stomatology ; (12): 165-173, 2023.
Article in Chinese | WPRIM | ID: wpr-970770

ABSTRACT

Objective: To fabricate TiO2 nanotube material functionalized by antimicrobial peptide LL-37, and to explore its effects on biological behaviors such as adhesion and migration of human keratinocytes (HaCaT) and its antibacterial properties. Methods: The TiO2 nanotube array (NT) was constructed on the surface of polished titanium (PT) by anodization, and the antimicrobial peptide LL-37 was loaded on the surface of TiO2 nanotube (LL-37/NT) by physical adsorption. Three samples were selected by simple random sampling in each group. Surface morphology, roughness, hydrophilicity and release characteristics of LL-37 of the samples were analyzed with a field emission scanning electron microscope, an atomic force microscope, a contact angle measuring device and a microplate absorbance reader. HaCaT cells were respectively cultured on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of cell was observed by field emission scanning electron microscope. The number of cell adhesion was observed by cellular immunofluorescence staining. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Wound scratch assay was used to observe the migration of HaCaT. The above experiments were used to evaluate the effect of each group on the biological behavior of HaCaT cells. To evaluate their antibacterial effects, Porphyromonas gingivalis (Pg) was respectively inoculated on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of bacteria was observed by field emission scanning electron microscope. Bacterial viability was determined by live/dead bacterial staining. Results: A uniform array of nanotubes could be seen on the surface of titanium samples in LL-37/NT group, and the top of the tube was covered with granular LL-37. Compared with PT group [the roughness was (2.30±0.18) nm, the contact angle was 71.8°±1.7°], the roughness [(20.40±3.10) and (19.10±4.11) nm] and hydrophilicity (the contact angles were 22.4°±3.1° and 25.3°±2.2°, respectively) of titanium samples increased in NT and LL-37/NT group (P<0.001). The results of in vitro release test showed that the release of antimicrobial peptide LL-37 was characterized by early sudden release (1-4 h) and long-term (1-7 d) slow release. With the immunofluorescence, more cell attachment was found on NT and LL-37/NT than that on PT at the first 0.5 and 2.0 h of culture (P<0.05). The results of CCK-8 showed that there was no significant difference in the proliferation of cells among groups at 1, 3 and 5 days after culture. Wound scratch assay showed that compared with PT and NT group, the cell moved fastest on the surface of titanium samples in LL-37/NT group at 24 h of culture [(96.4±4.9)%] (F=35.55, P<0.001). A monolayer cells could be formed and filled with the scratch in 24 h at LL-37/NT group. The results of bacterial test in vitro showed that compared with the PT group, the bacterial morphology in the NT and LL-37/NT groups was significantly wrinkled, and obvious bacterial rupture could be seen on the surface of titanium samples in LL-37/NT group. The results of bacteria staining showed that the green fluorescence intensity of titanium samples in LL-37/NT group was the lowest in all groups (F=66.54,P<0.001). Conclusions: LL-37/NT is beneficial to the adhesion and migration of HaCaT cells and has excellent antibacterial properties, this provides a new strategy for the optimal design of implant neck materials.


Subject(s)
Humans , Titanium/chemistry , Antimicrobial Peptides , Cathelicidins , Sincalide , Anti-Bacterial Agents/pharmacology , Nanotubes/chemistry , Dental Materials , Bacteria , Keratinocytes , Surface Properties
3.
Chinese Journal of Biotechnology ; (12): 1815-1824, 2023.
Article in Chinese | WPRIM | ID: wpr-981172

ABSTRACT

Antimicrobial peptides (AMPs) are small molecule peptides that are widely found in living organisms with broad-spectrum antibacterial activity and immunomodulatory effect. Due to slower emergence of resistance, excellent clinical potential and wide range of application, AMP is a strong alternative to conventional antibiotics. AMP recognition is a significant direction in the field of AMP research. The high cost, low efficiency and long period shortcomings of the wet experiment methods prevent it from meeting the need for the large-scale AMP recognition. Therefore, computer-aided identification methods are important supplements to AMP recognition approaches, and one of the key issues is how to improve the accuracy. Protein sequences could be approximated as a language composed of amino acids. Consequently, rich features may be extracted using natural language processing (NLP) techniques. In this paper, we combine the pre-trained model BERT and the fine-tuned structure Text-CNN in the field of NLP to model protein languages, develop an open-source available antimicrobial peptide recognition tool and conduct a comparison with other five published tools. The experimental results show that the optimization of the two-phase training approach brings an overall improvement in accuracy, sensitivity, specificity, and Matthew correlation coefficient, offering a novel approach for further research on AMP recognition.


Subject(s)
Anti-Bacterial Agents/chemistry , Amino Acid Sequence , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Natural Language Processing
4.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 1247-1253, 2022.
Article in Chinese | WPRIM | ID: wpr-970664

ABSTRACT

Antimicrobial peptides (AMPs) are a class of peptides widely existing in nature with broad-spectrum antimicrobial activity. It is considered as a new alternative to traditional antibiotics because of its unique mechanism of antimicrobial activity. The development and application of natural AMPs are limited due to their drawbacks such as low antimicrobial activity and unstable metabolism. Therefore, the design and optimization of derived peptides based on natural antimicrobial peptides have become recent research hotspots. In this paper, we focus on ribosomal AMPs and summarize the design and optimization strategies of some related derived peptides, which include reasonable primary structure modification, cyclization strategy and computer-aided strategy. We expect to provide ideas for the design and optimization of antimicrobial peptides and the development of anti-infective drugs through analysis and summary in this paper.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Drug Design , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents
5.
Chinese Journal of Biotechnology ; (12): 174-184, 2022.
Article in Chinese | WPRIM | ID: wpr-927702

ABSTRACT

Natural antimicrobial peptides have strong bactericidal activities. An obstacle of the development of antimicrobial peptides resides in the difficulty of developing peptides with high biocompatibility. In this study, molecular dynamics analysis was employed to assess the structural characteristics and biological activities of peptides. A (RXKY)2(YRY)2 structure was used as a template to design an antimicrobial peptide RIKL of high-efficiency and low-toxicity, where X represents Ile and Y represents Leu. The secondary structure of the antimicrobial peptide was detected by circular dichroism (CD), and the structures of RIKL in water and in POPC/POPG membrane environment were measured using molecular dynamics. The biological activity of RIKL was further studied by assessing its antimicrobial activity, hemolytic activity, eukaryotic cytotoxicity, and salt ion stability. CD results showed that RIKL presented an α-helical structure in a simulated bacterial membrane environment. Molecular dynamics simulation predicted that the secondary structure of RIKL could be partly retained in water and POPG environment, while this secondary structure was weakened in the POPC environment. Antimicrobial test suggested that RIKL had high antimicrobial activities, and the geometric mean of the Minimum Inhibitory Concentration (MIC) was 3.1 μmol/L. The hemolysis indicated that RIKL had no hemolytic activity within the detection range, and cytotoxicity test suggested the cytotoxicity of RIKL was low. Stability test showed that RIKL maintained antimicrobial activities under different pH, serum concentrations and salt environments. Based on the above results, RIKL has high cell selectivity and has the potential as a highly effective antibacterial drug.


Subject(s)
Amino Acid Sequence , Antimicrobial Peptides/pharmacology , Microbial Sensitivity Tests , Protein Structure, Secondary
6.
Article in English | WPRIM | ID: wpr-987758

ABSTRACT

@#Plants have been a major source of natural products for sustaining human health. The use of the different parts of the plant as infusions, decoctions, extracts, and powders are being employed in the treatment of different diseases in humans, plants, and animals. One property of great significance in terms of therapeutic treatments, especially with the emergence of multi-drug resistant microbes, is the antimicrobial activity. A new promising source of antimicrobials that demonstrate novel mechanisms of therapeutic strategies is low molecular weight peptides. In this study, the antimicrobial activities of Mimosa pudica crude and partially purified peptide extracts against Gram-negative Enterobacter cloacae ATCC 23355 and Enterobacter aerogenes ATCC 13048, and Gram-positive Staphylococcus epidermidis ATCC 12228 using resazurin colorimetric assay and tricine SDS-PAGE bioautography were reported. M. pudica crude and partially purified extracts exhibited antimicrobial activity against all the bacteria tested. Specifically, the peptide that was partially purified from M. pudica with a molecular weight of 5.14 kDa inhibited the growth of Enterobacter cloacae.


Subject(s)
Antimicrobial Peptides
SELECTION OF CITATIONS
SEARCH DETAIL