ABSTRACT
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a specific Ser/Thr protein kinase in plants. SnRK2 can regulate the expression of downstream genes or transcription factors through phosphorylation of substrates to achieve stress resistance regulation in different tissue parts, and make plants adapt to adverse environment. SnRK2 has a small number of members and a molecular weight of about 40 kDa, and contains a conserved N-terminal kinase domain and a divergent C-terminal regulatory domain, which plays an important role in the expression of enzyme. This review summarized the recent research progresses on the discovery, structure, and classification of SnRK2, and its function in response to various stresses and in regulating growth and development, followed by prospecting the future research direction of SnRK2. This review may provide a reference for genetic improvement of crop stress resistance.
Subject(s)
Abscisic Acid , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Growth and Development , Plants/genetics , Protein Kinases , Protein Serine-Threonine Kinases/genetics , Stress, Physiological/geneticsABSTRACT
Photoperiod plays an important role in transformation from vegetative growth to reproductive growth in plants. CONSTANS (CO), as a unique gene in the photoperiod pathway, responds to changes of day length to initiate flowering in the plant. In this study, the expression level of FaCONSTANS (FaCO) gene under long-day, short-day, continuous light and continuous darkness conditions was analyzed by real-time quantitative PCR. We constructed the over-expression vector p1300-FaCO and infected into Arabidopsis thaliana by Agrobacterium-mediated method. We constructed the silencing vector p1300-FaCO-RNAi and infected into Festuca arundinacea by Agrobacterium-mediated method. The expression of FaCO gene was regulated by photoperiod. The over-expression of FaCO promoted flowering in wild type of Arabidopsis thaliana under long day condition and rescued the late flowering phenotype in co-2 mutant of Arabidopsis thaliana. Silencing FaCO gene in Festuca arundinacea by RNAi showed late-flowering phenotype or always kept in the vegetative growth stage. Our understanding the function of FaCO in flowering regulation will help further understand biological function of this gene in Festuca arundinacea.
Subject(s)
Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Festuca/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , PhotoperiodABSTRACT
Flowering is a critical transitional stage during plant growth and development, and is closely related to seed production and crop yield. The flowering transition is regulated by complex genetic networks, whereas many flowering-related genes generate multiple transcripts through alternative splicing to regulate flowering time. This paper summarizes the molecular mechanisms of alternative splicing in regulating plant flowering from several perspectives, future research directions are also envisioned.
Subject(s)
Alternative Splicing/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Flowers/geneticsABSTRACT
CKB3 is a regulatory (beta) subunit of CK2. In this study Arabidopsis thaliana homozygous T-DNA mutant ckb3 was studied to understand the role of CKB3 in abscisic acid (ABA) signaling. The results shown: CKB3 was expressed in all organs and the highest expression in the seeds, followed by the root. During seed germination and root growth the ckb3 mutant showed reduced sensitivity to ABA. The ckb3 mutant had more stomatal opening and increased proline accumulation and leaf water loss. The expression levels of number of genes in the ABA regulatory network had changed. This study demonstrates that CKB3 is an ABA signaling-related gene and may play a positive role in ABA signaling.
CKB3 é uma subunidade reguladora (beta) de CK2. Neste estudo, o mutante homozigoto ckb3 de Arabidopsis thaliana foi estudado para entender o papel da CKB3 na sinalização de ácido abscísico (ABA). Os resultados apresentados: CKB3 foi expresso em todos os órgãos e a maior expressão nas sementes, seguida pela raiz. Durante a germinação das sementes e o crescimento radicular, o mutante ckb3 mostrou sensibilidade reduzida ao ABA. O mutante ckb3 teve mais abertura estomática e aumento do acúmulo de prolina e perda de água nas folhas. Os níveis de expressão do número de genes na rede reguladora da ABA haviam mudado. Este estudo demonstra que CKB3 é um gene relacionado à sinalização ABA e pode desempenhar um papel positivo na sinalização ABA.
Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Abscisic Acid , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds , Germination , Gene Expression Regulation, Plant/genetics , Mutation/geneticsABSTRACT
Stomatal density is important for crop yield. In this paper, we studied the epidermal pattern factors (EPFs) related to stomatal development. Prokaryotic expression vectors were constructed to obtain EPFs. Then the relationship between EPFs and hydrogen sulfide (H2S) was established. First, AtEPF1, AtEPF2 and AtEPFL9 were cloned and constructed to pET28a vectors. Then recombinant plasmids pET28a-AtEPF1, pET28a-AtEPF2 and pET28a-AtEPFL9 were digested and sequenced, showing successful construction. Finally, they were transformed into E. coli BL21(DE3) separately and induced to express by isopropyl β-D-galactoside (IPTG). The optimized expression conditions including IPTG concentration (0.5, 0.3 and 0.05 mmol/L), temperature (28 °C, 28 °C and 16 °C) and induction time (16 h, 16 h and 20 h) were obtained. The bands of purified proteins were about 18 kDa, 19 kDa and 14.5 kDa, respectively. In order to identify their function, the purified AtEPF2 and AtEPFL9 were presented to Arabidopsis thaliana seedlings. Interestingly, the H2S production rate decreased or increased compared with the control, showing significant differences. That is, EPFs affected the production of endogenous H2S in plants. These results provide a foundation for further study of the relationship between H2S and EPFs on stomatal development, but also a possible way to increase the yield or enhance the stress resistance.
Subject(s)
Arabidopsis , Genetics , Metabolism , Arabidopsis Proteins , Genetics , Metabolism , Escherichia coli , Genetics , Genetic Vectors , Genetics , Hydrogen Sulfide , Metabolism , Plasmids , Genetics , Seedlings , MetabolismABSTRACT
The WRKY family genes, which play an important role in plant morphogenesis and stress response, were selected based on the data of the full-length transcriptome of Asarum heterotropoides. Using AtWRKY33, which regulates the synthesis of the camalexin in the model plant Arabidopsis to compare homologous genes in A. heterotropoides, primers were designed to amplify the open reading frame(ORF) fragment of AhWRKY33 gene by RT-PCR using total RNA of A. heterotropoides leaves as template. Real-time PCR results showed that there was a significant difference between the aerial part and the underground part of A. heterotropoides, the toxic aristolochic acid content is highly expressed in the leaves higher than the root. After verification, the WRKY33 gene of A. heterotropoides is ORF long 1 686 bp, encoding 561 amino acids.AhWRKY33 had two conserved WRKYGQK domains. According to the classical classification, it belongs to group Ⅰ WRKY transcription factor. A. heterotropoides WRKY33 had some homology with amino acids of other species. The study successfully constructed the plant eukaryotic expression vector PHG-AhWRKY33 and transformed Arabidopsis thaliana, the transgenic Arabidopsis was obtained by PCR detection and hygromycin resistant plate screening. It found that the germination of transgenic Arabidopsis seeds was accelerated and the stress resistance was increased. It laid a foundation for further analysis of WRKY transcription factor in the growth and development of A. heterotropoides and the synthesis of secondary metabolites.
Subject(s)
Arabidopsis , Genetics , Arabidopsis Proteins , Genetics , Asarum , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Genetics , Transcription Factors , Transformation, GeneticABSTRACT
BACKGROUND: UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS: A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS: The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.
Subject(s)
Ultraviolet Rays , Actin Cytoskeleton/physiology , Arabidopsis/growth & development , Plant Roots/growth & development , Hydrogen Peroxide/pharmacology , Chromosomal Proteins, Non-Histone , Arabidopsis/radiation effects , Arabidopsis ProteinsABSTRACT
Background: Plant gene homologs that control cell differentiation can be used as biotechnological tools to study the in vitro cell proliferation competence of tissue culture-recalcitrant species such as peppers. It has been demonstrated that SERK1 homologs enhance embryogenic competence when overexpressed in transformed tissues; therefore, cloning of a pepper SERK1 homolog was performed to further evaluate its biotechnological potential. Results: A Capsicum chinense SERK full-length cDNA (CchSERK1) was cloned and characterized at the molecular level. Its deduced amino acid sequence exhibits high identity with sequences annotated as SERK1 and predicted-SERK2 homologs in the genomes of the Capsicum annuum CM-334 and Zunla-1 varieties, respectively, and with SERK1 homologs from members of the Solanaceae family. Transcription of CchSERK1 in plant tissues, measured by quantitative RT-PCR, was higher in stems, flowers, and roots but lower in leaves and floral primordia. During seed development, CchSERK1 was transcribed in all zygotic stages, with higher expression at 14 days post anthesis. During somatic embryogenesis, CchSERK1 was transcribed at all differentiation stages, with a high increment in the heart stage and lower levels at the torpedo/cotyledonal stages. Conclusion: DNA sequence alignments and gene expression patterns suggest that CchSERK1 is the C. chinense SERK1 homolog. Significant levels of CchSERK1 transcripts were found in tissues with cell differentiation activities such as vascular axes and during the development of zygotic and somatic embryos. These results suggest that CchSERK1 might have regulatory functions in cell differentiation and could be used as a biotechnological tool to study the recalcitrance of peppers to proliferate in vitro.
Subject(s)
Capsicum/genetics , Cloning, Molecular , In Vitro Techniques , Biotechnology , Gene Expression , Cell Differentiation , Genes, Plant , DNA, Complementary/genetics , Solanaceae/genetics , Arabidopsis Proteins , Cell Proliferation , Embryonic Development , Real-Time Polymerase Chain ReactionABSTRACT
Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana. The endosomal Na⁺,K⁺/H⁺ antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K⁺. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in A. thaliana. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in A. thaliana was summarized.
Subject(s)
Arabidopsis , Arabidopsis Proteins , Endosomes , Sodium-Hydrogen Exchangers , VacuolesABSTRACT
We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.
Subject(s)
Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , DNA, Complementary/metabolism , Flowers/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Lamiales/physiology , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Plants, Genetically Modified/physiology , Plasmids/metabolism , Polymerase Chain Reaction , TransgenesABSTRACT
Production of reactive oxygen species (ROS) is a conserved immune response primarily mediated by NADPH oxidases (NOXs), also known in plants as respiratory burst oxidase homologs (RBOHs). Most microbe-associated molecular patterns (MAMPs) trigger a very fast and transient ROS burst in plants. However, recently, we found that lipopolysaccharides (LPS), a typical bacterial MAMP, triggered a biphasic ROS burst. In this study, we isolated mutants defective in LPS-triggered biphasic ROS burst (delt) in Arabidopsis, and cloned the DELT1 gene that was shown to encode RBOHD. In the delt1-2 allele, the antepenultimate residue, glutamic acid (E919), at the C-terminus of RBOHD was mutated to lysine (K). E919 is a highly conserved residue in NADPH oxidases, and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease. Consistently, we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure. It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein's stability and complex assembly. However, we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association, suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs. Taken together, our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.
Subject(s)
Humans , Agrobacterium tumefaciens/metabolism , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genetic Techniques , Lipopolysaccharides/metabolism , Luminescence , Mutation , NADPH Oxidase 2/chemistry , NADPH Oxidases/genetics , Plant Stomata/metabolism , Protein Domains , Reactive Oxygen Species/metabolism , Nicotiana/metabolismABSTRACT
BACKGROUND: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI â AG/SHP/STK â AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.
Subject(s)
Phylogeny , Magnoliopsida/genetics , MADS Domain Proteins/genetics , Arabidopsis Proteins/genetics , Cycadopsida/genetics , Period Circadian Proteins/genetics , Genes, Plant , Genome, Plant , Gene Expression Regulation, Plant , Evolution, MolecularABSTRACT
Arabinose-5-phosphate isomerase (KdsD) is the first key limiting enzyme in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO). KdsD gene was cloned into prokaryotic expression vector pET-HTT by seamless DNA cloning method and the amount of soluble recombinant protein was expressed in a soluble form in E. coli BL21 (DE3) after induction of Isopropyl β-D-1-thiogalactopyranoside (IPTG). The target protein was separated and purified by Ni-NTA affinity chromatography and size exclusion chromatography, and its purity was more than 85%. Size exclusion chromatography showed that KdsD protein existed in three forms: polymers, dimmers, and monomers in water solution, different from microbial KdsD enzyme with the four polymers in water solution. Further, the purified protein was identified through Western blotting and MALDI-TOF MASS technology. The results of activity assay showed that the optimum pH and temperature of AtKdsD isomerase activities were 8.0 and 37 ℃, respectively. The enzyme was activated by metal protease inhibitor EDTA (5 mmol/L) and inhibited by some metal ions at lower concentration, especially with Co²⁺ and Cd²⁺ metal ion. Furthermore, when D-arabinose-5-phosphate (A5P) was used as substrate, Km and Vmax of AtKdsD values were 0.16 mmol/L, 0.18 mmol/L·min. The affinity of AtKdsD was higher than KdsD in E. coli combined with substrate. Above results have laid a foundation for the KdsD protein structure and function for its potential industrial application.
Subject(s)
Aldose-Ketose Isomerases , Arabidopsis , Arabidopsis Proteins , Cloning, Molecular , Escherichia coli , Metabolism , Metals , Pentosephosphates , Recombinant ProteinsABSTRACT
We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM.
Subject(s)
Humans , Adenoviruses, Human , Chemistry , Genetics , Metabolism , Arabidopsis Proteins , Chemistry , Genetics , Metabolism , Flavoproteins , Chemistry , Genetics , Metabolism , Phototropins , Chemistry , Genetics , Metabolism , Singlet Oxygen , Chemistry , Staining and Labeling , TransfectionABSTRACT
MRG proteins are conserved during evolution in fungi, flies, mammals and plants, and they can exhibit diversified functions. The animal MRGs were found to form various complexes to activate gene expression. Plant MRG1/2 and MRG702 were reported to be involved in the regulation of flowering time via binding to H3K36me3-marked flowering genes. Herein, we determined the crystal structure of MRG701 chromodomain (MRG701). MRG701 forms a novel dimerization fold both in crystal and in solution. Moreover, we found that the dimerization of MRG chromodomains is conserved in green plants. Our findings may provide new insights into the mechanism of MRGs in regulation of gene expression in green plants.
Subject(s)
Amino Acid Sequence , Arabidopsis , Genetics , Metabolism , Arabidopsis Proteins , Chemistry , Genetics , Metabolism , Binding Sites , Chromosomal Proteins, Non-Histone , Chemistry , Genetics , Metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli , Genetics , Metabolism , Gene Expression , Histones , Chemistry , Genetics , Metabolism , Models, Molecular , Oryza , Genetics , Metabolism , Peptides , Chemistry , Genetics , Metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms , Chemistry , Genetics , Metabolism , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins , Chemistry , Genetics , Metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viridiplantae , Genetics , MetabolismABSTRACT
Alzheimer's disease is the most prevalent type of dementia in the elderly worldwide. To evaluate the mortality trend from Alzheimer's disease in Brazil, a descriptive study was conducted with the Mortality Information System of the Brazilian Ministry of Health (2000-2009). Age and sex-standardized mortality rates were calculated in Brazil's state capitals, showing the percentage variation by exponential regression adjustment. The state capitals as a whole showed an annual growth in mortality rates in the 60 to 79 year age bracket of 8.4% in women and 7.7% in men. In the 80 and older age group, the increase was 15.5% in women and 14% in men. Meanwhile, the all-cause mortality rate declined in both elderly men and women. The increase in mortality from Alzheimer's disease occurred in the context of chronic diseases as a proxy for increasing prevalence of the disease in the population. The authors suggest healthcare strategies for individuals with chronic non-communicable diseases.
La enfermedad de Alzheimer es la demencia más frecuente entre adultos mayores en el mundo. Para evaluar la evolución de la mortalidad por la enfermedad de Alzheimer en Brasil, se ha desarrollado un estudio con datos del Sistema de Información sobre Mortalidad del Ministerio de Salud, durante el período 2000-2009. Se calcularon las tasas de mortalidad estandarizadas por edad y sexo en las capitales brasileñas y se registró la variación porcentual mediante ajuste de la regresión exponencial. El conjunto de las capitales presentó un aumento anual de las tasas de mortalidad en el grupo de edad de 60 a 79 años, de un 8,4% en mujeres y un 7,7% en hombres. En el grupo de 80 o más años, el aumento fue de un 15,5% en mujeres y un 14% en hombres. No obstante, hubo una disminución en la tasa de mortalidad por todas las causas entre los adultos mayores de ambos sexos. Se destaca un aumento de la mortalidad por enfermedad de Alzheimer en el contexto de las enfermedades crónicas como un proxy para la prevalencia de la enfermedad en la población, y se indican estrategias de asistencia en el cuidado de pacientes con enfermedades de larga duración.
A doença de Alzheimer é o tipo de demência que mais prevalece entre os idosos no mundo. Para avaliar a evolução da mortalidade por doença de Alzheimer no Brasil foi desenvolvido um estudo descritivo com os dados do Sistema de Informações sobre Mortalidade do Ministério da Saúde, no período de 2000 a 2009. Calcularam-se as taxas de mortalidade padronizadas por idade e sexo nas capitais brasileiras e se observou a variação percentual por meio de ajuste por regressão exponencial. Para o conjunto das capitais houve um crescimento anual nas taxas de mortalidade na faixa etária de 60 a 79 anos de 8,4% entre as mulheres e 7,7% entre os homens. No grupo etário de 80 anos e mais, o aumento foi de 15,5% entre as mulheres e 14% entre os homens. Contrariamente, verificou-se declínio da taxa de mortalidade por todas as causas entre os idosos em ambos os sexos. Destaca-se o aumento da mortalidade por doença de Alzheimer no contexto das doenças crônicas como um indicador aproximado da prevalência da doença na população, e são apontadas estratégias de assistência ao cuidado dos portadores de doenças de longa duração.
Subject(s)
Arabidopsis/physiology , Host-Pathogen Interactions/physiology , Peronospora/immunology , Plant Diseases/microbiology , Plant Growth Regulators/physiology , Plant Immunity/physiology , Salicylic Acid/metabolism , Arabidopsis Proteins/physiology , Host-Pathogen Interactions/immunology , Mediator Complex/physiology , Plant Diseases/immunologyABSTRACT
RESUMO Objetivo: descrever as contribuições da simulação clínica para aprendizagem de atributos cognitivos e procedimentais, por meio do debriefing, na perspectiva dos estudantes de enfermagem. Método: estudo descritivo exploratório. Participaram 20 estudantes de Graduação em Enfermagem de uma universidade do interior paulista. Na coleta de dados, realizada na etapa do debriefing, foi registrada a percepção do aluno sobre a simulação, aspectos positivos e o que poderia ser feito de forma diferente. Os relatos foram agrupados em categorias temáticas centrais, segundo referencial de análise de conteúdo de Bardin (2011), analisadas por meio de estatística descritiva. Resultados: identificada valorização da aprendizagem ativa, crítica e reflexiva (47,5%) em decorrência da aproximação à realidade assistencial (20,3%), manifestação dos sentimentos vivenciados durante a simulação (16,9%) e composição do cenário (15,3%). Conclusão: a simulação clínica seguida do debriefing favorece a compreensão da relação entre ação e resultados alcançados na aprendizagem. .
RESUMEN Objetivo: describir las contribuciones de simulación clínica para aprender atributos cognitivos y de procedimiento, a través de debriefing, desde la perspectiva de los estudiantes de enfermería. Método: estudio exploratorio descriptivo. 20 estudiantes participaron en el Pregrado en Enfermería de una universidad de São Paulo. Durante la recolección de datos, que se aplicó durante el debriefing, fue grabado en la percepción de los estudiantes de la simulación, los aspectos positivos y lo que podría hacerse de otra manera. Los informes de los estudiantes se agrupan de acuerdo a los temas centrales, según el referencial de análisis de contenido de Bardin (2011) y analizados mediante estadística descriptiva. Resultados: identificado la mejora de aprendizaje activo, crítico y reflexivo (47,5%) debido a la aproximación a la realidad en la atención de enfermería (20,3%), un resultado de la composición del escenario (16,9%), lo que favorece el desarrollo de sentimientos experimentados durante la simulación (15,3%). Conclusión: la simulación clínica seguida de debriefing favorece la comprensión de la relación entre la acción y los resultados obtenidos en el aprendizaje. .
ABSTRACT Objective: to describe the contributions of clinical simulation for learning cognitive and procedural attributes through debriefi ng, from the perspective of nursing students. Method: descriptive exploratory study. Twenty nursing undergraduate students from a university in the interior of the state of São Paulo participated in this study. Data collection was performed at the debriefi ng stage. Student’s perceptions about the simulation, positive aspects and what they could have done differently were registered. The students’ statements were grouped according to the central themes and the framework of Bardin’s content analysis (2011) and were analyzed using descriptive statistics. Results: enhancement of active, critical and refl ective learning (47.5%) was identifi ed due to the closeness to reality in nursing care (20.3%), manifestation of feelings experienced during the simulation (15.3%) and composition of the scenario (15.3%). Conclusion: the clinical simulation followed by debriefi ng promotes the understanding of the link between action and achievements in learning. .
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/immunology , Immunity, Innate/immunology , Peptide Fragments/immunology , Plant Immunity/immunology , Receptors, Pattern Recognition/immunology , Amino Acid Sequence , Arabidopsis/genetics , Blotting, Western , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Roots/growth & development , Plant Roots/immunology , Plant Roots/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Pattern Recognition/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal TransductionABSTRACT
O objetivo deste artigo é investigar relações entre renda e escolaridade com condições de saúde e nutrição em obesos graves. Estudo transversal ambulatorial com 79 pacientes de primeira consulta, com Índice de Massa Corporal (IMC) ≥ 35 kg/m2 e idade ≥ 20 anos. Coletaram-se dados: sociodemográficos, antropométricos, estilo de vida, exames bioquímicos e consumo alimentar. O IMC médio foi 48,3 ± 6,9 kg/m2. Observou-se correlação negativa significante de escolaridade com variáveis peso (r = -0,234) e IMC (r = -0,364) e de renda familiar per capita com consumo diário de vegetal A (r = -0,263). Após análise multivariada maior renda familiar per capita se associou à ausência de cardiopatia (RP: 0,51, IC95%: 0,32-0,81), maior consumo diário de vegetal A (RP: 1,79, IC95%: 1,16-2,75) e doces (RP: 3,12, IC95%: 1,21-8,04). Em obesos graves a maior renda familiar per capita se associou à ausência de cardiopatia e maior consumo de vegetais folhosos e doces. Já a escolaridade não se manteve associada às condições de saúde e nutrição.
This article seeks to investigate the relationship between income and educational level and health and nutritional conditions among the morbidly obese. A cross-sectional study was conducted with 79 patients at first appointment, with Body Mass Index (BMI) ≥ 35 kg/m2 and age ≥ 20 years. The following data was collected: demographic, socioeconomic, anthropometric, lifestyle, biochemical and food intake data. Average BMI was 48.3 ± 6.9 kg/m2. There was a significant negative correlation between education level and the variables of weight (r = -0.234) and BMI (r = -0.364) and per capita family income with daily consumption of leafy vegetables (r = -0.263). After multivariate analysis, higher per capita family income was associated with the absence of heart disease (PR: 0.51, CI95%: 0.32-0.81), higher daily consumption of leafy vegetables (PR: 1.79, CI95%: 1.16-2.75) and candy (PR: 3.12, CI95%: 1.21-8.04). In the morbidly obese, per capita household income was associated with absence of heart disease and higher consumption of leafy vegetables and candy. On the other hand, education level was not associated with health and nutrition conditions.
Subject(s)
Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Phospholipases A/metabolism , /pharmacology , /pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Glucuronidase/metabolism , Luciferases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phospholipases A/antagonists & inhibitors , Protein Processing, Post-Translational/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/drug effects , Seedlings/metabolism , Time FactorsABSTRACT
Transcriptional regulation is one of the major regulations in plant adventious shoot regeneration, but the exact mechanism remains unclear. In our study, the RNA-seq technology based on the IlluminaHiSeq 2000 sequencing platform was used to identify differentially expressed transcription factor (TF) encoding genes during callus formation stage and adventious shoot regeneration stage between wild type and adventious shoot formation defective mutant be1-3 and during the transition from dedifferentiation to redifferentiation stage in wildtype WS. Results show that 155 TFs were differentially expressed between be1-3 mutant and wild type during callus formation, of which 97 genes were up-regulated, and 58 genes were down-regulated; and that 68 genes were differentially expressed during redifferentiation stage, with 40 genes up-regulated and 28 genes down-regulated; whereas at the transition stage from dedifferentiation to redifferention in WS wild type explants, a total of 231 differentially expressed TF genes were identified, including 160 up-regualted genes and 71 down-regulated genes. Among these TF genes, the adventious shoot related transcription factor 1 (ART1) gene encoding a MYB-related (v-myb avian myeloblastosis viral oncogene homolog) TF, was up-regulated 3 217 folds, and was the highest up-regulated gene during be1-3 callus formation. Over expression of the ART1 gene caused defects in callus formation and shoot regeneration and inhibited seedling growth, indicating that the ART1 gene is a negative regulator of callus formation and shoot regeneration. This work not only enriches our knowledge about the transcriptional regulation mechanism of adventious shoot regeneration, but also provides valuable information on candidate TF genes associated with adventious shoot regeneration for future research.
Subject(s)
Arabidopsis , Arabidopsis Proteins , Physiology , Gene Expression Regulation, Plant , Genes, Plant , Plant Shoots , RNA , Regeneration , Seedlings , Transcription Factors , Physiology , Up-RegulationABSTRACT
Thioesterase catalyzes the hydrolysis of acyl-ACP and saturated fatty acyl chain. It plays a key role in the accumulation of medium chain fatty acids in vivo. In this study, to construct an engineering strain to produce MCFAs, the Arabidopsis acyl-ACP thioesterase gene AtFatA was amplified by PCR from cDNA of arabidopsis and double digested by EcoR I/Xba I, then linked to the plasmid digested with same enzymes to get the recombinant plasmid pPICZaA-AtFatA. We transformed the gene into Pichia pastoris GS115 by electroporation and screened positive colonies by YPD medium with Zeocin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the recombinant enzyme had a molecular of 45 kDa band which was consistent with the predicted molecular mass and we constructed the expression system of gene AtFatA in fungus for the first time. Under shake-flask conditions, Gas Chromatograph-Mass Spectrometer-computer results indicated that recombinant strain produced 51% more extracellular free MCFAs than the wild and its yield reached 28.7% of all extracellular fatty acids. This figure is 10% higher than the control group. The result provides a new way to produce MCFAs.