Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Article in English | WPRIM | ID: wpr-91220


In order to explore tick proteins as potential targets for further developing vaccine against ticks, the total proteins of unfed female Dermacentor silvarum were screened with anti-D. silvarum serum produced from rabbits. The results of western blot showed that 3 antigenic proteins of about 100, 68, and 52 kDa were detected by polyclonal antibodies, which means that they probably have immunogenicity. Then, unfed female tick proteins were separated by 12% SDS-PAGE, and target proteins (100, 68, and 52 kDa) were cut and analyzed by LC-MS/MS, respectively. The comparative results of peptide sequences showed that they might be vitellogenin (Vg), heat shock protein 60 (Hsp60), and fructose-1, 6-bisphosphate aldolase (FBA), respectively. These data will lay the foundation for the further validation of antigenic proteins to prevent infestation and diseases transmitted by D. silvarum.

Animals , Antigens/chemistry , Arthropod Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Female , Ixodidae/chemistry , Molecular Weight , Rabbits , Tandem Mass Spectrometry
Indian J Exp Biol ; 2014 Apr; 52(4): 375-382
Article in English | IMSEAR | ID: sea-150369


The first set of competitive inhibitors of molt inhibiting hormone (MIH) has been developed using the effective approaches such as Hip-Hop, virtual screening and manual alterations. Moreover, the conserved residues at 71 and 72 positions in the molt inhibiting hormone is known to be significant for selective inhibition of ecdysteroidogenesis; thus, the information from mutation and solution structure were used to generate common pharmacophore features. The geometry of the final six-feature pharmacophore was also found to be consistent with the homology-modeled MIH structures from various other decapod crustaceans. The Hypo-1, comprising six features hypothesis was carefully selected as a best pharmacophore model for virtual screening created on the basis of rank score and cluster processes. The hypothesis was validated and the database was virtually screened using this 3D query and the compounds were then manually altered to enhance the fit value. The hits obtained were further filtered for drug-likeness, which is expressed as physicochemical properties that contribute to favorable ADME/Tox profiles to eliminate the molecules exhibit toxicity and poor pharmacokinetics. In conclusion, the higher fit values of CI-1 (4.6), CI-4 (4.9) and CI-7 (4.2) in conjunction with better pharmacokinetic profile made these molecules practically helpful tool to increase production by accelerating molt in crustaceans. The use of feeding sub-therapeutic dosages of these growth enhancers can be very effectively implemented and certainly turn out to be a vital part of emerging nutritional strategies for economically important crustacean livestock.

Amino Acid Sequence , Animals , Arthropod Proteins/antagonists & inhibitors , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Binding, Competitive , Crustacea/metabolism , Drug Design , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Invertebrate Hormones/antagonists & inhibitors , Invertebrate Hormones/chemistry , Invertebrate Hormones/metabolism , Models, Molecular , Molecular Sequence Data , Sequence Homology, Amino Acid
Article in English | WPRIM | ID: wpr-14502


Subolesin (4D8), the ortholog of insect akirins, is a highly conserved protective antigen and thus has the potential for development of a broad-spectrum vaccine against ticks and mosquitoes. To date, no protective antigens have been characterized nor tested as candidate vaccines against Dermacentor silvarum bites and transmission of associated pathogens. In this study, we cloned the open reading frame (ORF) of D. silvarum 4D8 cDNA (Ds4D8), which consisted of 498 bp encoding 165 amino acid residues. The results of sequence alignments and phylogenetic analysis demonstrated that D. silvarum 4D8 (Ds4D8) is highly conserved showing more than 81% identity of amino acid sequences with those of other hard ticks. Additionally, Ds4D8 containing restriction sites was ligated into the pET-32(a+) expression vector and the recombinant plasmid was transformed into Escherichia coli rosetta. The recombinant Ds4D8 (rDs4D8) was induced by isopropyl beta-D-thiogalactopyranoside (IPTG) and purified using Ni affinity chromatography. The SDS-PAGE results showed that the molecular weight of rDs4D8 was 40 kDa, which was consistent with the expected molecular mass considering 22 kDa histidine-tagged thioredoxin (TRX) protein from the expression vector. Western blot results showed that rabbit anti-D. silvarum serum recognized the expressed rDs4D8, suggesting an immune response against rDs4D8. These results provided the basis for developing a candidate vaccine against D. silvarum ticks and transmission of associated pathogens.

Animals , Antigens/chemistry , Arthropod Proteins/chemistry , Chromatography, Affinity , Cloning, Molecular , Cluster Analysis , Conserved Sequence , Dermacentor/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Gene Expression , Humans , Molecular Sequence Data , Molecular Weight , Phylogeny , Recombinant Proteins/chemistry , Sequence Analysis, DNA , Sequence Homology, Amino Acid