Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Journal of Zhejiang University. Science. B ; (12): 943-956, 2023.
Article in English | WPRIM | ID: wpr-1010574


Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.

Biocompatible Materials/chemistry , Silk/chemistry , Fibroins/pharmacology , Dental Implants , Osteogenesis , Tissue Scaffolds/chemistry , Tissue Engineering/methods
Journal of Zhejiang University. Medical sciences ; (6): 285-295, 2023.
Article in English | WPRIM | ID: wpr-982046


OBJECTIVES@#To design and prepare silk fibroin/hyaluronic acid composite hydrogel.@*METHODS@#The thiol modified silk fibroin and the double-bond modified hyaluronic acid were rapidly cured into gels through thiol-ene click polymerization under ultraviolet light condition. The grafting rate of modified silk fibroin and hyaluronic acid was characterized by 1H NMR spectroscopy; the gel point and the internal microstructure of hydrogels were characterized by rheological test and scanning electron microscopy; the mechanical properties were characterized by compression test; the swelling rate and degradation rate were determined by mass method. The hydrogel was co-cultured with the cells, the cytotoxicity was measured by the lactate dehydrogenase method, the cell adhesion was measured by the float count method, and the cell growth and differentiation on the surface of the gel were observed by scanning electron microscope and fluorescence microscope.@*RESULTS@#The functional group substitution degrees of modified silk fibroin and hyaluronic acid were 17.99% and 48.03%, respectively. The prepared silk fibroin/hyaluronic acid composite hydrogel had a gel point of 40-60 s and had a porous structure inside the gel. The compressive strength was as high as 450 kPa and it would not break after ten cycles. The water absorption capacity of the composite hydrogel was 4-10 times of its own weight. Degradation experiments showed that the hydrogel was biodegradable, and the degradation rate reached 28%-42% after 35 d. The cell biology experiments showed that the cytotoxicity of the composite gel was low, the cell adhesion was good, and the growth and differentiation of the cells on the surface of the gel were good.@*CONCLUSIONS@#The photocurable silk fibroin/hyaluronic acid composite hydrogel can form a gel quickly, and has excellent mechanical properties, adjustable swelling rate and degradation degree, good biocompatibility, so it has promising application prospects in biomedicine.

Fibroins/chemistry , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Biocompatible Materials/chemistry , Click Chemistry , Sulfhydryl Compounds , Silk/chemistry
Journal of Central South University(Medical Sciences) ; (12): 138-147, 2023.
Article in English | WPRIM | ID: wpr-971379


Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.

Chitosan/chemistry , Tissue Engineering , Hydrogels/chemistry , Biocompatible Materials/chemistry , Cartilage , Tissue Scaffolds/chemistry
Chinese Journal of Medical Instrumentation ; (6): 415-423, 2023.
Article in Chinese | WPRIM | ID: wpr-982256


Soft tissue is an indispensable tissue in human body. It plays an important role in protecting the body from external physical, chemical or biological factors. Mild soft tissue injuries can self-heal, while severe soft tissue injuries may require related treatment. Natural polymers (such as chitosan, hyaluronic acid, and collagen) and synthetic polymers (such as polyethylene glycol and polylactic acid) exhibit good biocompatibility, biodegradability and low toxicity. It can be used for soft tissue repairs for antibacterial, hemostatic and wound healing purposes. Their related properties can be enhanced through modification or preparation of composite materials. Commonly used soft tissue repairs include wound dressings, biological patches, medical tissue adhesives, and tissue engineering scaffolds. This study introduces the properties, mechanisms of action and applications of various soft tissue repair medical materials, including chitosan, hyaluronic acid, collagen, polyethylene glycol and polylactic acid, and provides an outlook on the application prospects of soft tissue repair medical materials and products.

Humans , Biocompatible Materials/chemistry , Chitosan/chemistry , Hyaluronic Acid , Tissue Scaffolds/chemistry , Collagen/chemistry , Polymers/chemistry , Polyethylene Glycols , Soft Tissue Injuries
Journal of Peking University(Health Sciences) ; (6): 557-564, 2022.
Article in Chinese | WPRIM | ID: wpr-941002


OBJECTIVE@#To compare the effects of three different crosslinkers on the biocompatibility, physical and chemical properties of decellularized small intestinal submucosa (SIS) porous scaffolds.@*METHODS@#The SIS porous scaffolds were prepared by freeze-drying method and randomly divided into three groups, then crosslinked by glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide (EDC) and procyanidine (PA) respectively. To evaluate the physicochemical property of each sample in different groups, the following experiments were conducted. Macroscopic morphologies were observed and recorded. Microscopic morphologies of the scaffolds were observed using field emission scanning electron microscope (FESEM) and representative images were selected. Computer software (ImageJ) was used to calculate the pore size and porosity. The degree of crosslinking was determined by ninhydrin experiment. Collagenase degradation experiment was performed to assess the resistance of SIS scaffolds to enzyme degradation. To evaluate the mechanical properties, universal mechanical testing machine was used to determine the stress-strain curve and compression strength was calculated. Human bone marrow mesenchymal cells (hBMSCs) were cultured on the scaffolds after which cytotoxicity and cell proliferation were assessed.@*RESULTS@#All the scaffolds remained intact after different crosslinking treatments. The FESEM images showed uniformed interconnected micro structures of scaffolds in different groups. The pore size of EDC group[(161.90±13.44) μm] was significantly higher than GA group [(149.50±14.65) μm] and PA group[(140.10±12.06) μm] (P < 0.05). The porosity of PA group (79.62%±1.14%) was significantly lower than EDC group (85.11%±1.71%) and GA group (84.83%±1.89%) (P < 0.05). PA group showed the highest degree of crosslinking whereas the lowest swelling ratio. There was a significant difference in the swelling ratio of the three groups (P < 0.05). Regarding to the collagenase degradation experiment, the scaffolds in PA group showed a significantly lower weight loss rate than the other groups after 7 days degradation. The weight loss rates of GA group were significantly higher than those of the other groups on day 15, whereas the PA group had the lowest rate after 10 days and 15 days degradation. PA group showed better mechanical properties than the other two groups. More living cells could be seen in PA and EDC groups after live/dead cell staining. Additionally, the proliferation rate of hBMCSs was faster in PA and EDC groups than in GA group.@*CONCLUSION@#The scaffolds gained satisfying degree of crosslinking after three different crosslinking treatments. The samples after PA and EDC treatment had better physicochemical properties and biocompatibility compared with GA treatment. Crosslinking can be used as a promising and applicable method in the modification of SIS scaffolds.

Humans , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Weight Loss
Journal of Zhejiang University. Science. B ; (12): 58-73, 2022.
Article in English | WPRIM | ID: wpr-929039


Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β‍-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.

Animals , Rats , Axons , Biocompatible Materials/chemistry , Chitosan/chemistry , Nanotubes, Carbon/chemistry , Nerve Regeneration , Polyethylene Glycols , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry
Frontiers of Medicine ; (4): 358-377, 2022.
Article in English | WPRIM | ID: wpr-939883


According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.

Humans , Biocompatible Materials/chemistry , Hyaluronic Acid , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds/chemistry
Int. j. morphol ; 39(6): 1683-1687, dic. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385553


SUMMARY: Late orbital reconstruction is a complex and challenge for surgeons. The aim of this article is to present complex orbital reconstruction using patient specific implant (PSI) strategy and polyetheretherketone (PEEK). A literature review and a cases series of sequelae after complex orbital trauma are presented; cases with great middle third deformities showing defect in the maxilla, nasal area, body of the zygoma and zygomatic arch were included; in both cases the sequelae was for more than 10 years. Virtual planning and PEEK implants were manufacture using a puzzle (two or three parts) by 3D print or injection. Patients were treated and their surgeries carried out without complications, using a minimal surgical approach. No infections were observed, and after 12 months follow-up they were stable showing normal function. PSI based-PEEK for orbital reconstruction are safe, efficient, effective and to obtain orbital morphology with low complications.

RESUMEN: La reconstrucción tardía de la órbita es un desafío complejo para cirujanos. El objetivo de este artículo fue presentar la reconstrucción orbitaria compleja utilizando implante paciente específico (PSI) y polietereterketona (PEEK). Son presentados una revisión de literatura y una serie de casos con secuelas posteriores a un trauma orbitario complejo; además, son presentados casos con gran deformidad del tercio medio del rostro mostrando defectos en maxila, área nasal, cuerpo del hueso cigomático y arco cigomático; ambos casos de secuela fueron por más de 10 años. Planificación virtual e implantes en PEEK fueron creados usando una estrategia de puzzle (dos o tres partes) por inyección o impresión 3D. Los pacientes fueron tratados y sus cirugías realizadas sin complicaciones usando accesos quirúrgicos reducidos. No se observaron infecciones y después de 12 meses de seguimiento permanecieron estables mostrando función normal. Los PSI para reconstrucción orbitaria son seguros, eficientes, efectivos y recuperan morfología de órbita con bajas complicaciones.

Humans , Male , Female , Middle Aged , Orbital Diseases/surgery , Plastic Surgery Procedures/methods , Printing, Three-Dimensional , Orbit/injuries , Orbital Diseases/complications , Polymers/chemistry , Benzophenones/chemistry , Biocompatible Materials/chemistry , Treatment Outcome , Orbital Implants
Acta cir. bras ; 34(2): e201900203, 2019. tab, graf
Article in English | LILACS | ID: biblio-989053


Abstract Purpose: To analyze, histomorphologically, the influence of the geometry of nanostructured hydroxyapatite and alginate (HAn/Alg) composites in the initial phase of the bone repair. Methods: Fifteen rats were distributed to three groups: MiHA - bone defect filled with HAn/Alg microspheres; GrHA - bone defect filled with HAn/Alg granules; and DV - empty bone defect; evaluated after 15 days postoperatively. The experimental surgical model was the critical bone defect, ≅8.5 mm, in rat calvaria. After euthanasia the specimens were embedded in paraffin and stained with hematoxylin and eosin, picrosirius and Masson-Goldner's trichrome. Results: The histomorphologic analysis showed, in the MiHA, deposition of osteoid matrix within some microspheres and circumjacent to the others, near the bone edges. In GrHA, the deposition of this matrix was scarce inside and adjacent to the granules. In these two groups, chronic granulomatous inflammation was noted, more evident in GrHA. In the DV, it was observed bone neoformation restricted to the bone edges and formation of connective tissue with reduced thickness in relation to the bone edges, throughout the defect. Conclusion: The geometry of the biomaterials was determinant in the tissue response, since the microspheres showed more favorable to the bone regeneration in relation to the granules.

Animals , Male , Rats , Biocompatible Materials/chemistry , Durapatite/chemistry , Nanostructures/chemistry , Alginates/chemistry , Spectrophotometry, Infrared , Biocompatible Materials/administration & dosage , Bone Regeneration/drug effects , Bone Regeneration/physiology , Rats, Wistar , Durapatite/administration & dosage , Nanostructures/administration & dosage , Alginates/administration & dosage
J. appl. oral sci ; 27: e20180247, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-975879


Abstract Objective This study aimed to investigate the effects of dodecacalcium hepta-aluminate (C12A7) content on some physicochemical properties and cytocompatibility of tricalcium silicate (C3S) cement using human dental pulp cells (hDPCs). Material and Methods High purity C3S cement was manufactured by a solid phase method. C12A7 was mixed with the cement in proportions of 0, 5, 8, and 10 wt% (C12A7-0, −5, −8, and −10, respectively). Physicochemical properties including initial setting time, compressive strength, and alkalinity were evaluated. Cytocompatibility was assessed with cell viability tests and cell number counts. Statistical analysis was performed by using one-way analysis of variance (ANOVA) and Tukey's test (p<0.05). Results The initial setting time of C3S-based cement was shorter in the presence of C12A7 (p<0.05). After 1 day, C12A7-5 showed significantly higher compressive strength than the other groups (p<0.05). After 7 days, the compressive strength of C12A7-5 was similar to that of C12A7-0, whereas other groups showed strength lower than C12A7-0. The pH values of all tested groups showed no significant differences after 1 day (p>0.05). The C12A7-5 group showed similar cell viability to the C12A7-0 group (p>0.05), while the other experimental groups showed lower values compared to C12A7-0 group (p<0.05). The number of cells grown on the C12A7-5 specimen was higher than that on C12A7-8 and −10 (p<0.05). Conclusions The addition of C12A7 to C3S cement at a proportion of 5% resulted in rapid initial setting time and higher compressive strength with no adverse effects on cytocompatibility.

Humans , Silicates/chemistry , Calcium Compounds/chemistry , Aluminum Compounds/chemistry , Dental Cements/chemistry , Dental Pulp Cavity/cytology , Particle Size , Reference Values , Time Factors , X-Ray Diffraction , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Materials Testing , Microscopy, Electron, Scanning , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Silicates/pharmacology , Calcium Compounds/pharmacology , Aluminum Compounds/pharmacology , Compressive Strength , Dental Cements/pharmacology , Dental Pulp Cavity/drug effects
Acta cir. bras ; 33(1): 14-21, Jan. 2018. tab, graf
Article in English | LILACS | ID: biblio-886252


Abstract Purpose: To compare the influence of two metallic implants in the diagnosis of periprosthetic infection using 99m technetium-labeled ceftizoxime. Methods: Twenty rats were randomly divided into four groups, which received sterile and contaminated titanium and stainless steel implants. After 3 weeks, scintilographic images were obtained using a gamma chamber. Radioactivity counts were obtained for the region of interest (ROI) on the operated and non-operated paws. Results: Groups A, B, and C showed homogenous distribution of the radiopharmaceutical. Hyper uptake was observed in the operated paw from group D. The ROI target count was higher in the two groups with stainless steel implants. Among the control groups, the count was higher in the stainless steel group. Furthermore, among the contaminated groups, the uptake was higher in the stainless steel group, with a significant difference. The target: non-target ratio was significantly lower in the control and contaminated groups with both titanium and stainless steel, but the comparison between control groups and contaminated groups was only significant in the former. The cpm/g observed after a decay of 48h showed statistically significant differences between groups. Conclusion: Different biomaterials used in implants have an influence on the results of scintigraphy with 99mTc-CFT.

Animals , Stainless Steel/radiation effects , Titanium/radiation effects , Ceftizoxime/analogs & derivatives , Organotechnetium Compounds , Prosthesis-Related Infections/diagnostic imaging , Radiopharmaceuticals , Radioactivity , Reference Values , Stainless Steel/chemistry , Time Factors , Titanium/chemistry , Biocompatible Materials/chemistry , Random Allocation , Radionuclide Imaging , Reproducibility of Results , Prosthesis-Related Infections/microbiology , Rats, Wistar
Acta cir. bras ; 32(2): 116-124, Feb. 2017. tab, graf
Article in English | LILACS | ID: biblio-837684


Abstract Purpose To evaluate the polymer doped rods behavior with bioactive glass and hydroxyapatite for possible application as a fracture fixing method. Methods Twenty eight Rattus norvegicus Wistar underwent bone defect for access to the femoral medullary canal and distributed into three experimental groups: group A - doped castor bean polymer with bioactive glass; group B - castor bean polymer and; group C - castor bean polymer doped with bioactive glass and hydroxyapatite. After 15 and 60 evaluation days, the femurs were removed and sent for histology and scanning electron microscopy. Results Initially mild and moderate inflammatory infiltrate is observed that decreases as time goes by, and the presence of connective tissue capsule around the graft in all groups. Regarding the biomaterials resorption little was observed. The implanted rods did not favor the osteoconductive process in the femoral medullary canal which was observed only in the C15 group. Conclusions The association of castor bean polymer, bioactive glass and hydroxyapatite was biocompatible and osteointegrable. The osteoconductive only occurred in the presence of hydroxyapatite and bioactive glass (C15 Group) and little biodegradation was observed.

Animals , Rats , Biocompatible Materials/therapeutic use , Bone Regeneration , Castor Oil/chemistry , Durapatite/therapeutic use , Durapatite/chemistry , Femur , Fracture Fixation, Internal/methods , Glass/chemistry , Biocompatible Materials/chemistry , Random Allocation , Internal Fixators , Rats, Wistar , Models, Animal
Braz. oral res. (Online) ; 31: e76, 2017. graf
Article in English | LILACS | ID: biblio-952131


Abstract To evaluate the influence of rewetting solutions on bond strength to root dentin of conventional gutta-percha (GP) or niobium phosphate glass-based gutta-percha (GNb) associated with a bioceramic sealer. The root canals of 80 human mandibular premolars were prepared using nickel-titanium instruments and irrigation with sodium hypochlorite and EDTA. The teeth were randomly divided into four groups according to the gutta-percha used: GNb or GP associated with EndoSequence BC Sealer (BC) and the solution for rewetting dentin before filling (distilled water; phosphate buffer saline solution - PBS; simulated body fluid - SBF; or no solution). The root canals were filled with a single cone using warm vertical condensation. Micropush-out bond strengths associated with the filling materials in slices from middle root thirds was determined 30 days after root filling. The failure mode was analyzed with stereoscopic lens. The data were statistically analyzed by two-way ANOVA and Holm-Sidak test (p < 0.05). There was significant difference in the types of gutta-percha (p < 0.001) and in the different rewetting solutions (p = 0.003). The interaction between gutta-percha and rewetting solutions was not significant (p = 0.53). The SBF solution provided an increase in bond strength for both gutta-percha solutions. The GNb+BC (3.42 MPa) association increased bond strength when compared with GP+BC (2.0 MPa). The use of SBF as a dentin rewetting solution increased bond strength in the groups studied. Association of GNb with bioceramic sealer was beneficial, increasing the bond strength to dentin when compared with the association with GP.

Humans , Solutions/chemistry , Ceramics/chemistry , Dental Bonding/methods , Dentin/drug effects , Gutta-Percha/chemistry , Reference Values , Surface Properties/drug effects , Biocompatible Materials/chemistry , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Root Canal Preparation/methods , Dental Restoration Failure , Dentin/chemistry , Niobium/chemistry
Braz. oral res. (Online) ; 31: e92, 2017. tab, graf
Article in English | LILACS | ID: biblio-952127


Abstract The development of a biodegradable material with antimicrobial properties for local applications is required in the prevention and treatment of infectious diseases. The objective of this study was to produce blends of poly-L-lactide acid (PLLA) synthetic polymer associated with several antimicrobials, as an alternative in the prevention and treatment of infections, as well as to evaluate its cytotoxicity, release of antimicrobials and inhibit bacteria growth. Blends of PLLA added with 20% Amoxicillin, Metronidazole, Clindamycin or Azithromicyn were used to produce Films (F) or Meshs (M) by casting and electrospinning methods, respectively. Standardized discs of the films and meshs were stored in buffer solutions (pH 5 or 7.4) and aliquots were analyzed by high performance chromatography (HPLC) during 168 hours. Cytotoxicity on human gingival fibroblasts was tested after 24, 48 and 72h by MTT reaction. The antimicrobial capacity was determined against P. gingivalis and S. pyogenes. The specimens were weighed after 3 and 6 months of storage for degradation analysis. SEM was performed to control interfaces and degradation. Antimicrobials presented a continuous and exponential drug release. Analysis showed that both M and F were able to inhibit S. pyogenes and P. gingivalis growth, indicating the release of active antimicrobial agents. The products were not toxic to the fibroblasts. Amoxicillin-film showed more degradation than PLLA at both pHs (p < 0.05), whereas Azithromycin-meshes were more degraded than PLLA at pH 7.4 (p < 0.05). PLLA association with antimicrobials is biocompatible and may represent a potential tool for the local delivery of antimicrobials.

Humans , Polyesters/pharmacology , Polymers/pharmacology , Streptococcus pyogenes/drug effects , Biocompatible Materials/pharmacology , Porphyromonas gingivalis/drug effects , Microbial Viability/drug effects , Anti-Infective Agents/pharmacology , Polymers/chemistry , Surgical Mesh/adverse effects , Biocompatible Materials/chemistry , Materials Testing , Cell Culture Techniques , Drug Combinations , Anti-Infective Agents/chemistry
Bauru; s.n; 2017. 145 p. tab, graf, ilus.
Thesis in Portuguese | LILACS, BBO | ID: biblio-879731


Neste trabalho desenhou-se bases de desenvolvimento, caracterização e avaliação dos aspectos biológicos relacionados ao Sistema BoneLithium, idealizado a partir da associação de partículas de carbonato de lítio dispersas em matriz gel de carbopol®, com capacidade de atuar como um sistema liberador de fármacos. Metodologicamente este estudo se dividiu em quatro partes: Na primeira delas, o objetivo central foi o desenvolvimento e a caracterização do biomaterial através da manipulação farmacológica. Na segunda etapa, avaliou-se a reação tecidual em subcutâneo de ratos, na terceira a influência das partículas de lítio liberadas pelo Sistema BoneLithium no reparo ósseo através de modelos experimentais utilizando coelhos, e por ultimo, a capacidade de cicatrização de defeitos ósseos criados cirurgicamente em calvária de ratos, tratados com o biomaterial e diferentes opções de enxertos ósseos com o objetivo de comparar a eficiência do Sistema BoneLithium aos protocolos pré-existentes. Experimentalmente, avaliou-se a reação tecidual onde se utilizou 15 ratos machos divididos aleatatoriamente em 5 grupos onde implantouse no subcutâneo tubos de butterfly contendo o biomaterial por períodos de preservação recomendados pela norma ADA 10993 para teste de reação tecidual. Os resultados demonstram que o Sistema BoneLithium apresenta reação tecidual normal. Para a avaliação do comportamento biológico do Sistema BoneLithium foram utilizados coelhos brancos adultos da raça New Zealand nos quais defeitos ósseos bilaterais de 1 cm de diâmetro foram confeccionados cirurgicamente na calvária e foram Tratados com o Sistema Bone Lithium do (lado Direito) e somente o Gel de Carbopol (lado esquerdo)/Coágulo sanguíneo (controle). A Histomorfometria demonstrou comportamento favorável ao reparo ósseo e adicionalmente através de Microtomografia Computadorizada (CT SKYSCAN), foi possível constatar diferenças significativas considerando p> 0.05 (ANOVA, Tukey) para o processo de reparo ósseo. A avaliação da performance do Sistema BoneLithium utilizando ratos Wistar nos quais foram criados defeitos críticos no centro da calvária e tratados com diferentes modalidades de enxertos ósseos (controle, autógeno, osso de banco (Unioss®, Marília Brasil), Bio-Oss® e associações com o Sistema BoneLithium. A histomorfometria mostrou diferenças significativas considerando p> 0.05 (ANOVA, Tukey) para avaliação de tecido conjuntivo pré-osteogênico e tecido ósseo neoformado, e quando avaliado qualitativamente por tomografia computadorizada de feixe cônico (I cat Cone Beam FOV 0.05 Xoran Tecnology, LLC, EUA e E-vol, CDT, Brasil), observaram-se áreas de neoformação óssea compatíveis com hiperdensidade óssea em toda a extensão do defeito quando apuradas em analises de paridade em escala Hounsfield. Dessa forma, conclui-se que no contexto deste estudo é possível concluir que Sistema BoneLithium representa uma alternativa com potencial viabilidade clínica e necessita seguimento de aplicação em novas metodologias.(AU)

In this work, bases for the development, characterization and evaluation of the biological aspects related to the BoneLithium System were designed, based on the association of lithium carbonate particles dispersed in carbopol® gel matrix, capable of acting as a drug-releasing system. Methodologically this study was divided in four parts: In the first one, the central objective was the development and characterization of the biomaterial through the pharmacological manipulation. In the second step, the tissue reaction was evaluated in subcutaneous of rats, in the third the influence of the lithium particles released by BoneLithium System in the bone repair through experimental models using rabbits, and finally, the capacity of healing of bone defects created surgically in Calvaria of rats, treated with the biomaterial and different options of bone grafts with the objective to compare the efficiency of the BoneLithium System to the preexisting protocols. Experimentally, the tissue reaction was evaluated in which 15 male rats were randomly divided into 5 groups, where butterfly tubes containing the biomaterial were implanted in the subcutaneous tubes for preservation periods recommended by the ADA 10993 standard for biocompatibility test. The results demonstrate that the BoneLithium System is tissue reaction positive. To evaluate the biological behavior of the BoneLithium System, adult New Zealand white rabbits were used in which bilateral bone defects of 1 cm in diameter were surgically made on calvaria and treated with the Bone Lithium System (right side) and only Gel Of Carbopol (left side) / blood clot (control). Histomorphometry showed a favorable behavior to bone repair and, in addition, through Computerized Microtomography (CT SKYSCAN), it was possible to verify significant differences considering p> 0.05 (ANOVA, Tukey) for the bone repair process. The evaluation of the performance of the BoneLithium System using Wistar rats in which critical defects were created at the calvarial center and treated with different bone graft modalities (control, autogenous, bone bank (Unioss®, Marília Brazil), Bio-Oss® and associations (ANOVA, Tukey) for evaluation of pre osteogenic connective tissue and neoformed bone tissue, and when assessed qualitatively by cone beam computed tomography (I cat - Cone Beam - FOV 0.05 - Xoran Tecnology, LLC, USA and E-vol, CDT, Brazil), areas of bone neoformation compatible with bone hyperdensity throughout the extent of the defect were ascertained in Hounsfield scale parity analyzes, It is concluded that in the context of this study it is possible to conclude that the BoneLithium System represents an alternative with potential clinical feasibility And requires follow-up of application in new methodologies.(AU)

Animals , Male , Rabbits , Rats , Bone Regeneration/drug effects , Bone Regeneration/physiology , Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Lithium Carbonate/chemistry , Lithium Carbonate/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bone Transplantation/methods , Cone-Beam Computed Tomography , Rats, Wistar , Reproducibility of Results , Time Factors
Bauru; s.n; 2017. 103 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-880031


O desenvolvimento de biomateriais com aplicações na área da saúde mostram-se cada vez mais importantes e a procura por novos polímeros com propriedades bioativas, biodegradabilidade, atoxicidade são o foco das principais pesquisas em diferentes aplicações médicas e odontológicas. Os materiais capeadores pulpares evoluíram rapidamente na ultima década, sendo que são disponibilizadas atualmente diversas alternativas para uso clínico odontológico. Este trabalho teve como objetivo o desenvolvimento de um novo produto bioestimulador e capeador dentino/pulpar que poderá ser base para o desenvolvimento e recobrimento de scaffolds para reparo das diferentes estruturas dentárias. O desenvolvimento das bandagens BBio e os resultados obtidos nos testes das propriedades físico-químicas (absorção de água, perda de massa e pH), bem como as análises biológicas da morfologia celular e viabilidade celular com MTT a BBio apresentaram dados favoráveis e desejáveis para sua aplicação clínica. A propriedade de liberação de cálcio foi bastante promissora, sendo esta uma condição que dará a diferenciação positiva da BBio como um produto bioestimulador pulpar. Com esses dados pode-se concluir que a mesma se encontra dentro dos parâmetros desejados para o produto final e com propriedades semelhantes aos produtos existentes no mercado, de qualidade e aprovados pelas agências reguladoras.(AU)

The development of biomaterials with applications in the health area are increasingly important and the search for new polymers with bioactive properties, biodegradability and toxicity are the focus of the main researches in different medical and dental applications. The pulp capping materials evolved rapidly in the last decade, and several alternatives are now available for clinical dental use. This project aimed to develop a new biostimulating and dentin / pulp capping product that could be the basis for the development and recoating of "scaffolds" for repair of different dental structures. The development of the BBio bandages and the results obtained in the physical-chemical properties tests (water absorption, loss of mass and pH), as well as the biological analyzes of the cellular morphology and cell viability with MTT to BBio presented favorable and desirable data for its clinical application. The calcium release property was quite promising, and this is a condition that will give BBio a positive differentiation as a pulp biostimulator product. With this data it can be concluded that it is within the parameters desired for the final product and with properties similar to the products on the market, of quality and approved by the regulatory agencies.(AU)

Humans , Biocompatible Materials/chemistry , Dental Pulp/drug effects , Dentin/drug effects , Pulp Capping and Pulpectomy Agents/chemistry , Analysis of Variance , Biocompatible Materials/pharmacology , Biocompatible Materials/standards , Cell Survival , Chitin/chemistry , Chitosan/chemistry , Fibroblasts/drug effects , Materials Testing , Microscopy, Electrochemical, Scanning , Pulp Capping and Pulpectomy Agents/pharmacology , Pulp Capping and Pulpectomy Agents/standards , Reproducibility of Results , Time Factors
Full dent. sci ; 7(25): 10-15, jan.2016. ilus
Article in Portuguese | LILACS | ID: lil-790072


A crescente utilização de implantes dentários levou a indústria a desenvolver desenhos de componentes específicos para melhoria na capacidade da osseointegração, mas também no desenvolvimento de uma vedação biológica; isto é, um selamento de tecido mole ao redor da parte transmucosa como também da crista óssea após extração dental. A folha laminada de titânio não absorvível indicada como auxiliar na neoformação óssea atua como barreira biológica ou como lâmina totalmente impermeável, com propriedade em excluir a possibilidade de competição e invaginação dos tecidos moles sobre os enxertos e defeitos ósseos...

The increasing use of dental implants has led the industry to develop specific components designs to improve the osseointegration capacity, as well as the development of a biological seal (sealing of soft tissue around the transmucosal part and the bone crest after tooth extraction). The non-absorbable titanium foil is indicated as an aid for bone formation, acting as a biological barrier or as a totally impermeable membrane, that excludes the possibility of competition and invagination of the soft tissues over the graft and bone defects...

Humans , Female , Middle Aged , Biocompatible Materials/chemistry , Osseointegration , Surgical Procedures, Operative/methods , Titanium/chemistry , Radiography, Dental/instrumentation
Full dent. sci ; 7(25): 42-48, jan.2016. tab, ilus
Article in Portuguese | LILACS | ID: lil-790077


Muitas vezes para a reabilitação por implantes na região posterior da maxila se faz necessária a elevação do seio maxilar e vários biomateriais podem ser utilizados. Sendo assim, o objetivo do estudo é avaliar, através de uma busca sistemática da literatura, a utilização do Bio-Oss® puro em procedimentos de enxerto em elevação de seio maxilar. A busca sistemática da literatura foi realizada pelos pesquisadores nas bases de dados eletrônica PUBMED (Biblioteca Nacional de Medicina, US), Bireme (Biblioteca Virtual em Saúde) e Biblioteca Cochrane. Os artigos incluídos foram avaliados para grau de qualidade por dois pesquisadores independentes. Seiscentos e vinte e dois artigos foram avaliados, destes, 616 foram excluídos, permanecendo 6 artigos. Dos 6 artigos incluídos todos apresentaram alto viés no grau de qualidade dos estudos. Concluiu-se que apesar do alto viés dos artigos incluídos, devido diversas falhas metodológicas, a busca sistemática da literatura mostrou que o Bio-Oss® é um biomaterial adequado para cirurgias de aumento de seio maxilar...

In order to achieve the rehabilitation using implants in the posterior maxillary region a maxillary sinus elevation is required and for this purpose there are various biomaterials that can be used. Thus, the aim of this study is to evaluate, through a systematic literature search, the use of Bio-Oss® in pure grafting procedures in maxillary sinus elevation. A systematic literature search was conducted in the electronic databases PUBMED (National Library of Medicine, US), Virtual Library Bireme-health and the Cochrane Library. The included articles were assessed for level of quality by two independent researchers. Six hundred and twenty-two articles were evaluated, and 616 of those were excluded, remaining 6 articles. All six articles included showed high degree of bias in the quality of studies. It was concluded that despite the high bias of the articles due to several methodological flaws, this systematic literature search showed that Bio-Oss® is a suitable biomaterial for augmentation of the maxillary sinus surgeries...

Dental Implantation , Maxillary Sinus/surgery , Bone Transplantation/rehabilitation , Biocompatible Materials/chemistry , Data Interpretation, Statistical
Full dent. sci ; 7(25): 55-61, jan.2016.
Article in Portuguese | LILACS | ID: lil-790079


Repor dentes perdidos através de implantes dentários é cotidiano nas clínicas odontológicas. O posicionamento desses implantes em posição ideal nem sempre é possível, devido às perdas ósseas e às limitações anatômicas que o paciente pode apresentar. Na maxila superior posterior a presença do seio maxilar pode ser um fator complicador para fixação dos implantes, além de que com a pneumatização do mesmo, pode evoluir a um osso muito delgado com uma fina camada cortical. Reabilitar esse tipo de paciente através de implantes pode ser impossível sem a utilização de materiais e técnicas capazes de repor parcial ou total a deficiência óssea, e suportar, em função, os implantes dentários. Atualmente, existem diversos materiais que podem ser utilizados isolados ou em conjunto com outros para levantamento do assoalho do seio maxilar, podendo deixar o cirurgião dentista em dúvida de qual material escolher para cada caso. Esta revisão tem como objetivo transcorrer sobre os materiais de enxertia disponíveis no mercado, baseado em evidências científicas, a fim de esclarecer para o cirurgião quais os substitutos ósseos disponíveis para utilização desse tipo de enxertia...

The treatment with dental implants after teeth loss has become a common practice in dentistry. However, the appropriate implant positioning can be compromised by bone resorption and anatomical limitations presented by mandible/maxilla. The presence of maxillary sinus on posterior region of an edentulous maxilla can hinder maxillary implants, mainly when sinus pneumatization occurs, leading to an insufficient volume of healthy bone for implantÆs placement. Oral rehabilitation with dental implants in such cases may not be executed without previous reconstructive surgical techniques associated to materials that will be able to create adequate bone volume for implant sites. Several materials are available and can be used alone or combined for maxillary sinus floor elevation. Thus their indications should be clarified aiming to guide dental surgeons. This literature review aims to discourse about marketed grafting materials, based on scientific evidence, clarifying which materials are the available for bone replacement on sinus lift...

Humans , Sinus Floor Augmentation/methods , Maxillary Sinus/surgery , Bone Transplantation/methods , Biocompatible Materials/chemistry , Radiography, Panoramic/instrumentation
Braz. oral res. (Online) ; 30(1): e54, 2016. graf
Article in English | LILACS | ID: biblio-952061


Abstract The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM) composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1), and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene) was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells.

Humans , Stem Cells/drug effects , Biocompatible Materials/pharmacology , Collagen/pharmacology , Calcium Compounds/pharmacology , Aluminum Compounds/pharmacology , Dental Pulp/chemistry , Chitosan/pharmacology , Membranes, Artificial , Time Factors , Biocompatible Materials/chemistry , Microscopy, Electron, Scanning , Gene Expression , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Analysis of Variance , Collagen/chemistry , Calcium Compounds/chemistry , Aluminum Compounds/chemistry , Dentin/drug effects , Dentinogenesis , Chitosan/chemistry , Cell Proliferation/drug effects , Alkaline Phosphatase , Odontoblasts/drug effects