Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 130
Int. j. odontostomatol. (Print) ; 14(4): 632-638, dic. 2020. tab, graf
Article in English | LILACS | ID: biblio-1134550


ABSTRACT: The aim of this in vitro study was to investigate the influence of ethylenediaminetetraacetic acid (EDTA) associated with the benzalkonium chloride (BAK) on the adhesion and formation of Enterococcus faecalis biofilms attached to coated dentin. Discs standard bovine dentin blocks were treated with the coating materials evaluated: Saline solution (control), 17 % EDTA, 17 % EDTA associated with 1 % BAK for 5 minutes and subsequently washed with saline solution. Afterwards, biofilms of E. faecalis (ATCC 29212) were grown on the surface of coated dentin blocks for time intervals of 1 hour and 7 days (n = 20) and were subsequently washed with phosphate-buffered saline (PBS). Bacterial viability and total biovolume were analyzed by confocal laser scanning microscopy (CLSM) using the Live/Dead technique. Nonparametric Kruskal-Wallis followed by Dunn tests were used to determine statistical differences (a = 5 %). The 17 % EDTA + 1 % BAK group showed significantly lower biovolume and bacterial viability values at the end of 1 hour (p < 0.05). After 7 days of contamination, the 17 % EDTA and 17 % EDTA + 1 % BAK groups showed similar results that differed statistically from those of the control group (p < 0.05). The saline solution group showed higher values. The use of BAK associated with EDTA on dentin blocks surfaces before exposure to contamination was able to interfere in the adhesion of E. faecalis to dentin. Also, dentin treatment by BAK associated with a chelating agent influences the secondary biofilm formation, which could have important effects on the long-term success of root canal treatment.

RESUMEN: El objetivo del estudio consistió en investigar in vitro, la influencia del ácido etilendiamino-tetraacético (EDTA) con cloruro de benzalconio (BAK) en la adhesión y formación de biopelículas de Enterococcus faecalis a la dentina. Discos de dentina bovina fueron tratadas con solución salina (control), 17 % de EDTA, 17% de EDTA asociado con 1 % de BAK durante 5 minutos y lavadas con solución salina. Las biopelículas de E. faecalis (ATCC 29212) se cultivaron sobre los discos de dentina durante intervalos de tiempo de 1 hora y 7 días (n = 20), lavados con solución salina tamponada con fosfato (PBS). La viabilidad bacteriana y el biovolumen total se analizaron mediante microscopía de barrido por láser (CLSM) utilizando la técnica Live / Dead. Se realizó prueba no paramétrica de Kruskal-Wallis, seguida por Dunn con una diferencia estadística (a = 5 %). El grupo de 17 % EDTA + 1 % BAK mostró valores significativamente menores de biovolumen y viabilidad bacteriana al final de 1 hora (p < 0,05). Después de 7 días de contaminación, los grupos de 17 % EDTA y 17 % EDTA + 1 % BAK mostraron resultados similares que diferían estadísticamente del grupo control (p < 0,05). La solución salina mostró valores más altos. La asociación de BAK con EDTA antes de la contaminación interfirió en la adhesión de E. faecalis. Además, el tratamiento de la dentina por BAK asociado con EDTA influye en la formación de biopelículas secundarias, lo que podría tener efectos importantes sobre el éxito a largo plazo del tratamiento del conducto radicular.

Animals , Cattle , Bacterial Adhesion/drug effects , Edetic Acid/pharmacology , Enterococcus faecalis/growth & development , Enterococcus faecalis/drug effects , Biofilms/drug effects , Dentin/microbiology , Benzalkonium Compounds/pharmacology , Statistical Analysis , Microscopy, Confocal , Saline Solution
Bol. latinoam. Caribe plantas med. aromát ; 19(3): 321-333, mayo 2020. ilus, tab
Article in English | LILACS | ID: biblio-1116432


In this study the in vitro investigation of the inhibitory effect of ethanol extract of Viburnum opulus L. bark sample on Streptococcus mutans planctonic cells and biofilm has been intended. A Scanning electron microscopy analysis has been performed in order to investigate the inhibitory effect of the extract on Streptococcus mutans biofilms. Furthermore, the Exopolysaccharide and dextran production of this bacteria have been identified in the presence of the extract. It has been found out that the bark extract with the concentration of 2,5 mg/mL is able to inhibit more than 50% of the cells in the different times development phases. According to this, the exopolymeric matrix on the biofilm surface disperses and the Exopolysaccharide and dextran production get lowered in the presence of bark extract compared to the control group. It is considered that this extract can be used as an alternative approach for the new chemotherapeutic strategies against tooth decay.

En este estudio se investigó el efecto inhibitorio in vitro del extracto de etanólico de una muestra de corteza de Viburnum opulus L. en biopelículas de células planctónicas de Streptococcus mutans. Se realizó un análisis de microscopía electrónica de barrido para investigar el efecto inhibitorio del extracto sobre las biopelículas de Streptococcus mutans. Además, se identificó la producción de exopolisacárido y dextrano de esta bacteria en presencia del extracto. Se descubrió que el extracto de corteza con una concentración de 2,5 mg/ml inhibió más del 50% de las células en las diferentes fases de desarrollo. Consecuentemente, la matriz exopolimérica en la superficie de la biopelícula se dispersa y la producción de exopolisacárido y dextrano se reduce en presencia de extracto de corteza en comparación con el grupo de control. Se sugiere que este extracto puede ser usado como un enfoque alternativo para las nuevas estrategias quimioterapéuticas contra la carie dental.

Streptococcus mutans/drug effects , Plant Extracts/pharmacology , Viburnum opulus/pharmacology , Viburnum/chemistry , Polysaccharides, Bacterial/analysis , Streptococcus mutans/metabolism , In Vitro Techniques , Microscopy, Electron, Scanning , Dextrans/analysis , Biofilms/drug effects , Ethanol , Biofouling
Braz. arch. biol. technol ; 63: e20190555, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132270


Abstract The bacterial species employ various types of molecular communication systems recognized as quorum sensing for the synchronization of differential gene expression to regulate virulence traits and biofilm formation. A variety of quorum sensing inhibitors; molecules that interfere with quorum sensing among bacteria have been examined which can block the action of autoinducers. Moreover, the studies have scrutinized various enzymes for their quorum quenching activity resulting in the degradation of signaling molecules or blocking of gene expression. So far, the studies have found that these approaches are not only capable to reduce the pathogenicity and biofilm formation but also resulted in increased bacterial susceptibility to antibiotics and bacteriophages. The effectiveness of these strategies has been validated in different animal models and it seems that these practices will be transformed in near future to develop the medical devices including catheters, implants, and dressings for the prevention of bacterial infections. Although many of these approaches are still in the research stage, the increasing library of quorum quenching molecules and enzymes will open innovative perspectives for the development of antibacterial approaches which will extend the therapeutic arsenal against the pathogenic bacterial species.

Animals , Mice , Rabbits , Bacterial Infections/metabolism , Biofilms/drug effects , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans/microbiology , Models, Animal
Braz. oral res. (Online) ; 34: e050, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1132693


Abstract Candida infection is an important cause of morbidity and mortality in immunocompromised patients. The increase in its incidence has been associated with resistance to antimicrobial therapy and biofilm formation. The aim of this study was to evaluate the efficacy of tea tree oil (TTO) and its main component - terpinen-4-ol - against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 reference strains in planktonic and biofilm cultures. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity. Results were obtained from analysis of the biofilm using the cell proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and confocal laser scanning microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL of terpinen-4-ol applied for 60 s (rinse simulation) interfered with biofilm formation. Hence, this in vitro study revealed that natural substances such as TTO and terpinen-4-ol present promising results for the treatment of oral candidiasis.

Terpenes/pharmacology , Candida albicans/drug effects , Biofilms/drug effects , Tea Tree Oil/pharmacology , Reference Values , Terpenes/chemistry , Acrylic Resins , Candida albicans/growth & development , Microbial Sensitivity Tests , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Microscopy, Confocal , Biofilms/growth & development , Tea Tree Oil/chemistry , Denture Bases/microbiology , Antifungal Agents/pharmacology
J. appl. oral sci ; 28: e20190516, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1090775


Abstract This study investigated the effect of a calcium hydroxide (CH) paste (CleaniCal®) containing N-2-methyl pyrrolidone (NMP) as a vehicle on Enterococcus faecalis (E. faecalis) biofilms compared with other products containing saline (Calasept Plus™) or propylene glycol (PG) (Calcipex II®). Methodology Standardized bovine root canal specimens were used. The antibacterial effects were measured by colony-forming unit counting. The thickness of bacterial microcolonies and exopolysaccharides was assessed using confocal laser scanning microscopy. Morphological features of the biofilms were observed using field-emission scanning electron microscopy (FE-SEM). Bovine tooth blocks covered with nail polish were immersed into the vehicles and dispelling was observed. The data were analyzed using one-way analysis of variance and Tukey tests (p<0.05). Results CleaniCal® showed the highest antibacterial activity, followed by Calcipex II® (p<0.05). Moreover, NMP showed a higher antibacterial effect compared with PG (p<0.05). The thickness of bacteria and EPS in the CleaniCal® group was significantly lower than that of other materials tested (p<0.05). FE-SEM images showed the specimens treated with Calasept Plus™ were covered with biofilms, whereas the specimens treated with other medicaments were not. Notably, the specimen treated with CleaniCal® was cleaner than the one treated with Calcipex II®. Furthermore, the nail polish on the bovine tooth block immersed in NMP was completely dispelled. Conclusions CleaniCal® performed better than Calasept Plus™ and Calcipex II® in the removal efficacy of E. faecalis biofilms. The results suggest the effect might be due to the potent dissolving effect of NMP on organic substances.

Animals , Cattle , Pyrrolidinones/pharmacology , Root Canal Irrigants/pharmacology , Calcium Hydroxide/pharmacology , Enterococcus faecalis/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Potassium Chloride/pharmacology , Potassium Chloride/chemistry , Pyrrolidinones/chemistry , Root Canal Irrigants/chemistry , Materials Testing , Calcium Chloride/pharmacology , Calcium Chloride/chemistry , Calcium Hydroxide/chemistry , Microscopy, Electron, Scanning , Sodium Chloride/pharmacology , Sodium Chloride/chemistry , Colony Count, Microbial , Reproducibility of Results , Analysis of Variance , Sodium Bicarbonate/pharmacology , Sodium Bicarbonate/chemistry , Statistics, Nonparametric , Microscopy, Confocal , Drug Combinations
Bol. latinoam. Caribe plantas med. aromát ; 18(4): 411-424, jul. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1008180


Thymol (2-isopropyl-5-methylphenol) is an aromatic monoterpene found in essential oils extracted from plants belonging to the Lamiaceae family, such as Thymus, Ocimum, Origanum, Satureja, Thymbra and Monarda genera. Growth and biofilm formation by Listeria monocytogenes CLIP 74902 were evaluate using three carbon sources in the presence of thymol. Specific growth rate (h-1) values at 37o with glucose, trehalose and cellobiose with the addition of thymol (µg/mL) 0 (control) and 750, were respectively: 0.22, 0.07; 0.14, 0.04; 0.11, 0.04. Lag periods obtained under the same conditions were (h): 8.19, 13.2; 22.5, 27.5; 23.1, 28.1. A marked antibiofilm activity was observed against the exposure with 750 µg/mL of thymol, showing a high percentage of inhibition: glucose (99 %), trehalose (97 %) and cellobiose (98%), compared to the control. The results suggest that thymol could be used to inhibit the growth and production of biofilms by L. monocytogenes in the food industry.

Timol (2-isopropil-5-metilfenol) es un monoterpeno aromático presente en los aceites esenciales extraídos de plantas pertenecientes a la familia Lamiaceae, como los géneros Thymus, Ocimum, Origanum, Satureja, Thymbra y Monarda. El crecimiento y formación de biopelícula por Listeria monocytogenes CLIP 74902 fueron evaluados utilizando tres fuentes de carbono en presencia de timol. La velocidad específica de crecimiento (h-1) a 37o con glucosa, trehalosa y celobiosa con la adición de timol (µg/mL) 0 (control) y 750, fueron respectivamente: 0.22, 0.07; 0.14, 0.04, 0.11, 0,04. Los períodos lag obtenidos en las mismas condiciones fueron (h): 8.19, 13.2; 22.5, 27.5; 23.1, 28.1. Una marcada actividad antibiofilm fue obtenida con 750 µg/mL de timol, mostrando un alto porcentaje de inhibición con glucosa (99%), trehalosa (97%) y celobiosa (98%), respecto al control. Los resultados sugieren que timol podría ser usado para inhibir el crecimiento y producción de biopelículas por L. monocytogenes en la industria alimentaria.

Thymol/pharmacology , Biofilms/drug effects , Listeria monocytogenes/drug effects , Terpenes/pharmacology , Kinetics , Biofilms/growth & development , Environment , Fermentation , Food Microbiology , Listeria monocytogenes/growth & development
Rev. chil. infectol ; 36(2): 180-189, abr. 2019. tab, graf
Article in Spanish | LILACS | ID: biblio-1003666


Resumen Dentro de las infecciones nosocomiales más frecuentes asociadas a bacterias multi-resistentes y de peor pronóstico, se encuentran las producidas por Pseudomonas aeruginosa. Esta bacteria posee una alta capacidad de adaptación a condiciones adversas como por ejemplo el pH y la osmolaridad de la orina. Pseudomonas aeruginosa es uno de los principales patógenos implicados en infecciones nosocomiales y de pacientes inmunosuprimidos. Esta bacteria se considera un agente infeccioso oportunista que posee diversos mecanismos de patogenicidad, así como de resistencia a antimicrobianos, lo que contribuye a la dificultad en el tratamiento de estas infecciones. En la presente revisión bibliográfica se analizan la taxonomía, los mecanismos de patogenicidad y genes de resistencia de P. aeruginosa. Así también, se abordan los factores microambientales de la infección urinaria producida por esta bacteria, haciendo un acercamiento al entendimiento de las bases fisiopatológicas de esta infección.

Among the most frequent nosocomial infections associated with polyresistant bacteria and with a worse prognosis, are those produced by Pseudomonas aeruginosa. This bacterium has a high capacity to adapt to adverse conditions such as pH and osmolarity of urine. Pseudomonas aeruginosa is one of the main pathogens involved in nosocomial infections and immunosuppressed patients. This bacterium is considered an opportunistic infectious agent that has diverse mechanisms of pathogenicity, as well as resistance to antimicrobials, which contributes to the difficulty in the treatment of these infections. In the present bibliographic review, the taxonomy, pathogenicity mechanisms and resistance genes of P. aeruginosa are analyzed. Likewise, the micro-environmental factors of the urinary infection produced by this bacterium are approached, making an approach to the understanding of the pathophysiological bases of this infection.

Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Urinary Tract Infections/microbiology , Drug Resistance, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/drug effects , Urinary Tract Infections/drug therapy , Biofilms/drug effects , Virulence Factors
Braz. j. infect. dis ; 23(1): 15-21, Jan.-Feb. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001499


ABSTRACT Objective: To evaluate the influence of sub-minimum inhibitory concentrations (MICs) of ciprofloxacin (CIP) on biofilm formation and virulence factors of Escherichia coli clinical isolates. Methods: Sub-MICs of CIP were determined using growth curve experiments. The biofilm-forming capacity of E. coli clinical isolates and E. coli ATCC 25922 treated or untreated with sub-MICs of CIP was assessed using a crystal violet staining assay. The biofilm structure of E. coli isolate was assessed with scanning electron microscopy (SEM). The expression levels of the virulence genes fim, usp, and iron and the biofilm formation genes of the pgaABCD locus were measured using quantification RT-PCR (qRT-PCR) in E. coli isolates and E. coli ATCC 25922. Results: Based on our results, the sub-MICs of CIP were 1/4 MICs. Sub-MICs of CIP significantly inhibited biofilm formation of E. coli clinical isolates and E. coli ATCC 25922 (p < 0.01). SEM analyses indicated that the biofilm structure of the E. coli changed significantly after treatment with sub-MICs of CIP. Expression levels of the virulence genes fim, usp, and iron and the biofilm formation genes of the pgaABCD locus were also suppressed. Conclusions: The results revealed that treatment with sub-MICs of CIP for 24 h inhibited biofilm formation and reduced the expression of virulence genes and biofilm formation genes in E. coli.

Ciprofloxacin/pharmacology , Biofilms/drug effects , Virulence Factors , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Reference Values , Time Factors , Microscopy, Electron, Scanning , Microbial Sensitivity Tests , Gene Expression/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Gentian Violet
Rev. Soc. Bras. Med. Trop ; 52: e20180182, 2019. tab, graf
Article in English | LILACS | ID: biblio-1041508


Abstract INTRODUCTION: Administration of total parenteral nutrition (TPN) via catheters increases the risk for candidemia from Candida parapsilosis. METHODS: C. parapsilosis sensu stricto blood isolates were evaluated for ability total biomass biofilm formation and morphogenesis in presence of glucose at TPN equivalent concentrations. RESULTS: Biofilms were increased at high glucose concentrations (25-30%) compared to the control medium. Significant increase in filamentous forms was observed in cultures with 30% glucose. CONCLUSIONS: Biofilm formation by C. parapsilosis sensu stricto in hyperglycidic medium may contribute to its pathogenic potential for fungemia related to TPN catheters.

Humans , Biofilms/growth & development , Candida parapsilosis/physiology , Glucose/pharmacology , Colony Count, Microbial , Parenteral Nutrition, Home Total , Biofilms/drug effects , Culture Media/chemistry
Braz. oral res. (Online) ; 33: e019, 2019. tab, graf
Article in English | LILACS | ID: biblio-989473


Abstract The aim of this study was to evaluate the influence of polyhexamethylene guanidine hydrochloride (PHMGH) in the physico-chemical properties and antibacterial activity of an experimental resin sealant. An experimental resin sealant was formulated with 60 wt.% of bisphenol A glycol dimethacrylate and 40 wt.% of triethylene glycol dimethacrylate with a photoinitiator/co-initiator system. PHMGH was added at 0.5 (G0.5%), 1 (G1%), and 2 (G2%) wt.% and one group remained without PHMGH, used as control (GCTRL). The resin sealants were analyzed for degree of conversion (DC), Knoop hardness (KHN), and softening in solvent (ΔKHN), ultimate tensile strength (UTS), contact angle (θ) with water or α-bromonaphthalene, surface free energy (SFE), and antibacterial activity against Streptococcus mutans for biofilm formation and planktonic bacteria. There was no significant difference for DC (p > 0.05). The initial Knoop hardness ranged from 17.30 (±0.50) to 19.50 (± 0.45), with lower value for GCTRL (p < 0.05). All groups presented lower KHN after immersion in solvent (p < 0.05). The ΔKHN ranged from 47.22 (± 4.30) to 57.22 (± 5.42)%, without significant difference (p > 0.05). The UTS ranged from 54.72 (± 11.05) MPa to 60.46 (± 6.50) MPa, with lower value for G2% (p < 0.05). PHMGH groups presented no significant difference compared to GCTRL in θ (p > 0.05). G2% showed no difference in SFE compared to GCTRL (p > 0.05). The groups with PHMGH presented antibacterial activity against biofilm and planktonic bacteria, with higher antibacterial activity for higher PHMGH incorporation (p < 0.05). PHMGH provided antibacterial activity for all resin sealant groups and the addition up to 1 wt.% showed reliable physico-chemical properties, maintaining the caries-protective effect of the resin sealant over time.

Humans , Streptococcus mutans/drug effects , Biofilms/drug effects , Dental Materials/chemistry , Guanidines/pharmacology , Anti-Bacterial Agents/pharmacology , Materials Testing , Biofilms/growth & development , Dental Materials/pharmacology , Guanidines/chemistry , Anti-Bacterial Agents/chemistry
Braz. oral res. (Online) ; 33: e023, 2019. tab, graf
Article in English | LILACS | ID: biblio-1001611


Abstract: We evaluated the antifungal and antibiofilm potential of the hydroalcoholic extract of bark from Anadenanthera colubrina (vell.) Brenan, known as Angico, against Candida spp. Antifungal activity was evaluated using the microdilution technique through the Minimum Inhibitory and Fungicide Concentrations (MIC and MFC). The antibiofilm potential was tested in mature biofilms formed by Candida species and analyzed through the counting of CFU/mL and scanning electron micrograph (SEM). In vivo toxicity and therapeutic action was evaluated in the Galleria mellonella model. The treatment with the extract, in low doses, was able to reduce the growth of planktonic cells of Candida species. MIC values range between 19.5 and 39 µg/mL and MFC values range between 79 and 625 µg/mL. In addition was able to reduce the number of CFU/mL in biofilms and to cause structural alteration and cellular destruction, observed via SEM. A. colubrina showed low toxicity in the in vivo assay, having not affected the viability of the larvae at doses below 100mg/kg and high potential in the treatment of C. albicans infection. Considering its high antifungal potential, its low toxicity and potential to treatment of infections in in vivo model, A. colubrina extract is a strong candidate for development of a new agent for the treatment of oral candidiasis.

Candida/drug effects , Plant Extracts/pharmacology , Biofilms/drug effects , Fabaceae/chemistry , Antifungal Agents/pharmacology , Time Factors , Microscopy, Electron, Scanning , Colony Count, Microbial , Microbial Sensitivity Tests , Nystatin/pharmacology , Reproducibility of Results , Analysis of Variance
Braz. oral res. (Online) ; 33(supl.1): e065, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039317


Abstract Additive manufacturing (AM) is an emerging process for biomaterials and medical devices. Direct Laser Metal Sintering (DLMS) is an AM technique used to fabricate Ti-6Al-4V implant materials with enhanced surface-related properties compared with wrought samples; thus, this technique could influence microbial adsorption and colonization. Therefore, this in vitro study was conducted to evaluate the impact of different implant production processes on microbial adhesion of periodontal pathogens. Titanium discs produced using two different processes—conventional and AM—were divided into three groups: conventional titanium discs with machined surface (G1), AM titanium discs with chemical treatment (G2) and AM titanium discs without chemical treatment (G3). Subgingival biofilm composed of 32 species was formed on the titanium discs, and positioned vertically in 96-well plates, for 7 days. The proportions of microbial complexes and the microbial profiles were analyzed using a DNA-DNA hybridization technique, and data were evaluated using Kruskal-Wallis and Dunnett tests (p < 0.05). Lower proportions of the red complex species were observed in the biofilm formed in G2 compared with that in G1 (p < 0.05). Moreover, the proportions of the microbial complexes were similar between G2 and G3 (p > 0.05). Compared with G1, G2 showed reduced levels of Porphyromonas gingvalis , Actinomyces gerencseriae, and Streptococcus intermedius , and increased levels of Parvimonas micra , Actinomyces odontolyticus, and Eikenella corrodens (p < 0.05). The microbial profile of G3 did not differ from G1 and G2 (p > 0.05). The results of this in vitro study showed that titanium discs produced via AM could alter the microbial profile of the biofilm formed around them. Further clinical studies should be conducted to confirm these findings.

Titanium/pharmacology , Titanium/chemistry , Biofilms/growth & development , Reference Values , Surface Properties , Time Factors , Bacteria/drug effects , Microscopy, Electron, Scanning , DNA Probes , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Microscopy, Atomic Force , Biofilms/drug effects , Photoelectron Spectroscopy
Braz. J. Pharm. Sci. (Online) ; 55: e17200, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039047


Natural products are rapidly becoming the primary sources of novel antimicrobial agents, as resistance to existing antimicrobial agents is increasing. Apart from determining the antimicrobial activity of natural products, it is also important to understand their effects on the virulence factors of microorganisms. This study aimed to determine the antimicrobial activity of Sternbergia species prevalent in Turkey and investigate their role in the inhibition of germination tube and biofilm formation, both of which are known to be important virulence factors of Candida albicans. The antimicrobial activities of the plant extracts were evaluated using bore-plate and broth microdilution method. The extracts' capacity to inhibit the formation of the germ-tube was also evaluated. The findings of our study revealed that Sternbergia lutea, Sternbergia vernalis possessed antimicrobial activities, with MIC values ranging between 0.048 mg/mL and 0.39 mg/mL. The highest antimicrobial activity was observed against Candida dubliniensis (0.048 mg/mL). While evaluating the inhibition of fungal germination activities, S. vernalis extract (at a concentration of 0.09 mg/mL) was found to be the most effective against C. albicans ATCC 90028 strain. The results also indicated that S. vernalis extracts at sub-MIC levels inhibited germ tube formation and modulated the tail-length of germinated cells, both of which are important virulence factors of C. albicans. Furthermore, the inhibition of biofilm-formation was also investigated, and it was found that two Sternbergia spp. extracts at or below MIC levels inhibited biofilm formation.

Biofilms/drug effects , Amaryllidaceae/classification , Anti-Infective Agents/analysis , Candida albicans , Plant Extracts/adverse effects , Virulence Factors
J. appl. oral sci ; 27: e20180514, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-1012510


Abstract Objectives: The aim of this study was to assess the effect of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves hydroalcoholic extracts on viability and metabolism of a microcosm biofilm and on enamel demineralization prevention. Methodology: Microcosm biofilm was produced on bovine enamel using inoculum from pooled human saliva mixed with McBain saliva, under 0.2% sucrose exposure, for 14 days. The biofilm was daily-treated with the extracts for 1 min. At the end, it was analyzed with respect to viability by fluorescence, CFU counting and extracellular polysaccharides (phenol-sulphuric acid colorimetric assay) and lactic acid (enzymatic assay) production. The demineralization was measured by TMR. The data were compared using ANOVA or Kruskal-Wallis (p<0.05). Results: M. urundeuva All. at 100, 10 and 0.1 μg/mL and Q. grandiflora Mart. at 100 and 0.1 μg/mL reduced biofilm viability similarly to positive control (chlorhexidine) and significantly more than the negative-vehicle control (35% ethanol). M. urundeuva at 1000, 100 and 0.1 μg/mL were able to reduce both lactobacilli and mutans streptococci CFU counting, while Q. grandiflora (1000 and 1.0 μg/mL) significantly reduced mutans streptococci CFU counting. On the other hand, the natural extracts were unable to significantly reduce extracellular polysaccharides and lactic acid productions neither the development of enamel carious lesions. Conclusions: The extracts showed antimicrobial properties on microcosm biofilm, however, they had no effect on biofilm metabolism and caries protection.

Animals , Male , Cattle , Plant Extracts/pharmacology , Tooth Demineralization/prevention & control , Biofilms/drug effects , Anacardiaceae/chemistry , Myrtales/chemistry , Anti-Infective Agents/pharmacology , Polysaccharides, Bacterial/metabolism , Saliva/chemistry , Streptococcus mutans/drug effects , Microradiography/methods , Colony Count, Microbial , Cariostatic Agents/pharmacology , Microbial Sensitivity Tests , Reproducibility of Results , Plant Leaves/chemistry , Lactic Acid/metabolism , Dental Enamel/drug effects , Dental Enamel/microbiology , Microbial Viability/drug effects , Lactobacillus/drug effects
J. appl. oral sci ; 27: e20180699, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1012504


Abstract Objective This study investigated the role of extracellular deoxyribonucleic acid (eDNA) on Enterococcus faecalis ( E. faecalis ) biofilm and the susceptibility of E. faecalis to sodium hypochlorite (NaOCl). Methodology E. faecalis biofilm was formed in bovine tooth specimens and the biofilm was cultured with or without deoxyribonuclease (DNase), an inhibitor of eDNA. Then, the role of eDNA in E. faecalis growth and biofilm formation was investigated using colony forming unit (CFUs) counting, eDNA level assay, crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. The susceptibility of E. faecalis biofilm to low (0.5%) or high (5%) NaOCl concentrations was also analyzed by CFU counting. Results CFUs and biofilm formation decreased significantly with DNase treatment (p<0.05). The microstructure of DNase-treated biofilms exhibited less structured features when compared to the control. The volume of exopolysaccharides in the DNase-treated biofilm was significantly lower than that of control (p<0.05). Moreover, the CFUs, eDNA level, biofilm formation, and exopolysaccharides volume were lower when the biofilm was treated with DNase de novo when compared to when DNase was applied to matured biofilm (p<0.05). E. faecalis in the biofilm was more susceptible to NaOCl when it was cultured with DNase (p<0.05). Furthermore, 0.5% NaOCl combined with DNase treatment was as efficient as 5% NaOCl alone regarding susceptibility (p>0.05). Conclusions Inhibition of eDNA leads to decrease of E. faecalis biofilm formation and increase of susceptibility of E. faecalis to NaOCl even at low concentrations. Therefore, our results suggest that inhibition of eDNA would be beneficial in facilitating the efficacy of NaOCl and reducing its concentration.

Animals , Cattle , Sodium Hypochlorite/pharmacology , DNA, Bacterial/pharmacology , Enterococcus faecalis/growth & development , Enterococcus faecalis/drug effects , Biofilms/growth & development , Biofilms/drug effects , Deoxyribonucleases/pharmacology , Polysaccharides, Bacterial/isolation & purification , Time Factors , Microscopy, Electron, Scanning , Colony Count, Microbial , Microbial Sensitivity Tests , Reproducibility of Results , Microscopy, Confocal , Dental Pulp Cavity/microbiology
Braz. dent. j ; 29(6): 599-605, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974199


Abstract The occurrence of caries lesions adjacent to restorations is a serious problem in Dentistry. Therefore, new antimicrobial restorative materials could help to prevent recurrent carious lesions. This study evaluated the effect of a new glass ionomer cement (Ion Z) on the viability of a microcosm biofilm and on the development of enamel demineralization. Enamel samples were filled with the following materials (n=9): A) Ion-Z (FGM Ltda); B) Maxxion R (FGM Ltda); C) Ketac Fil Plus (3M ESPE) and D) no restoration (control). The samples were then exposed to human saliva mixed with McBain saliva (1:50) containing 0.2% sucrose for 14 days. The live and dead bacteria were quantified by fluorescence using a confocal laser-scanning microscope. The enamel demineralization was analyzed using transverse microradiography (TMR). The data were submitted to ANOVA/Tukey or Kruskal-Wallis/Dunn test (p<0.05). Ion Z induced a higher percentage of dead bacteria (60.96±12.0%) compared to the other groups (Maxxion R: 39.8±6.7%, Ketac Fil Plus: 43.7±9.71% and control 46.3±9.5%). All materials significantly reduced the average mineral loss compared to control (Ion-Z 25.0±4.2%vol, Maxxion R 23.4±8.0%vol, Ketac Fil Plus 30.7±7.7 and control 41.2±6.6%vol). Ion-Z was the only material able to significantly improve the mineral content at the surface layer (Zmax: 63.5±18.2%vol) compared to control (38.9±11.3%vol). Ion-Z shows antimicrobial potential, but its anti-caries effect was similar to the other materials, under this model.

Resumo A ocorrência de lesões de cárie adjacentes a restaurações é um sério problema na Odontologia. Portanto, novos materiais restauradores antimicrobianos poderiam ajudar a prevenir as lesões cariosas recorrentes. Este estudo avaliou o efeito de um novo cimento de ionômero de vidro (Ion Z) sobre a viabilidade de um biofilme microcosmo e o desenvolvimento da desmineralização do esmalte. Amostras de esmalte foram restauradas com os seguintes materiais (n=9): A) Ion-Z (FGM Ltda); B) Maxxion R (FGM Ltda); C) Ketac Fil Plus (3M ESPE) e D) sem restauração (controle). As amostras foram submetidas a uma mistura de saliva humana com saliva de McBain (1:50) contendo sacarose a 0,2% por 14 dias. As bactérias vivas e mortas foram quantificadas por fluorescência usando um microscópio confocal de varredura à laser. A desmineralização do esmalte foi analisada usando microradiografia transversal (TMR). Os dados foram submetidos aos testes ANOVA/Tukey ou Kruskal-Wallis/Dunn (p<0,05). O Ion Z induziu uma porcentagem mais elevada de bactérias mortas (60,96 ± 12,0%) comparado aos outros grupos (Maxxion R: 39,8 ± 6,7%, Ketac Fil Plus: 43,7 ± 9,71% e controle 46,3 ± 9,5%). Todos os materiais reduziram significativamente a perda mineral média em relação ao controle (Ion-Z 25,0 ± 4,2% vol, Maxxion R 23,4 ± 8,0% vol, Ketac Fil Plus 30,7 ± 7,7% vol e controle 41,2 ± 6,6% vol). O Ion-Z foi o único material capaz de melhorar significativamente o conteúdo mineral na camada superficial (Zmax: 63,5 ± 18,2% vol) em comparação com o controle (38,9 ± 11,3% vol). Ion-Z mostrou potencial antimicrobiano, mas seu efeito anti-cárie foi semelhante aos outros materiais, sob este modelo.

Humans , Animals , Cariostatic Agents/pharmacology , Biofilms/drug effects , Dental Enamel/drug effects , Dental Restoration, Permanent , Glass Ionomer Cements/pharmacology , Anti-Infective Agents/pharmacology , Saliva/microbiology , Streptococcus mutans , Surface Properties , In Vitro Techniques , Materials Testing , Brazil , Cattle , Streptococcus sobrinus , Maleates
Rev. Soc. Bras. Med. Trop ; 51(5): 603-609, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-957466


Abstract INTRODUCTION: The behavior of methicillin-resistant Staphylococcus aureus (MRSA) isolated from central venous catheter-related infection was evaluated to determine its biofilm potential, antimicrobial resistance, and adhesion genes. METHODS: A total of 1,156 central venous catheters (CVC) were evaluated to screen for pathogens. Antimicrobial sensitivity, biofilm formation potential, and molecular analysis of MRSA were examined following standard guidelines. RESULTS: Of the 1,156 samples, 882 (76%) were colonized by bacteria or candida. Among the infected patients, 69% were male and 36% were female with median age of 32 years. Staphylococcus aureus infected 39% (344/882) of CVCs in patients. Of the 59% (208/344) of patients with MRSA, 57% had community acquired MRSA and 43% had hospital acquired MRSA. Linezolid and vancomycin killed 100% of MRSA; resistance levels to fusidic acid, doxycycline, clindamycin, azithromycin, amikacin, trimethoprim-sulfamethoxazole, gentamycin, tobramycin, and ofloxacin were 21%, 42%, 66%, 68%, 72%, 85%, 95%, 97%, and 98% respectively. Strong biofilm was produced by 23% of samples, moderate by 27%, and weak by 50% of MRSA. The presence of adhesion genes, sdrC and sdrD (90%), eno (87%), fnbA (80%), clfA and sdrE (67%), fnbB, sdrD (61%), and cna (51%), in most MRSA samples suggested that the adhesion genes are associated with biofilm synthesis. CONCLUSIONS: The superbug MRSA is a major cause of CVC-related infection. Antibiotic resistance to major classes of antibiotics and biofilm formation potential enhanced superbug MRSA virulence, leading to complicated infection. MRSA causes infection in hospitals, communities, and livestock.

Humans , Male , Female , Child , Adolescent , Adult , Young Adult , Staphylococcal Infections/microbiology , Cross Infection/microbiology , Community-Acquired Infections/microbiology , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/physiology , Catheter-Related Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/genetics , Microbial Sensitivity Tests , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Genes, Bacterial/genetics , Middle Aged
Rev. Soc. Bras. Med. Trop ; 51(5): 644-650, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-957457


Abstract INTRODUCTION: The increase in the incidence of fungal infections, especially those caused by Candida albicans and other Candida species, necessitates the understanding and treatment of Candida-associated infections. In this study, we aimed to investigate the identification, distribution, and biofilm formation ability of different clinical Candida isolates and evaluate the distribution and antifungal susceptibilities of high biofilm-forming (HBF) Candida isolates. METHODS: For identification, carbohydrate fermentation, carbohydrate assimilation, and ChromAgar tests were used. Biofilm formation was assessed using crystal violet binding assay, while the susceptibility to antifungal agents was determined using ATBTM Fungus 3 test kits. RESULTS: The majority of Candida species were C. parapsilosis (31.3%; 31/99) and C. tropicalis (30.3%; 30/99). C. tropicalis was found to be the most frequently isolated species among all HBF Candida species. HBF Candida isolates were more frequently isolated from vaginal swab (35.7%; 10/28), tracheal aspirate (17.9%; 5/28), and urine (17.9%; 5/28). The majority of tested isolates were resistant to itraconazole and voriconazole, whereas no isolate was deemed resistant to 5-flucytosine. CONCLUSIONS: C. tropicalis displays the highest biofilm formation ability among all the Candida species evaluated, and HBF Candida isolates were more frequently seen in vaginal swab, tracheal aspirate, and urine samples. Our findings revealed that 5-flucytosine is the most efficient antifungal agent against HBF Candida isolates.

Humans , Candida/drug effects , Biofilms/drug effects , Antifungal Agents/pharmacology , Candida/classification , Candida/physiology , Microbial Sensitivity Tests , Biofilms/growth & development
Braz. dent. j ; 29(4): 359-367, July-Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-974167


Abstract The aim of this study was to evaluate the antifungal activity of Terpinen-4-ol associated with nystatin, on single and mixed species biofilms formed by Candida albicans and Candida tropicalis, as well as the effect of terpinen-4-ol on adhesion in oral cells and the enzymatic activity. The minimum inhibitory concentrations and minimum fungicide concentrations of terpinen-4-ol and nystatin on Candida albicans and Candida tropicalis were determined using the microdilution broth method, along with their synergistic activity ("checkerboard" method). Single and mixed species biofilms were prepared using the static microtiter plate model and quantified by colony forming units (CFU/mL). The effect of Terpinen-4-ol in adhesion of Candida albicans and Candida tropicalis in coculture with oral keratinocytes (NOK Si) was evaluated, as well as the enzymatic activity by measuring the size of the precipitation zone, after the growth agar to phospholipase, protease and hemolysin. Terpinen-4-ol (4.53 mg mL-1) and nystatin (0.008 mg mL-1) were able to inhibit biofilms growth, and a synergistic antifungal effect was showed with the drug association, reducing the inhibitory concentration of nystatin up to 8 times in single biofilm of Candida albicans, and 2 times in mixed species biofilm. A small decrease in the adhesion of Candida tropicalis in NOK Si cells was showed after treatment with terpinen-4-ol, and nystatin had a greater effect for both species. For enzymatic activity, the drugs showed no action. The effect potentiated by the combination of terpinen-4-ol and nystatin and the reduction of adhesion provide evidence of its potential as an anti-fungal agent.

Resumo O objetivo desse estudo foi avaliar a atividade antifúngica do Terpinen4-ol associado à nistatina em biofilmes simples e misto, formados por Candida albicans e Candida tropicalis, bem como o efeito do terpinen-4-ol na adesão em células orais e atividade enzimática. As concentrações inibitórias mínimas e as concentrações fungicidas mínimas do terpinen-4-ol e da nistatina em Candida albicans e Candida tropicalis foram determinadas pelo método de microdiluição em caldo, juntamente com a atividade sinérgica (método do tabuleiro de "xadrez"). Biofilmes simples e misto foram preparados usando o modelo de placa de microtitulação estática e quantificados por unidades formadoras de colônias (CFU/mL). O efeito do Terpinen-4-ol na adesão de Candida albicans e Candida tropicalis em co-cultura com queratinócitos orais (NOK Si) foi avaliado, bem como a atividade enzimática, medindo o tamanho da zona de precipitação, após o crescimento em ágar fosfolipase, protease e hemolisina. O terpinen-4-ol (4.53 mg mL-1) e a nistatina (0,008 mg mL-1) conseguiram inibir o crescimento de biofilmes e um efeito antifúngico sinérgico foi demonstrado com a associação de fármaco, reduzindo a concentração inibidora de nistatina até 8 vezes em biofilme simpes de Candida albicans e 2 vezes em biofilme misto. Uma pequena diminuição na adesão de Candida tropicalis em células NOK Si foi mostrada após o tratamento com terpinen-4-ol e a nistatina teve um efeito maior para ambas as espécies. Para a atividade enzimática, as drogas não apresentaram ação. O efeito potencializado pela combinação de terpinen-4-ol e nistatina e a redução de adesão evidenciam seu potencial como agente anti-fúngico.

Terpenes/pharmacology , Candida albicans/drug effects , Nystatin/pharmacology , Biofilms/drug effects , Candida tropicalis/drug effects , Antifungal Agents/pharmacology , Cell Line, Transformed , Microbial Sensitivity Tests , Drug Synergism
Braz. j. microbiol ; 49(2): 310-319, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889225


Abstract The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS) and polypropylene B (PP), and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37 °C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p > 0.05). However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61 ± 0.13 Log10 CFU/cm2, compared with monospecies biofilms onto the same surface, 5.91 ± 0.44 Log10 CFU/cm2 (p < 0.05). The mono and dual-species biofilms were subjected to disinfection treatments; and the most effective disinfectant was peracetic acid (3500 ppm), reducing by more than 5 Log10 CFU/cm2, while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p < 0.05). Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms.

Biofilms/drug effects , Cetrimonium Compounds/pharmacology , Disinfectants/pharmacology , Peracetic Acid/pharmacology , Salmonella/drug effects , Sodium Hypochlorite/pharmacology , Staphylococcus aureus/drug effects , Bacterial Adhesion/drug effects , Biofilms/growth & development , Colony Count, Microbial , Culture Media/chemistry , Environmental Microbiology , Microbial Interactions , Microbial Viability/drug effects , Polypropylenes , Salmonella/growth & development , Stainless Steel , Staphylococcus aureus/growth & development , Temperature , Time