ABSTRACT
Introducción: Las fracturas complejas de fémur distal AO/AOT tipo 33C3.3 constituyen un reto para los ortopedistas debido a la dificultad de su tratamiento y las complicaciones asociadas. El planeamiento y procedimiento quirúrgicos emplean placas condilares, pero estas se asocian a la pérdida de la fijación y al colapso de la reducción. Objetivo: Describir la planificación preoperatoria de una fractura de fémur distal AO/AOT 33C3.3 con bioimpresión 3D y reconstrucción por computadora. Presentación del caso: Paciente masculino de 34 años con fractura izquierda conminuta del fémur distal, AO/AOT tipo 33C3.3, por un accidente de tránsito. El planeamiento y el tratamiento quirúrgicos se realizaron exitosamente con la impresión y reconstrucción de biomodelos 3D. Basados en las imágenes tomográficas del paciente, se identificaron los principales fragmentos, la secuencia de reducción, la cantidad y la posición de los implantes a utilizar. Conclusiones: La planificación preoperatoria resulta una etapa de vital importancia en el manejo de fracturas complejas. Las técnicas convencionales pueden optimizarse con la cirugía asistida por computadora y reconstrucción con biomodelos 3D impresos. Esta novedosa propuesta permitirá el adecuado uso de materiales, una óptima secuencia de reducción, mejor estabilidad de la fractura y menor riesgo de complicaciones quirúrgicas(AU)
Introduction: Complex distal femur fractures AO/AOT type 33C3.3 constitute a challenge for orthopedists due to the difficulty of their treatment and associated complications. The surgical planning and procedure use condylar plates; but these are associated with loss of fixation and collapse of the reduction. Objective: To describe preoperative planning for an AO/AOT 33C3.3 distal femur fracture with 3D bioprinting and computer reconstruction. Case report: The case of a 34-year-old male patient is reported. He has comminuted left fracture of the distal femur, AO/AOT type 33C3.3, due to a traffic accident. Surgical planning and treatment were successfully performed with 3D biomodel printing and reconstruction. Based on the patient's tomographic images, the main fragments, the reduction sequence, the number and position of the implants to be used were identified. Conclusions: Preoperative planning is a critically important stage in managing complex fractures. Conventional techniques can be optimized with computer-assisted surgery and reconstruction with 3D printed biomodels. This novel proposal will allow the appropriate use of materials, optimal reduction sequence, better stability of the fracture and lower risk of surgical complications(AU)
Subject(s)
Humans , Male , Adult , Accidents, Traffic , Surgery, Computer-Assisted/instrumentation , Femoral Fractures/surgery , Bioprinting/methods , PlanningABSTRACT
Objective: To explore the effects of three-dimensional (3D) bioprinting gelatin methacrylamide (GelMA) hydrogel loaded with nano silver on full-thickness skin defect wounds in rats. Methods: The experimental research method was adopted. The morphology, particle diameter, and distribution of silver nanoparticles in nano silver solution with different mass concentrations and the pore structure of silver-containing GelMA hydrogel with different final mass fractions of GelMA were observed by scanning electron microscope and the pore size was calculated. On treatment day 1, 3, 7, and 14, the concentration of nano silver released from the hydrogel containing GelMA with final mass fraction of 15% and nano silver with final mass concentration of 10 mg/L was detected by mass spectrometer. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing final mass concentration of 0 (no nano silver), 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were detected. Fibroblasts (Fbs) and adipose stem cells (ASCs) were isolated respectively by enzymatic digestion using the discarded prepuce after circumcision from a 5-year-old healthy boy who was treated in the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine in July 2020, and the discarded fat tissue after liposuction from a 23-year-old healthy woman who was treated in the Department of Plastic Surgery of the Hospital in July 2020. The Fbs were divided into blank control group (culture medium only), 2 mg/L nano sliver group, 5 mg/L nano sliver group, 10 mg/L nano sliver group, 25 mg/L nano sliver group, and 50 mg/L nano sliver group, which were added with the corresponding final mass concentrations of nano sliver solution, respectively. At 48 h of culture, the Fb proliferation viability was detected by cell counting kit 8 method. The Fbs were divided into 0 mg/L silver-containing GelMA hydrogel group, 10 mg/L silver-containing GelMA hydrogel group, 50 mg/L silver-containing GelMA hydrogel group, and 100 mg/L silver-containing GelMA hydrogel group and then were correspondingly treated. On culture day 1, 3, and 7, the Fb proliferation viability was detected as before. The ASCs were mixed into GelMA hydrogel and divided into 3D bioprinting group and non-printing group. On culture day 1, 3, and 7, the ASC proliferation viability was detected as before and cell growth was observed by live/dead cell fluorescence staining. The sample numbers in the above experiments were all 3. Four full-thickness skin defect wounds were produced on the back of 18 male Sprague-Dawley rats aged 4 to 6 weeks. The wounds were divided into hydrogel alone group, hydrogel/nano sliver group, hydrogel scaffold/nano sliver group, and hydrogel scaffold/nano sliver/ASC group, and transplanted with the corresponding scaffolds, respectively. On post injury day (PID) 4, 7, 14, and 21, the wound healing was observed and the wound healing rate was calculated (n=6). On PID 7 and 14, histopathological changes of wounds were observed by hematoxylin eosin staining (n=6). On PID 21, collagen deposition of wounds was observed by Masson staining (n=3). Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, Bonferroni correction, and independent sample t test. Results: The sliver nano particles in nano silver solution with different mass concentrations were all round, in scattered distribution and uniform in size. The silver-containing GelMA hydrogels with different final mass fractions of GelMA all showed pore structures of different sizes and interconnections. The pore size of silver-containing GelMA hydrogel with 10% final mass fraction was significantly larger than that of silver-containing GelMA hydrogels with 15% and 20% final mass fractions (with P values both below 0.05). On treatment day 1, 3, and 7, the concentration of nano silver released from silver-containing GelMA hydrogel in vitro showed a relatively flat trend. On treatment day 14, the concentration of released nano silver in vitro increased rapidly. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing 0, 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were 0, 0, 0.7, and 2.1 mm and 0, 1.4, 3.2, and 3.3 mm, respectively. At 48 h of culture, the proliferation activity of Fbs in 2 mg/L nano silver group and 5 mg/L nano silver group was both significantly higher than that in blank control group (P<0.05), and the proliferation activity of Fbs in 10 mg/L nano silver group, 25 mg/L nano silver group, and 50 mg/L nano silver group was all significantly lower than that in blank control group (P<0.05). Compared with the that of Fbs in 0 mg/L silver-containing GelMA hydrogel group, the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group and 100 mg/L silver-containing GelMA hydrogel group was all significantly decreased on culture day 1 (P<0.05); the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group was significantly increased (P<0.05), while the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 3 (P<0.05); the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 7 (P<0.05). The proliferation activity of ASCs in 3D bioprinting group show no statistically significant differences to that in non-printing group on culture day 1 (P>0.05). The proliferation activity of ASCs in 3D bioprinting group was significantly higher than that in non-printing group on culture day 3 and 7 (with t values of 21.50 and 12.95, respectively, P<0.05). On culture day 1, the number of dead ASCs in 3D bioprinting group was slightly more than that in non-printing group. On culture day 3 and 5, the majority of ASCs in 3D bioprinting group and non-printing group were living cells. On PID 4, the wounds of rats in hydrogel alone group and hydrogel/nano sliver group had more exudation, and the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry without obvious signs of infection. On PID 7, there was still a small amount of exudation on the wounds of rats in hydrogel alone group and hydrogel/nano sliver group, while the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry and scabbed. On PID 14, the hydrogels on the wound surface of rats in the four groups all fell off. On PID 21, a small area of wounds remained unhealed in hydrogel alone group. On PID 4 and 7, the wound healing rates of rats in hydrogel scaffold/nano sliver/ASC group were significantly higher than those of the other three groups (P<0.05). On PID 14, the wound healing rate of rats in hydrogel scaffold/nano sliver/ASC group was significantly higher than the wound healing rates in hydrogel alone group and hydrogel/nano sliver group (all P<0.05). On PID 21, the wound healing rate of rats in hydrogel alone group was significantly lower than that in hydrogel scaffold/nano sliver/ASC group (P<0.05). On PID 7, the hydrogels on the wound surface of rats in the four groups remained in place; on PID 14, the hydrogel in hydrogel alone group was separated from the wounds of rats, while some hydrogels still existed in the new tissue of the wounds of rats in the other three groups. On PID 21, the collagen arrangement in the wounds of rats in hydrogel alone group was out of order, while the collagen arrangement in the wounds of rats in hydrogel/nano sliver group, and hydrogel scaffold/nano sliver/ASC group was relatively orderly. Conclusions: Silver-containing GelMA hydrogel has good biocompatibility and antibacterial properties. Its three-dimensional bioprinted double-layer structure can better integrate with new formed tissue in the full-thickness skin defect wounds in rats and promote wound healing.
Subject(s)
Male , Rats , Animals , Humans , Hydrogels/pharmacology , Bioprinting , Metal Nanoparticles , Rats, Sprague-Dawley , Silver/pharmacology , Soft Tissue Injuries , Anti-Bacterial AgentsABSTRACT
3D bioprinting technology is a rapidly developing technique that employs bioinks containing biological materials and living cells to construct biomedical products. However, 3D-printed tissues are static, while human tissues are in real-time dynamic states that can change in morphology and performance. To improve the compatibility between in vitro and in vivo environments, an in vitro tissue engineering technique that simulates this dynamic process is required. The concept of 4D printing, which combines "3D printing + time" provides a new approach to achieving this complex technique. 4D printing involves applying one or more smart materials that respond to stimuli, enabling them to change their shape, performance, and function under the corresponding stimulus to meet various needs. This article focuses on the latest research progress and potential application areas of 4D printing technology in the cardiovascular system, providing a theoretical and practical reference for the development of this technology.
Subject(s)
Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Cardiovascular System , Tissue ScaffoldsABSTRACT
With the characteristics of fast prototyping and personalized manufacturing, 3D-printing (three-dimensional printing) is an emerging technology with promising applications for orthopedic medical devices. It can complete the process of medical devices with complex shape which can not be completed by conventional fabrication process. At present, a variety of orthopedic medical devices manufactured by 3D printing technology, has been approved for marketing, and their use has been proved to be beneficial. 3D bioprinting in this area has also made a few breakthroughs. However, many challenges still remain to be addressed as well. In this study, the research status, as well as the development of the 3D-printing technology in the field of orthopedic medical devices is elaborated.
Subject(s)
Printing, Three-Dimensional , Bioprinting , Commerce , ResearchABSTRACT
For the damage and loss of tissues and organs caused by urinary system diseases, the current clinical treatment methods have limitations. Tissue engineering provides a therapeutic method that can replace or regenerate damaged tissues and organs through the research of cells, biological scaffolds and biologically related molecules. As an emerging manufacturing technology, three-dimensional (3D) bioprinting technology can accurately control the biological materials carrying cells, which further promotes the development of tissue engineering. This article reviews the research progress and application of 3D bioprinting technology in tissue engineering of kidney, ureter, bladder, and urethra. Finally, the main current challenges and future prospects are discussed.
Subject(s)
Bioprinting , Regeneration , Technology , Tissue Engineering/methodsABSTRACT
RESUMO A manufatura aditiva, mais popularmente conhecida como impressão tridimensional, baseia-se no desenvolvimento de um objeto com a ajuda de um software de desenho assistido por computador seguido de sua impressão por meio da deposição de uma matéria-prima, camada por camada, para a construção do produto desejado. Existem vários tipos de técnicas de impressão tridimensional, e o tipo de processo de impressão escolhido depende da aplicação específica do objeto a ser desenvolvido, dos materiais a serem utilizados e da resolução necessária à impressão do produto final. A impressão tridimensional abriu perspectivas na pesquisa e revolucionou o campo das ciências da saúde, com a possibilidade de criação e de desenvolvimento de produtos personalizados de maneira rápida, econômica e de forma mais centralizada do que no processo de manufatura tradicional. As tecnologias de manufatura aditiva remodelaram os diagnósticos médicos; as medidas preventivas e pré-operatórias; o tratamento e a reabilitação, assim como os processos de engenharia de tecidos nos últimos anos. Na oftalmologia, as aplicações da impressão tridimensional são extensas. Modelos anatômicos para aplicação na área da educação e planejamentos cirúrgicos, desenvolvimento de implantes, lentes, equipamentos para diagnósticos, novas aplicações terapêuticas e desenvolvimento de tecidos oculares já estão em desenvolvimento. Por possuir um campo amplo e ser alvo de pesquisa constante, a área oftalmológica permite que a manufatura aditiva ainda seja amplamente utilizada a favor dos médicos e dos pacientes.
ABSTRACT Additive manufacturing, more popularly known as three-dimensional (3D) printing, is based on the development of an object with the help of computer-aided design software followed by its printing through the deposition of a material, layer by layer, to create the desired product. There are several types of 3D printing techniques and the type of printing process chosen depends on the specific application of the object to be developed, the materials to be used, and the resolution required to print the final product. 3D printing has brought new perspectives to research and revolutionized the field of health sciences, with the possibility of creating and developing customized products in a faster, more economical, and more centralized way than in the traditional manufacturing process. Additive manufacturing technologies have reformulated medical diagnostics, preventive, preoperative, treatment, and rehabilitation, as well as tissue engineering processes in recent years. In ophthalmology, the applications of 3D printing are extensive. Anatomical models for application in education and surgical planning, development of implants, lenses, diagnostic equipment, new therapeutic applications, and development of ocular tissues (3D bioprinting) are already under development. As it has a wide field and is the subject of constant research, the ophthalmic area allows additive manufacturing to still be widely used in favor of doctors and patients.
Subject(s)
Humans , Ophthalmology , Imaging, Three-Dimensional , Printing, Three-Dimensional , Polymers , Prostheses and Implants , Biosensing Techniques , Computer-Aided Design , Recycling , Bioprinting , Stereolithography , Models, AnatomicABSTRACT
Introduction Three-dimensional (3D) printing technologies provide a practical and anatomical way to reproduce precise tailored-made models of the patients and of the diseases. Those models can allow surgical planning, besides training and surgical simulation in the treatment of neurosurgical diseases. Objective The aim of the present article is to review the scenario of the development of different types of available 3D printing technologies, the processes involved in the creation of biomodels, and the application of those advances in the neurosurgical field. Methods We searched for papers that addressed the clinical application of 3D printing in neurosurgery on the PubMed, Ebsco, Web of Science, Scopus, and Science Direct databases. All papers related to the use of any additivemanufacturing technique were included in the present study. Results Studies involving 3D printing in neurosurgery are concentrated on threemain areas: (1) creation of anatomical tailored-made models for planning and training; (2) development of devices and materials for the treatment of neurosurgical diseases, and (3) biological implants for tissues engineering. Biomodels are extremely useful in several branches of neurosurgery, and their use in spinal, cerebrovascular, endovascular, neuro-oncological, neuropediatric, and functional surgeries can be highlighted. Conclusions Three-dimensional printing technologies are an exclusive way for direct replication of specific pathologies of the patient. It can identify the anatomical variation and provide a way for rapid construction of training models, allowing the medical resident and the experienced neurosurgeon to practice the surgical steps before the operation.
Subject(s)
Computer-Aided Design , Neurosurgical Procedures/instrumentation , Printing, Three-Dimensional/instrumentation , Models, Anatomic , Imaging, Three-Dimensional/instrumentation , Tissue Engineering/instrumentation , Bioprinting/instrumentationABSTRACT
A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.
Subject(s)
Biocompatible Materials , Biodegradation, Environmental , Bioprinting , Environmental Pollutants , Technology , Tissue EngineeringABSTRACT
Decellularized extracellular matrix (dECM), which contains many proteins and growth factors, can provide three-dimensional scaffolds for cells and regulate cell regeneration. 3D bioprinting can print the combination of dECM and autologous cells layer by layer to construct the tissue structure of carrier cells. In this paper, the preparation methods of tissue and organ dECM bioink from different sources, including decellularization, crosslinking, and the application of dECM bioink in bioprinting are reviewed, with future applications prospected.
Subject(s)
Bioprinting , Extracellular Matrix , Printing, Three-Dimensional , Tissue Engineering , Tissue ScaffoldsABSTRACT
Three-dimensional (3D) bioprinting of cells is an emerging area of research but has not been explored yet in the context of periodontal tissue engineering. Objetive: This study reports on the optimization of the 3D bioprinting scaffolds and tissues used that could be applied clinically to seniors for the regenerative purpose to meet individual patient treatment needs. Material and Methods: We methodically explored the printability of various tissues (dentin pulp stem/progenitor cells, periodontal ligament stem/progenitor cells, alveolar bone stem/progenitor cells, advanced platelet-rich fibrin and injected platelet-rich fibrin) and scaffolds using 3D printers pertaining only to periodontal defects. The influence of different printing parameters with the help of scaffold to promote periodontal regeneration and to replace the lost structure has been evaluated. Results: This systematic evaluation enabled the selection of the most suited printing conditions for achieving high printing resolution, dimensional stability, and cell viability for 3D bioprinting of periodontal ligament cells. Conclusion: The optimized bioprinting system is the first step towards the reproducible manufacturing of cell laden, space maintaining scaffolds for the treatment of periodontal lesions.
La bioimpresión tridimensional (3D) de células es un área emergente de investigación, pero aún no se ha explorado en el contexto de la ingeniería de tejidos periodontales. Objetivo: Este estudio informa sobre la optimización de los tejidos y andamios de bioimpresión 3D utilizados que podrían aplicarse a personas mayores en el entorno clínico con fines regenerativos para satisfacer las necesidades de tratamiento de cada paciente. Material y Métodos: Exploramos metódicamente la capacidad de impresión de varios tejidos (células madre / progenitoras de la pulpa de dentina, células madre / progenitoras del ligamento periodontal, células madre / progenitoras de hueso alveolar, fibrina rica en plaquetas avanzada y fibrina rica en plaquetas inyectada) y andamios utilizando impresoras 3D que pertenecen solo a defectos periodontales. Se ha evaluado la influencia de diferentes parámetros de impresión con la ayuda de andamios para promover la regeneración periodontal y reemplazar la estructura perdida. Resultados: Esta evaluación sistemática permitió la selección de las condiciones de impresión más adecuadas para lograr una alta resolución de impresión, estabilidad dimensional y viabilidad celular para la bioimpresión 3D de células del ligamento periodontal. Conclusión: El sistema de bioimpresión optimizado es el primer paso hacia la fabricación reproducible de andamios de mantenimiento de espacio cargados de células para el tratamiento de lesiones periodontales
Subject(s)
Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Periodontal Diseases/therapy , Regeneration , Stem CellsABSTRACT
Resumen La impresión 3D es una tecnología interesante en constante evolución. También conocida como manufactura aditiva, consiste en la conversión de diseños digitales a modelos físicos mediante la adición de capas sucesivas de material. En años recientes, y tras el vencimiento de múltiples patentes, diversos campos de las ciencias de la salud se han interesado en sus posibles usos, siendo la cirugía plástica una de las especialidades médicas que más ha aprovechado sus ventajas y aplicaciones, en especial la capacidad de crear dispositivos altamente personalizados a costos accesibles. Teniendo en cuenta lo anterior, el objetivo del presente artículo es describir los usos de la impresión 3D en cirugía plástica reconstructiva a partir de una revisión de la literatura. Las principales aplicaciones de la impresión 3D descritas en la literatura incluyen su capacidad para crear modelos anatómicos basados en estudios de imagen de pacientes, que a su vez permiten planificar procedimientos quirúrgicos, fabricar implantes y prótesis personalizadas, crear instrumental quirúrgico para usos específicos y usar biotintas en ingeniería tisular. La impresión 3D es una tecnología prometedora con el potencial de implementar cambios positivos en la práctica de la cirugía plástica reconstructiva en el corto y mediano plazo.
Abstract 3D printing is an interesting technology in constant evolution. Also known as additive manufacturing, it consists of the conversion of digital designs into physical models by successively adding material layer by layer. In recent years, and after the expiration of multiple patents, several fields of health sciences have approached this type of technology, plastic surgery being one of the medical specialties that has taken advantage of its benefits and applications, especially the ability to create highly customized devices at low costs. With this in mind, the objective of this work is to describe the uses of 3D printing in reconstructive plastic surgery based on a literature review. The main applications of 3D printing described in the literature include its ability to create anatomical models based on patient imaging studies, which in turn allow planning surgical procedures, manufacturing custom implants and prostheses, creating surgical or instrumental simulators, and using bioinks in tissue engineering. 3D printing is a promising technology with the potential to cause positive changes in the field of reconstructive plastic surgery in the short and medium term.
Subject(s)
Humans , Surgery, Plastic , Tissue Scaffolds , Tissue Engineering , BioprintingABSTRACT
Three dimensional (3D) bioprinting is a new biological tissue engineering technology in recent years. The development of 3D bioprinting is conducive to solving the current problems of clinical tissue and organ repairing. This article provides a review about the clinical and research status of 3D bioprinting and urinary system reconstruction. Furthermore, the feasibility and clinical value of 3D bioprinting in urinary system reconstruction will be also discussed.
Subject(s)
Humans , Bioprinting , Printing, Three-Dimensional , Tissue Engineering , Urinary TractABSTRACT
Una significativa cantidad de adultos jóvenes activos sufre lesiones condrales focales. Estas lesiones, si no se tratan, pueden progresar hacia la artrosis, que es una de las principales enfermedades musculoesqueléticas debilitantes y de gran carga económica que afectan a toda sociedad. Pese a los tratamientos quirúrgicos disponibles para la reparación de defectos condrales focales sintomáticos que mejoran la calidad de vida a mediano plazo, hay un mayor riesgo de progresión hacia la artrosis prematura. Los tratamientos biológicos (células madre, bioingeniería tisular) han avanzado a grandes pasos en los últimos años. La bioingeniería es un área que ha progresado en la regeneración de cartílago articular y que potencialmente podría progresar en el terreno de tratamientos articulares, promoviendo la regeneración y evitando la degeneración. Las células madre y los hidrogeles pueden proveer un tejido símil biológico de comportamiento dinámico-funcional equivalente que induce la regeneración tisular al ser degradado y reemplazado gradualmente. El abordaje consiste en colocar un hidrogel precursor o un biomaterial tridimensional impreso dentro del defecto condral por ocupar para inducir la regeneración. Esta revisión se focaliza en el uso actual y futuro de hidrogeles y bioimpresión tridimensional para la regeneración de cartílago articular en el tratamiento de lesiones condrales focales y proporciona datos preliminares de dos estudios piloto en animales. Nivel de Evidencia: V
A significant number of young active adults are affected by focal chondral lesions. These lesions, if left untreated, will progress to osteoarthritis (OA). OA is one of the main debilitating musculoskeletal diseases and leads to a high economic and social burden. Despite surgical cartilage repair for focal chondral lesions, which improve patient-reported outcomes at short- and mid-term, there is a risk of early OA progression. Biological treatments (i.e., stem-cell therapy, bioengineering) have made great progress in the last years. Tissue engineering is an evolving field for articular cartilage repair which could potentially be used for the treatment of focal chondral lesions, promoting regeneration and preventing joint surface degeneration. Stem cells and hydrogels may provide a functional, dynamic and biologically equivalent tissue that promotes tissue regeneration while being gradually degraded and replaced. The standard approach to tissue engineering consists in delivering cells within a hydrogel or a three-dimensional printed biomaterial scaffold into the chondral lesion to induce regeneration. This review focuses on the current and future use of hydrogels and tissue scaffold bioprinting for the treatment of focal chondral lesions, and provides preliminary data from two pilot animal studies. Level of Evidence: V
Subject(s)
Humans , Regeneration , Cartilage, Articular/injuries , Cartilage, Articular/pathology , Hydrogel, Polyethylene Glycol Dimethacrylate/therapeutic use , Tissue Engineering , Polymerization , BioprintingABSTRACT
The human quest to master the anatomy and physiology of living systems started as early as 1600 BC, with documents from the Greeks, Indians, and Romans presenting the earliest systematic studies and advances. Following the fall of the Roman Empire, the progress slowed until the Renaissance renewed scientific interest in anatomy and physiology, ushering in an era of spectacular advances. Alongside the discoveries of modern science, innovations in media such as printing, photography and color reproduction, improved the accuracy of communicating science. Techniques for noninvasively viewing the human body, such as magnetic resonance imaging, opened up new ways of exploring and understanding anatomy, physiology, and disease pathogenesis. Advances in three-dimensional (3D)-technologies, including computer graphics and animation are directly linked to many advances in medicine and surgery. Anatomy education has come a long way from papyrus leaf inscriptions to computerized 3D modeling, holographic representation, and virtual reality-based software. The future presents unlimited options for studying and understanding anatomy as Google glasses, bioprinting, virtual reality, and allied technologies transform the world into a classroom. This review summarizes the journey of mankind to master anatomy and physiology.
Subject(s)
Humans , Bioprinting , Computer Graphics , Education , Eyeglasses , Glass , Human Body , Magnetic Resonance Imaging , Photography , Physiology , Reproduction , Roman WorldABSTRACT
Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.
Subject(s)
Humans , Bile Ducts , Bile , Bioprinting , Induced Pluripotent Stem Cells , Liver Transplantation , Mortality , Organogenesis , Rare Diseases , Regenerative Medicine , Tissue DonorsABSTRACT
BACKGROUND@#The shortage of donor corneas is a severe global issue, and hence the development of corneal alternatives is imperative and urgent. Although attempts to produce artificial cornea substitutes by tissue engineering have made some positive progress, many problems remain that hamper their clinical application worldwide. For example, the curvature of tissue-engineered cornea substitutes cannot be designed to fit the bulbus oculi of patients.@*OBJECTIVE@#To overcome these limitations, in this paper, we present a novel integrated three-dimensional (3D) bioprinting-based cornea substitute fabrication strategy to realize design, customized fabrication, and evaluation of multi-layer hollow structures with complicated surfaces.@*METHODS@#The key rationale for this method is to combine digital light processing (DLP) and extrusion bioprinting into an integrated 3D cornea bioprinting system. A designable and personalized corneal substitute was designed based on mathematical modelling and a computer tomography scan of a natural cornea. The printed corneal substitute was evaluated based on biomechanical analysis, weight, structural integrity, and fit.@*RESULTS@#The results revealed that the fabrication of high water content and highly transparent curved films with geometric features designed according to the natural human cornea can be achieved using a rapid, simple, and low-cost manufacturing process with a high repetition rate and quality.@*CONCLUSIONS@#This study demonstrated the feasibility of customized design, analysis, and fabrication of a corneal substitute. The programmability of this method opens up the possibility of producing substitutes for other cornea-like shell structures with different scale and geometry features, such as the glomerulus, atrium, and oophoron.
Subject(s)
Humans , Artificial Organs , Bioprinting , Cornea/cytology , Models, Theoretical , Printing, Three-Dimensional , Tensile Strength , Tissue Engineering/methods , Tissue ScaffoldsABSTRACT
Bioprinting advances have revolutionised drug discovery and are set to disrupt biomedical research and medical application through the development of reproducible, fine-tuned functional 3D tissues and, eventually, whole organs. This intersectional bottom-up approach of additive manufacturing requires collaboration between tissue engineers, materials chemists, software and electrical engineers and medical practitioners for the software, hardware and wetware required by this disruptive technology. This review provides a current overview of the state of the art of bioprinting and the biomaterials/bioinks required, as well as the challenges and prospects for medical application in South Africa
Subject(s)
Adaptation, Physiological , Bioprinting , Clinical Trial , Health Services Accessibility , Medical Informatics Applications , South AfricaABSTRACT
Os princípios para uma rinoplastia bem-sucedida incluem consulta e planejamento pré-operatório e uma análise clínica abrangente que defina as metas da cirurgia. Mais recentemente, a digitalização e a impressão doméstica em 3 dimensões tornaram-se disponíveis. O objetivo deste estudo é descrever um método de digitalização em 3 dimensões e de impressão doméstica da anatomia real do paciente para ser usada como ajuda intraoperatória. Nós apresentamos uma forma de uso desta tecnologia no transoperatório, auxiliando o cirurgião a comparar os resultados obtidos após suas manobras, verificar a sua adesão ao plano cirúrgico previamente estabelecido e melhorar a sua tomada de decisão durante a cirurgia. Em conclusão, a aplicação da impressão doméstica em 3 dimensões demonstra um efeito positivo sobre o tratamento de alterações estéticas do nariz.
The principles for a successful rhinoplasty include preoperative consultation and planning, as well as a comprehensive clinical analysis and defining rhinoplasty goals. Three-dimensional domestic scanning and printing have recently become available. We sought to objectively describe this method as an intraoperative aid in patients' anatomy. This method can be used trans-operatively to help surgeons compare the results of his or her technique, check adherence to the surgical plan, and improve his or her surgical decision-making. We found that the application of 3-dimensional printing had a positive effect on the treatment of patients with aesthetic nose disorders.
Subject(s)
Humans , History, 21st Century , Rhinoplasty , Image Processing, Computer-Assisted , Image Interpretation, Computer-Assisted , Plastic Surgery Procedures , Imaging, Three-Dimensional , Bioprinting , Inventions , Rhinoplasty/instrumentation , Rhinoplasty/methods , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Plastic Surgery Procedures/methods , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Bioprinting/instrumentation , Bioprinting/methods , Inventions/standards , Inventions/ethicsABSTRACT
Three-dimensional (3D) printing is an additive manufacturing process by which precursor materials are deposited layer by layer to form complex 3D geometries from computer-aided designs, and bioprinting offers the ability to create 3D architecture living cells. Bioprinting methods have been developed rapidly pattern living cells, biological macromolecules, and biomaterials, and an advantage of the 3D microenviroment over traditional 2-dimensional cell culture is the ability to obtain more accurate and reliable data from model about tumor formation, progression, and response to anticancer therapies. This review focuses on recent advances in the use of biopriniting technologies for cancer research, bioprinting physiologically relevant testing platforms for anticancer drug development, and computational modeling for improvement bioprinting technique.
Subject(s)
Biocompatible Materials , Bioprinting , Cell Culture Techniques , Computer-Aided DesignABSTRACT
The establishment of protocols to differentiate kidney organoids from human pluripotent stem cells provides potential applications of kidney organoids in regenerative medicine. Modeling of renal diseases, drug screening, nephrotoxicity testing of compounds, and regenerative therapy are attractive applications. Although much progress still remains to be made in the development of kidney organoids, recent advances in clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated system 9 (Cas9) genome editing and three-dimensional bioprinting technologies have contributed to the application of kidney organoids in clinical fields. In this section, we review recent advances in the applications of kidney organoids to kidney disease modelling, drug screening, nephrotoxicity testing, and regenerative therapy.