ABSTRACT
Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.
Subject(s)
Humans , Methanol/metabolism , Metabolic Engineering , Metabolic Networks and Pathways , BiotransformationABSTRACT
Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.
Subject(s)
Humans , Gastrointestinal Microbiome/genetics , Chromatography, Liquid/methods , Healthy Volunteers , RNA, Ribosomal, 16S , Feces/microbiology , Tandem Mass Spectrometry , Biotransformation , Diabetes Mellitus, Type 2/drug therapyABSTRACT
A growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of Lactobacillus gasseri LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of L. gasseri LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with L. gasseri LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by L. gasseri LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal β-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by L. gasseri LA39. Thus, our data revealed that L. gasseri LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that L. gasseri LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.
Subject(s)
Mice , Animals , Bile Acids and Salts/metabolism , Lactobacillus gasseri , Proteomics , Liver/metabolism , BiotransformationABSTRACT
Poultry industry is expanding rapidly and producing million tons of feather waste annually. Massive production of keratinaceous byproducts in the form of industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Keratinase released by a variety of microbes (bacteria and fungi) can be used for the effective treatment of keratin waste. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This study involves the isolation, characterization, and potential utility of fungal species for the degradation of chicken-feather waste through submerged and solid-state fermentation. The isolated fungus was identified and characterized as Aspergillus (A.) flavus. In a trial of 30 days, it was appeared that 74 and 8% feather weight was reduced through sub-merged and solid-state fermentation, respectively by A. flavus. The pH of the growth media in submerged fermentation was changed from 4.8 to 8.35. The exploited application of keratinolytic microbes is, therefore, recommended for the treatment of keratinaceous wastes to achieve dual benefits of remediation.
A indústria avícola está se expandindo rapidamente e produzindo milhões de toneladas de resíduos de penas anualmente. A produção massiva de subprodutos queratinosos na forma de resíduos agrícolas e industriais em todo o mundo exige sua utilização justificada. O tratamento químico de resíduos de queratina é proclamado como uma abordagem ecodestrutiva por vários pesquisadores, uma vez que gera poluentes secundários. A queratinase liberada por uma variedade de micróbios (bactérias e fungos) pode ser usada para o tratamento eficaz de resíduos de queratina. A degradação microbiana de resíduos de queratina é uma abordagem emergente e ecológica e oferece benefícios duplos, ou seja, tratamento de poluente recalcitrante (queratina) e obtenção de uma enzima comercialmente importante (queratinase). Este estudo envolve o isolamento, caracterização e utilidade potencial de espécies de fungos para a degradação de resíduos de penas de frango por meio da fermentação submersa e em estado sólido. O fungo isolado foi identificado e caracterizado como Aspergillus (A.) flavus. Em um ensaio de 30 dias, constatou-se que 74% e 8% do peso das penas foram reduzidos por A. flavus, respectivamente, por meio da fermentação submersa e em estado sólido. O pH do meio de crescimento em fermentação submersa foi alterado de 4,8 para 8,35. A aplicação explorada de micróbios queratinolíticos é, portanto, recomendada para o tratamento de resíduos ceratinosos para obter benefícios duplos de remediação.
Subject(s)
Aspergillus flavus/isolation & purification , Biotransformation , Keratins/analysis , Keratins/toxicityABSTRACT
Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.
Resumo Hoje, o foco global da pesquisa é explorar a solução da crise energética e da poluição ambiental. Como em outros países agrícolas, grandes quantidades de cascas de melancia (WMP) são descartadas como resíduos no meio ambiente no Paquistão, mas a gestão adequada desses resíduos é a mais recente solução para salvar o meio ambiente da poluição. O trabalho enfatiza o papel das leveduras etanologênicas para utilizar açúcares significativos presentes no WMP para fermentação de bioetanol de baixo custo. A hidrólise de ácido clorídrico diluído de WMP foi realizada em condições otimizadas empregando RSM (metodologia de superfície de resposta) e seguindo o projeto de composto central (CCD). Este projeto experimental é baseado na otimização da etanologenesis envolvendo alguns parâmetros independentes importantes, como hidrolisado de WMP e razão de meio sintético (X1), temperatura de incubação (X2) e temperatura de incubação (X3) para rendimento máximo de etanol explorando o padrão (Saccharomyces cerevisiae K7) também como leveduras experimentais (Metchnikowia cibodasensis Y34). Os resultados revelaram que os rendimentos máximos de etanol obtidos a partir de S. cerevisiae K7 foi de 0,36 ± 0,02 g / g de açúcares redutores, enquanto M. cibodasensis Y34 rendeu 0,40 ± 0,01 g de etanol / g de açúcares redutores. O isolado de levedura M. cibodasensis Y34 apareceu como um etanologeno promissor e incorpora um potencial prospectivo para a valorização fermentativa de WMP em bioetanol.
Subject(s)
Cucurbitaceae , Ethanol , Saccharomyces cerevisiae , Water , Biotransformation , Prospective Studies , FermentationABSTRACT
Resumo Conceitos como o de alteridade, encontro de saberes, polifasia cognitiva, o princípio de familiaridade e de representações sociais operaram na complexa tarefa de compreender como os encontros entre profissionais e usuários sustentavam e/ou transformavam as práticas de acolhimento. Entretanto, a experiência da minha pesquisa de doutorado me levou a questionar os próprios conceitos utilizados da Teoria das Representações Sociais. Ao final do ensaio, após discutir aspectos teórico-metodológicos, o princípio de familiaridade e a questão da tensão e dos afetos nas representações sociais, espero evidenciar como o movimento provocado pelo encontro com usuários e profissionais de uma Rede de Atenção Psicossocial levou-me a questionar pontos essenciais da teoria: o papel domesticador das representações, a forma ainda estática de evidenciar os fenômenos, a separação entre um sujeito que representa e o objeto representado e a dificuldade em usar suas ferramentas conceituais para acompanhar processos me fazem repensar meu lugar e minha função de pesquisador.
Abstract Concepts such as alterity, encounter of knowledge, cognitive polyphasia, the principle of familiarity and the very concept of social representations operated in the complex task of understanding how the encounters between professionals and users supported and / or transformed user embracement practices. However, the experience of my doctoral research led me to question the very concepts used in the Theory of Social Representations. At the end of the essay, after discussing theoretical and methodological aspects, the principle of familiarity and the issue of tension and affects in social representations, I hope to show how the movement caused by the encounter with users and professionals of a Psychosocial Care Network, led me to question essential points of the theory: the domesticating role of representations, the still static way of showing phenomena, the separation between a subject that represents and the object represented and the difficulty in using their conceptual tools to accompany processes makes me rethink my place and role as a researcher.
Resumen Conceptos como la alteridad, el encuentro de saberes, la polifasia cognitiva, el principio de familiaridad y el concepto mismo de representaciones sociales operaron en la compleja tarea de comprender cómo los encuentros entre profesionales y usuarios apoyaron y / o transformaron las prácticas de acogimiento. Sin embargo, la experiencia de mi investigación doctoral me llevó a cuestionar los propios conceptos utilizados en la Teoría de las Representaciones Sociales. Al final del ensayo, después de discutir aspectos teóricos y metodológicos, el principio de familiaridad y el tema de tensión y afectos en las representaciones sociales, Espero mostrar cómo el movimiento provocado por el encuentro con usuarios y profesionales de una Red de Atención Psicosocial, me llevó a cuestionar puntos esenciales de la teoría: el rol domesticador de las representaciones, la forma todavía estática de mostrar los fenómenos, la separación entre un sujeto que representa y el objeto representado y la dificultad para utilizar sus herramientas conceptuales para acompañar procesos, me hace repensar mi lugar y rol como investigador.
Subject(s)
Humans , Psychology, Social , Qualitative Research , Social Representation , Pain , Patient Care Team , Politics , Prejudice , Problem Solving , Psychiatric Nursing , Psychiatry , Psychology , Psychopharmacology , Psychotherapy, Group , Public Policy , Rehabilitation , Sex Offenses , Social Isolation , Social Support , Social Welfare , Social Work , Socioeconomic Factors , Sociology , Stress Disorders, Post-Traumatic , Substance Withdrawal Syndrome , Pathological Conditions, Signs and Symptoms , Thinking , Unemployment , Health Surveillance , Ill-Housed Persons , Biotransformation , Inactivation, Metabolic , Health Behavior , Family , Patient Acceptance of Health Care , Illicit Drugs , Hygiene , Mental Health , Treatment Refusal , Patient Satisfaction , Parenting , Crack Cocaine , Commitment of Mentally Ill , Risk Assessment , Life , Substance-Related Disorders , Counseling , Crisis Intervention , Affective Symptoms , Psychosocial Impact , Personal Autonomy , State , Harm Reduction , Aggression , Depressive Disorder , Economics , Empathy , Methodology as a Subject , User Embracement , Ethics , Family Relations , Mental Fatigue , Resilience, Psychological , Drug Users , Drug Overdose , Community Integration , Sociological Factors , Compassion Fatigue , Emotional Adjustment , Pessimism , Psychological Trauma , Psychiatric Rehabilitation , Occupational Stress , Treatment Adherence and Compliance , Health Risk Behaviors , Incivility , Survivorship , Involuntary Treatment, Psychiatric , Worldview , Freedom , Self-Neglect , Solidarity , Psychological Distress , Food Insecurity , Home Environment , Social Vulnerability , Family Support , Coping Skills , Homicide , Hospitals, Psychiatric , Intelligence , Life Change Events , Loneliness , Mental DisordersABSTRACT
Food wastes are rich in nutrients and can be used for producing useful chemicals through biotransformation. Some oleaginous microorganisms can use food wastes to produce lipids and high value-added metabolites such as polyunsaturated fatty acids, squalene, and carotenoids. This not only reduces the production cost, but also improves the economic value of the products, thus has large potential for commercial production. This review summarized the advances in food waste treatment, with a focus on the lipid production by oleaginous microorganisms using food wastes. Moreover, challenges and future directions were prospected with the aim to provide a useful reference for related researchers.
Subject(s)
Biofuels , Biotransformation , Food , Lipids , Refuse DisposalABSTRACT
O número de pessoas utilizando substâncias ilícitas de forma recreativa aumenta a cada ano, chamando a atenção de estudiosos de diversas áreas do conhecimento. Com isso, a demanda de exames toxicológicos exigida para trabalhadores, vítimas de crimes e esportistas também tem crescido. A amostra biológica mais utilizada para análises toxicológicas continua sendo a urina, visto que sua obtenção é menos invasiva, possibilita coletar grande volume de amostra e pode-se detectar substâncias até dias após ter ocorrido a exposição ou consumo. Entretanto, estas amostras necessitam de um grande volume físico para serem armazenadas e transportadas aos laboratórios, devendo ser mantidas em temperatura baixa e controlada para conservação. Outro ponto a se considerar é a quantidade de amostra insuficientemente coletada, ou extravasamento do conteúdo, contaminando outras amostras e muitas vezes, inviabilizando a análise. Uma alternativa recente para tais problemas é utilizar a técnica chamada de dried urine spots (DUS), onde poucos microlitros de urina são colocados em um papel absorvente e secos sob temperatura ambiente, preservando de agentes degradantes os componentes presentes na urina. Assim, o objetivo deste trabalho é avaliar a estabilidade das substâncias do presente estudo em alta temperatura, temperatura ambiente e em temperaturas de 4°C e -20°C. Para este fim, foi necessário desenvolver, validar e aplicar métodos de extração e determinação de anfetaminas e produtos de biotransformação de cocaína e tetraidrocanabinol carboxílico (THCCOOH) em amostras dried urine spot, utilizando cromatografia líquida acoplada à espectrometria de massas. Os picos foram identificados por UPLC-ESI-MS/MS, com tempo total de 5 mins utilizando fase A- água, formiato de amônio e 0,1% ácido fórmico, e B- metanol: acetonitrila (6:4) + 0,1% de ácido fórmico. A extração foi feita utilizando acetonitrila: metanol: acetona (1:1:1) +ácido fórmico 0,1%. Não foi possível iniciar a validação de THCCOOH, visto uma possível complexação do analito com o papel. Para as outras substâncias, o método cromatográfico desenvolvido se mostrou eficiente e seletivo, com LOD e LOQ de 10 ng/mL para todos os analitos, sendo linear até 1000 ng/mL, atendeu as especificações de precisão e exatidão e carryover. As amostras permaneceram estáveis ao longo de 32 dias nas temperaturas estudadas, demonstrando a segurança em se utilizar a técnica de DUS para armazenamento e transporte de amostras biológicas dentro da faixa de temperatura do estudo até 32 dias
The number of people using illegal substances in a recreational way increases each year, drawing the attention of scholars from different areas of knowledge. As a result, the demand for workplaces drug tests, toxicological tests for victims of crimes and dopping has also grown. The biological sample most used for toxicological tests remains urine, since obtaining it is less invasive, it is possible to collect a large volume of sample and it is possible to detect substances up to days after exposure or consumption has occurred. However, these samples require a large physical volume to be stored and transported to the laboratories, and must be kept at a low temperature for conservation. Another point to consider is the amount of sample insufficiently collected, or leakage of the content, causing contamination of other samples and often making the analysis unfeasible. A recent alternative to such problems is to use "dried urine spots" (DUS), where few microliters of urine are placed on absorbent paper and dried at room temperature, preserving the components present in the urine from degrading agents. Thus, the objective of this work is to evaluate the stability of the substances in this study at high temperature, room temperature and at temperatures of 4°C and -20°C. For this purpose, it was necessary to develop, validate and apply methods of extraction and determination of amphetamines and biotransformation products of cocaine and carboxylic tetrahydrocannabinol (THCCOOH) in dried urine spot samples, using liquid chromatography coupled to mass spectrometry (LC-MS). The peaks were identified liquid chromatography coupled to a mass spectrometer (UPLC-ESI-MS/MS), with a total time of 5 mins using phase A- water, ammonium formate and 0.1% formic acid, and B- methanol: acetonitrile (6:4) + 0.1% formic acid. Extraction was done using acetonitrile: methanol: acetone (1:1:1) + 0.1% formic acid. It was not possible to perform the validation of THCCOOH, given a possible complexation of the analyte with the paper. To the others substances, the chromatographic method developed proved to be efficient and selective, with LOD and LOQ of 10 ng/mL for all analytes, being linear up to 1000 ng/mL, meeting the specifications of precision and accuracy and carryover. The samples remained stable for 32 days at the temperatures studied, demonstrating the safety of using the DUS technique for storage and transport of biological samples until 32 days on temperature range studied
Subject(s)
Dronabinol/adverse effects , Biotransformation , Cocaine/agonists , Amphetamines/analysis , Mass Spectrometry/methods , Urine/physiology , Chromatography, Liquid/methodsABSTRACT
O número de pessoas utilizando substâncias ilícitas de forma recreativa aumenta a cada ano, chamando a atenção de estudiosos de diversas áreas do conhecimento. Com isso, a demanda de exames toxicológicos exigida para trabalhadores, vítimas de crimes e esportistas também tem crescido. A amostra biológica mais utilizada para análises toxicológicas continua sendo a urina, visto que sua obtenção é menos invasiva, possibilita coletar grande volume de amostra e pode-se detectar substâncias até dias após ter ocorrido a exposição ou consumo. Entretanto, estas amostras necessitam de um grande volume físico para serem armazenadas e transportadas aos laboratórios, devendo ser mantidas em temperatura baixa e controlada para conservação. Outro ponto a se considerar é a quantidade de amostra insuficientemente coletada, ou extravasamento do conteúdo, contaminando outras amostras e muitas vezes, inviabilizando a análise. Uma alternativa recente para tais problemas é utilizar a técnica chamada de dried urine spots (DUS), onde poucos microlitros de urina são colocados em um papel absorvente e secos sob temperatura ambiente, preservando de agentes degradantes os componentes presentes na urina. Assim, o objetivo deste trabalho é avaliar a estabilidade das substâncias do presente estudo em alta temperatura, temperatura ambiente e em temperaturas de 4°C e -20°C. Para este fim, foi necessário desenvolver, validar e aplicar métodos de extração e determinação de anfetaminas e produtos de biotransformação de cocaína e tetraidrocanabinol carboxílico (THCCOOH) em amostras dried urine spot, utilizando cromatografia líquida acoplada à espectrometria de massas. Os picos foram identificados por UPLC-ESI-MS/MS, com tempo total de 5 mins utilizando fase A- água, formiato de amônio e 0,1% ácido fórmico, e B- metanol: acetonitrila (6:4) + 0,1% de ácido fórmico. A extração foi feita utilizando acetonitrila: metanol: acetona (1:1:1) +ácido fórmico 0,1%. Não foi possível iniciar a validação de THCCOOH, visto uma possível complexação do analito com o papel. Para as outras substâncias, o método cromatográfico desenvolvido se mostrou eficiente e seletivo, com LOD e LOQ de 10 ng/mL para todos os analitos, sendo linear até 1000 ng/mL, atendeu as especificações de precisão e exatidão e carryover. As amostras permaneceram estáveis ao longo de 32 dias nas temperaturas estudadas, demonstrando a segurança em se utilizar a técnica de DUS para armazenamento e transporte de amostras biológicas dentro da faixa de temperatura do estudo até 32 dias
The number of people using illegal substances in a recreational way increases each year, drawing the attention of scholars from different areas of knowledge. As a result, the demand for workplaces drug tests, toxicological tests for victims of crimes and dopping has also grown. The biological sample most used for toxicological tests remains urine, since obtaining it is less invasive, it is possible to collect a large volume of sample and it is possible to detect substances up to days after exposure or consumption has occurred. However, these samples require a large physical volume to be stored and transported to the laboratories, and must be kept at a low temperature for conservation. Another point to consider is the amount of sample insufficiently collected, or leakage of the content, causing contamination of other samples and often making the analysis unfeasible. A recent alternative to such problems is to use "dried urine spots" (DUS), where few microliters of urine are placed on absorbent paper and dried at room temperature, preserving the components present in the urine from degrading agents. Thus, the objective of this work is to evaluate the stability of the substances in this study at high temperature, room temperature and at temperatures of 4°C and -20°C. For this purpose, it was necessary to develop, validate and apply methods of extraction and determination of amphetamines and biotransformation products of cocaine and carboxylic tetrahydrocannabinol (THCCOOH) in dried urine spot samples, using liquid chromatography coupled to mass spectrometry (LC-MS). The peaks were identified liquid chromatography coupled to a mass spectrometer (UPLC-ESI-MS/MS), with a total time of 5 mins using phase A- water, ammonium formate and 0.1% formic acid, and B- methanol: acetonitrile (6:4) + 0.1% formic acid. Extraction was done using acetonitrile: methanol: acetone (1:1:1) + 0.1% formic acid. It was not possible to perform the validation of THCCOOH, given a possible complexation of the analyte with the paper. To the others substances, the chromatographic method developed proved to be efficient and selective, with LOD and LOQ of 10 ng/mL for all analytes, being linear up to 1000 ng/mL, meeting the specifications of precision and accuracy and carryover. The samples remained stable for 32 days at the temperatures studied, demonstrating the safety of using the DUS technique for storage and transport of biological samples until 32 days on temperature range studied
Subject(s)
Dronabinol/adverse effects , Biotransformation , Cocaine/adverse effects , Amphetamines/adverse effects , Mass Spectrometry/methods , Urine , Pharmaceutical Preparations/administration & dosage , Chromatography, Liquid/methods , Occupational Groups/classificationABSTRACT
ABSTRACT As palatability of medical formulas has been documented as unpleasant, new options are required to improve acceptance and adherence in people with inborn errors of metabolism (IEM). Miracle fruit (Synsepalum dulcificum) has a glycoprotein named miraculin that transforms a sour, bitter taste such as the one found in metabolic formula, into a sweet perception. The objective of this work is to analyze the response in the taste perception of metabolic formula with the use of the miraculin tablets in patients with IEM and healthy adults. To test this hypothesis a prospective, longitudinal, quasi-experimental, analytical study was performed. Patients with IEM and healthy adults were recruited. All participants assessed 3 different liquids (lemon, apple cider vinegar and metabolic formula) before and after the administration of miraculin tablets and completed a questionnaire. The sensory responses were evaluated using hedonic scales, analyzed with nonparametric tests for paired data. Seven patients with IEM and 14 healthy subjects were included. After miraculin intake 57% of patients (Z ≤ -1.89 p= 0.059) and healthy adults (Z≤ -2.31 p= 0.021) had a positive change in their taste perception. The absolute frequency of patients who did not like the metabolic formula decreased from 4 to 1, and in patients who liked it or loved, it increased from 0 to 2 and from 0 to 1 respectively; the frequency of patients who perceived the metabolic formula as indifferent or hated it, did not change. Response in taste perception had a positive change of 57% in both groups. The use of miraculin tablets may improve palatability of metabolic formula.
RESUMEN La palatabilidad de las fórmulas médicas se ha reportado como desagradable, se requieren nuevas opciones para mejorar la aceptación en personas con errores innatos del metabolismo (EIM). La fruta milagrosa (Synsepalum dulcificum) contiene una glucoproteína llamada miraculina que transforma el sabor agrio y amargo en dulce. El objetivo fue analizar la respuesta en la percepción del sabor de la fórmula metabólica con el uso de las tabletas de miraculina en pacientes con EIM y adultos sanos. Se realizó un estudio analítico prospectivo, longitudinal, cuasi-experimental. Los participantes evaluaron la percepción de 3 líquidos (limón, vinagre de manzana y fórmula metabólica) antes y después de la administración de tabletas de miraculina y completaron un cuestionario. Las respuestas sensoriales se evaluaron mediante escalas hedónicas, analizadas con pruebas no paramétricas para datos pareados. Se incluyeron 7 pacientes con EIM y 14 adultos sanos. Después de la miraculina el 57% de los pacientes (Z ≤ -1,89 p= 0,059) y adultos sanos (Z≤ -2,31 p= 0,021) tuvieron un cambio positivo en su percepción del sabor. La frecuencia absoluta de pacientes a los que no les gustó la fórmula disminuyó de 4 a 1, y en quienes les gustó o les encantó, aumentó de 0 a 2 y de 0 a 1 respectivamente; la frecuencia de los pacientes que percibieron la fórmula como indiferente u odiada, no cambió. La respuesta en la percepción del sabor cambió positivamente en el 57% en ambos grupos. El uso de miraculina puede mejorar la palatabilidad de la fórmula metabólica.
Subject(s)
Adolescent , Adult , Biotransformation , Synsepalum , Taste Perception , Fruit , Amino Acids , Metabolism, Inborn ErrorsABSTRACT
Protoberberine alkaloids belong to the quaternary ammonium isoquinoline alkaloids, and are the main active ingredients in traditional Chinese herbal medicines, like Coptis chinensis. They have been widely used to treat such diseases as gastroenteritis, intestinal infections, and conjunctivitis. Studies have shown that structural modification of the protoberberine alkaloids could produce derivative compounds with new pharmacological effects and biological activities, but the transformation mechanism is not clear yet. This article mainly summarizes the researches on the biotransformation and structure modification of protoberberine alkaloids mainly based on berberine, so as to provide background basis and new ideas for studies relating to the mechanism of protoberberine alkaloids and the pharmacological activity and application of new compounds.
Subject(s)
Alkaloids , Berberine , Berberine Alkaloids , Biotransformation , CoptisABSTRACT
Abstract Whey, a by-product of dairy industry, is a feedstock widely employed in the production of biodegradable films. However, these films present some limitations when considering the performance of synthetic polymers, especially biological transformation by decomposition. This work aimed to evaluate the effects of chitosan addition to whey-based films to improve films physical-chemical properties and resistance to microbial degradation. The results showed that there was an interaction effect between the chitosan concentration and the storage time for the physical-chemical properties of elongation at break and opacity. There was statistical difference among the formulations; however, for the moisture content and film thickness, there was no interaction effect between the formulation and the storage time. The films with 1.5 and 3.0 wt.% chitosan presented a yellowish hue, characteristic of the polysaccharide; this could also be detected by SEM analysis. The films presented an excellent biodegradability, being decomposed in about 8 days. Considering all chitosan contents tested had similar performances, the chitosan content of 0.15 wt.% was the one with the better cost-benefit relation.
Subject(s)
Biotransformation/drug effects , Chitosan/pharmacology , Whey/drug effects , Edible Films , Anti-Bacterial Agents/pharmacology , Time Factors , Product Storage , Chemical PhenomenaABSTRACT
Abstract To develop a biorefinery concept applied in the brewery industry, Chlorella pyrenoidosa and a consortium of associated bacteria were cultivated mixotrophically in a continuous photobioreactor using brewery low-value subproducts as an integrative process. Beer production residues were biochemically characterized to assess the most promising options to be used as a nutrient source for microalgal cultivation. Due to its physical and chemical properties, pre-treated weak wort was used to prepare an organic complex culture medium for microalgal biotransformation. Filtration and nitrogen supplementation were necessary to improve nutrient removal and biomass productivity. Maximal removal of nitrate and phosphate obtained were 90% and 100% respectively. Depending on operation conditions, total carbohydrates depuration ranged from 50 - 80%. The initial concentration of total carbohydrates of the weak wort must be adjusted to 2 - 4g/L to maintain a stable equilibrium between microalgal and bacterial growth. The biochemical composition of produced biomass varied depending on the cultivation conditions as well as on its final use. Upon continuous mixotrophic conditions evaluated in this study, C. pyrenoidosa was composed mainly of carbohydrates and protein.
Subject(s)
Animals , Beer , Biochemical Phenomena , Biotransformation , Chlorella/growth & development , Microalgae/growth & development , Carbohydrates , Chlorella/chemistry , Biomass , Photobioreactors/microbiologyABSTRACT
BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatographymass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites
Subject(s)
Acrolein/analogs & derivatives , Eugenol/metabolism , Biotransformation , Gibberella/metabolism , Biodegradation, Environmental , Acrolein/metabolism , Biotechnology , Chromatography, High Pressure Liquid , Renewable Resources , Batch Cell Culture TechniquesABSTRACT
Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.
Subject(s)
Animals , Male , Anti-Bacterial Agents , Pharmacology , Biotransformation , Chromatography, High Pressure Liquid , Feces , Microbiology , Gastrointestinal Microbiome , Physiology , Ginsenosides , Blood , Panax notoginseng , Chemistry , Rats, Sprague-Dawley , Sapogenins , Blood , Saponins , Metabolism , Tandem Mass SpectrometryABSTRACT
Abstract Cordyceps militaris 202 is a potential fungus for biotransformation zein, due to its various proteases, high tolerance and viability in nature. In this article, single factor experiment and response surface methodology were applied to optimize the liquid fermentation conditions and improve the ability of biotransformation zein. The optimized fermentation conditions were as follows: inoculum concentration of 19%, volume of liquor of 130 mL/500 mL and pH of 4.7. Under this condition, the degree of hydrolysis (DH) was 27.31%. The zein hydrolysates from fungi fermentation maintained a high thermal stability. Compared to the original zein, the zein hydrolysates were found to have high solubility, which most likely results in improved foaming and emulsifying properties. Overall, this research demonstrates that hydrolysis of zein by C. militaris 202 is a potential method for improving the functional properties of zein, and the zein hydrolysates can be used as functional ingredients with an increased antioxidant effect in both food and non-food applications.
Subject(s)
Zein/metabolism , Zein/chemistry , Cordyceps/metabolism , Batch Cell Culture Techniques/methods , Protein Hydrolysates/metabolism , Protein Hydrolysates/chemistry , Solubility , Biotransformation , Fermentation , HydrolysisABSTRACT
Abstract High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160 g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85 g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51 g/L and 33.84 g/L at 37 °C and 40 °C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42 °C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.
Subject(s)
Ethanol/metabolism , Hot Temperature , Pichia/metabolism , Biotransformation , Candida/classification , Candida/isolation & purification , Candida/metabolism , Pichia/classification , Pichia/isolation & purification , Plant Extracts/metabolism , Saccharum/metabolism , Stress, PhysiologicalABSTRACT
Abstract Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.
Subject(s)
Soil Microbiology , Soil Pollutants/metabolism , Benzo(a)pyrene/metabolism , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Temperature , Cadmium/metabolism , Carbon/metabolism , Carboxylic Acids/metabolism , Biotransformation , Actinobacteria/classification , Culture Media/chemistry , Enzyme Inhibitors/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Anaerobiosis , Gas Chromatography-Mass SpectrometryABSTRACT
Abstract Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi (Pleurotus ostreatus - BWPH, Gleophyllum odoratum - DCa and Polyporus picipes - RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24 h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).
Subject(s)
Basidiomycota/metabolism , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Azo Compounds/metabolism , Trityl Compounds/metabolism , Biotransformation , Cells, Immobilized/metabolism , Adsorption , WastewaterABSTRACT
Human intestinal bacteria play an important role in the metabolism of herbal medicines, leading to the variations in their pharmacological profile. The present study aimed to investigate the metabolism of Xiao-Cheng-Qi decoction (XCQD) by human intestinal bacteria and to discover active component combination (ACC) contributing to the anti-inflammatory activity of XCQD. The water extract of XCQD was anaerobically incubated with human intestinal bacteria suspensions for 48 h at 37 °C. A liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) method was performed for identification of the metabolites. In addition, the anti-inflammatory effects of XCQD and biotransformed XCQD (XCQD-BT) were evaluated in vitro with cytokines in RAW264.7 cells induced by lipopolysaccharide (LPS). A total of 51 compounds were identified in XCQD and XCQD-BT. Among them, 20 metabolites were proven to be transformed by human intestinal bacteria. Significantly, a combination of 14 compounds was identified as ACC from XCQD-BT, which was as effective as XCQD in cell models of inflammation. In conclusion, this study provided an applicable method, based on intestinal bacterial metabolism, for identifying combinatory compounds responsible for a certain pharmacological activity of herbal medicines.