ABSTRACT
OBJECTIVE@#To investigate the changes in the functional connectivity (FC) in the right insula between migraine without aura (MWoA) and healthy controls by using resting-state functional magnetic resonance imaging (rs-fMRI), and to observe the instant alteration of FC in MWoA during electroacupuncture (EA) stimulation at Shuaigu (GB8).@*METHODS@#A total of 30 patients with MWoA (PM group) and 30 healthy controls (HC group) underwent rs-fMRI scans. The PM group underwent a second rs-fMRI scan while receiving EA at GB8. The right insula subregions, including the ventral anterior insula (vAI), dorsal anterior insula (dAI) and posterior insula (PI), were selected as the seed points for FC analysis.@*RESULTS@#Aberrant FC, including dAI with right postcentral gyrus, PI with left precuneus, was found among PM before EA (PMa), PM during EA (PMb) and HC. Meanwhile, decreased FC between dAI and the right postcentral gyrus was found in the PMa compared to the HC and PMb. Increased FC between the PI and left precuneus was found in the PMa compared to the HC and PMb. Correlation analysis showed that the FC value of the right postcentral gyrus in PMa was negatively correlated with the scores of Hamilton Rating Scale for Depression and Hamilton Rating Scale for Anxiety. The FC value of the left precuneus in PMa was positively correlated with the visual analogue scale score.@*CONCLUSION@#The alteration of FC between the right insula subregions and multiple brain regions may be an important index for MWoA. EA at GB8 was able to adjust the FC between the right insula subregions and parietal lobe, namely, the right dAI and right postcentral gyrus, and the right PI and left precuneus, thereby rendering an instant effect in the management of MWoA.
Subject(s)
Brain/diagnostic imaging , Electroacupuncture , Humans , Magnetic Resonance Imaging/methods , Migraine without AuraABSTRACT
Functional hubs with disproportionately extensive connectivities play a crucial role in global information integration in human brain networks. However, most resting-state functional magnetic resonance imaging (R-fMRI) studies have identified functional hubs by examining spontaneous fluctuations of the blood oxygen level-dependent signal within a typical low-frequency band (e.g., 0.01-0.08 Hz or 0.01-0.1 Hz). Little is known about how the spatial distributions of functional hubs depend on frequency bands of interest. Here, we used repeatedly measured R-fMRI data from 53 healthy young adults and a degree centrality analysis to identify voxelwise frequency-resolved functional hubs and further examined their test-retest reliability across two sessions. We showed that a wide-range frequency band (0.01-0.24 Hz) accessible with a typical sampling rate (fsample = 0.5 Hz) could be classified into three frequency bands with distinct patterns, namely, low-frequency (LF, 0.01-0.06 Hz), middle-frequency (MF, 0.06-0.16 Hz), and high-frequency (HF, 0.16-0.24 Hz) bands. The functional hubs were mainly located in the medial and lateral frontal and parietal cortices in the LF band, and in the medial prefrontal cortex, superior temporal gyrus, parahippocampal gyrus, amygdala, and several cerebellar regions in the MF and HF bands. These hub regions exhibited fair to good test-retest reliability, regardless of the frequency band. The presence of the three frequency bands was well replicated using an independent R-fMRI dataset from 45 healthy young adults. Our findings demonstrate reliable frequency-resolved functional connectivity hubs in three categories, thus providing insights into the frequency-specific connectome organization in healthy and disordered brains.
Subject(s)
Brain/diagnostic imaging , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Rest , Young AdultABSTRACT
Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional (3-D) space. However, there is no available three-dimensional behavior capture system that focuses on rodents. Here, we present MouseVenue3D, an automated and low-cost system for the efficient capture of 3-D skeleton trajectories in markerless rodents. We improved the most time-consuming step in 3-D behavior capturing by developing an automatic calibration module. Then, we validated this process in behavior recognition tasks, and showed that 3-D behavioral data achieved higher accuracy than 2-D data. Subsequently, MouseVenue3D was combined with fast high-resolution miniature two-photon microscopy for synchronous neural recording and behavioral tracking in the freely-moving mouse. Finally, we successfully decoded spontaneous neuronal activity from the 3-D behavior of mice. Our findings reveal that subtle, spontaneous behavior modules are strongly correlated with spontaneous neuronal activity patterns.
Subject(s)
Animals , Behavior, Animal , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Mice , Neuroimaging , RodentiaABSTRACT
Resumen La presencia de alteraciones de señal en resonancia magnética (RM) cerebral durante o posterior a un evento epiléptico es cada vez más reconocida en la literatura. Los cambios de señal peri-ictales se considera que sería el resultado de edema cerebral localizado, defecto de la autorregulación cerebral y disrupción de la barrera hemato-encefálica que ocurre durante una crisis epiléptica sostenida. Reportamos el caso de un hombre de 62 años diagnosticado de un síndrome parietal de instalación subaguda cuyo estudio con RM de cerebro mostró una lesión tumefacta con edema cortico-subcortical de ubicación temporo-occipital derecha. El estudio con electroencefalograma mostró actividad ictal en la misma localización. Se inició terapia con fármacos anticonvulsivantes mostrando franca mejoría clínica y electrofisiológica. El control con RM diferido mostró resolución completa de las alteraciones descritas.
The presence seizure-induced signal changes on brain magnetic resonance imaging (MRI) have been increasingly recognized in the literature. The reversible MRI changes in epileptic patients may be the result of a local brain swelling, a defect of cerebral autoregulation and a blood-brain barrier disruption during sustained epileptogenic activity. We report a 62 years old man diagnosed with a subacute right parietal syndrome. MRI shows a tumefactive lesion in right temporo-occipital lobes mimicking a structural lesion. Electroencephalogram (EEG) exhibits continuous ictal activity in the same region. Antiepileptic drugs were started achieving progressive electro-clinical improvement. Subsequent MRI showed remission of signal changes.
Subject(s)
Humans , Male , Middle Aged , Seizures/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Seizures/physiopathology , Diagnosis, Differential , Electroencephalography , EpilepsyABSTRACT
ABSTRACT Background: Multiple sclerosis exhibits specific neuropathological phenomena driving to both global and regional brain atrophy. At the clinical level, the disease is related to functional decline in cognitive domains as the working memory, processing speed, and verbal fluency. However, the compromise of social-cognitive abilities has concentrated some interest in recent years despite the available evidence suggesting the risk of disorganization in social life. Recent studies have used the MiniSEA test to assess the compromise of social cognition and have found relevant relationships with memory and executive functions, as well as with the level of global and regional brain atrophy. Objective: The present article aimed to identify structural changes related to socio-cognitive performance in a sample of patients with relapsing-remitting multiple sclerosis. Methods: 68 relapsing-remitting multiple sclerosis Chilean patients and 50 healthy control subjects underwent MRI scans and neuropsychological evaluation including social-cognition tasks. Total brain, white matter, and gray matter volumes were estimated. Also, voxel-based morphometry was applied to evaluate regional structural changes. Results: Patients exhibited lower scores in all neuropsychological tests. Social cognition exhibited a significant decrease in this group mostly related to the declining social perception. Normalized brain volume and white matter volume were significantly decreased when compared to healthy subjects. The regional brain atrophy analysis showed that changes in the insular cortex and medial frontal cortices are significantly related to the variability of social-cognitive performance among patients. Conclusions: In the present study, social cognition was only correlated with the deterioration of verbal fluency, despite the fact that previous studies have reported its link with memory and executive functions. The identification of specific structural correlates supports the comprehension of this phenomenon as an independent source of cognitive disability in these patients.
RESUMEN Antecedentes: La esclerosis múltiple presenta fenómenos neuropatológicos específicos que conducen a la atrofia cerebral global y regional. A nivel clínico, la enfermedad está relacionada con el deterioro funcional de los dominios cognitivos como la memoria de trabajo, la velocidad de procesamiento y la fluidez verbal. Sin embargo, el compromiso de las habilidades socio-cognitivas ha concentrado cierto interés en los últimos años debido a la evidencia disponible que sugiere el riesgo de desorganización en la vida social. Estudios recientes han utilizado la prueba MiniSEA para evaluar el compromiso de la cognición social y han encontrado relaciones relevantes con la memoria y funciones ejecutiva, así como con el nivel de atrofia cerebral global y regional. Objetivo: El presente artículo tiene como objetivo identificar cambios estructurales relacionados con el rendimiento sociocognitivo en una muestra de pacientes con esclerosis múltiple recurrente-remitente. Métodos: 68 pacientes Chilenos con esclerosis múltiple recurrente-remitente y 50 sujetos de control sanos se sometieron a resonancias magnéticas y evaluación neuropsicológica, incluidas las tareas de cognición social. Se estimaron los volúmenes cerebrales totales, de materia blanca y materia gris. Además, se aplicó la morfometría basada en vóxel para evaluar los cambios estructurales regionales. Resultados: Los pacientes muestran puntuaciones más bajas en todas las pruebas neuropsicológicas. La cognición social exhibe una disminución significativa en este grupo principalmente relacionada con la disminución de la percepción social. El volumen normalizado del cerebro y el volumen de la materia blanca disminuyeron significativamente en comparación con los sujetos sanos. El análisis regional de atrofia cerebral mostró que los cambios en la corteza insular y la corteza frontal medial están significativamente relacionados con la variabilidad del rendimiento sociocognitivo entre los pacientes. Conclusiones: En el presente estudio, la cognición social sólo se correlacionó con el deterioro de la fluencia verbal, a pesar de que estudios previos han reportado su vinculación con la memoria y funciones ejecutivas. La identificación de correlatos estructurales específicos apoya la comprensión de este fenómeno como una fuente independiente de discapacidad cognitiva en estos pacientes.
Subject(s)
Humans , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Multiple Sclerosis/diagnostic imaging , Atrophy/pathology , Brain/pathology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Cognition , Gray Matter/diagnostic imaging , Social Cognition , Neuropsychological TestsABSTRACT
Abstract Fetal growth restriction (FGR) occurswhen the fetus does not reach its intrauterine potential for growth and development as a result of compromise in placental function. It is a condition that affects 5 to 10% of pregnancies and is the second most common cause of perinatal morbidity and mortality. Children born with FGR are at risk of impaired neurological and cognitive development and cardiovascular or endocrine diseases in adulthood. The purpose of the present revision is to perform a literature search for evidence on the detection and assessment by ultrasound of brain injury linked to FGR during fetal life. Using a systematic approach and quantitative evaluation as study methodology, we reviewed ultrasound studies of the fetal brain structure of growth-restricted fetuses with objective quality measures. A total of eight studies were identified. High quality studies were identified for measurement of brain volumes; corpus callosum; brain fissure depth measurements, and cavum septi pellucidi width measurement. A low-quality study was available for transverse cerebellar diameter measurement in FGR. Further prospective randomized studies are needed to understand the changes that occur in the brain of fetuseswith restricted growth, as well as their correlation with the changes in cognitive development observed.
Resumo A restrição do crescimento fetal (RCF) ocorre quando umfeto não consegue atingir seu potencial de crescimento intrauterino, na maioria das vezes por compromisso da função placentária. É uma condição que afeta de 5 a 10% das gravidezes e é a segunda causa mais comum de morbidade e mortalidade perinatal. Crianças nascidas com RCF incorrem em maior risco de atraso no desenvolvimento neurológico e cognitivo, bem como de doenças cardiovasculares e/ou endócrinas, na idade adulta. O objetivo desta revisão foi o de pesquisar na literatura evidência sobre o diagnóstico pré-natal por ecografia de lesões cerebrais relacionadas com a RCF. Utilizando uma abordagem sistemática, avaliamos de forma quantitativa a metodologia dos oito estudos que preencheram os critérios de inclusão e foram, assim, incluídos nesta revisão. Foram identificados estudos de alta qualidade para a medição dos volumes cerebrais;medição do corpo caloso; medição da profundidade das incisuras cerebrais emedição do cavum do septo pelúcido. Os autores identificaram um estudo de qualidade inferior sobre a medição transversal do diâmetro transcerebelar em fetos com RCF. Mais estudos prospectivos randomizados são necessários para perceber quais as alterações que ocorrem no cerébro dos fetos com restrição do seu crescimento, bem como, a sua correlação com as alterações do desenvolvimento cognitivo observadas.
Subject(s)
Humans , Female , Pregnancy , Child , Adult , Placenta , Ultrasonography, Prenatal , Brain/diagnostic imaging , Biometry , Gestational Age , Fetal Growth Retardation/diagnostic imaging , FetusABSTRACT
Relapsing polychondritis (RP) is a rare multisystemic autoimmune disorder characterized by the inflammation and destruction of cartilages, with preference for auricular, nasal and laryngotracheal cartilages. RP may also affect proteoglycan-rich structures, such as, blood vessels, eyes, kidneys, and heart. The central nervous system (CNS) is involved in less than 3% of patients. We report a 32-year-old female with RP associated with a progressive subacute encephalopathy characterized by behavioral disturbances, auditory and visual hallucinations. The EEG showed generalized slow activity and a mononuclear pleocytosis with increased protein was found in the cerebrospinal fluid. The brain magnetic resonance imaging showed multiple supra and infratentorial nodular inflammatory lesions. After initiating treatment with corticosteroids and cyclophosphamide, a significant improvement in chondritis and neurological status was observed.
Subject(s)
Humans , Female , Adult , Polychondritis, Relapsing/complications , Polychondritis, Relapsing/diagnosis , Polychondritis, Relapsing/drug therapy , Brain Diseases/etiology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Adrenal Cortex HormonesABSTRACT
Objective: The increased prevalence rate of white matter hyperintensities is one of the most consistently reported brain abnormalities in adults with bipolar disorder. However, findings in children and adolescents with bipolar disorder are less consistent. Prior studies have been constrained by small sample sizes and/or poor age- and sex-matching of healthy controls. We examined this topic in the largest sample of adolescents with bipolar disorder to date. Methods: T2-weighted 3-Tesla magnetic resonance imaging data were acquired for 83 adolescents with bipolar disorder diagnosed via the Kiddie Schedule for Affective Disorders and the Schizophrenia, Present and Lifetime version semi-structured interview and 64 age- and sex-matched healthy controls. All acquired scans were examined by neuroradiologists and the presence or absence of white matter hyperintensities was determined for each participant. Results: The prevalence of white matter hyperintensities did not differ between adolescents with bipolar disorder (13.3%) and controls (21.9%; χ2 = 1.90; p = 0.168). Conclusion: In contrast to the study hypothesis, the prevalence of white matter hyperintensities was not higher in adolescents with bipolar disorder than controls. The large sample size and good matching for age and sex bolster the reliability of this negative finding. Future studies are warranted to evaluate the prevalence, incidence, and predictors of white matter hyperintensities in early-onset bipolar disorder prospectively.
Subject(s)
Humans , Child , Adolescent , Young Adult , Bipolar Disorder/epidemiology , Bipolar Disorder/diagnostic imaging , White Matter/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Spectroscopy , Prevalence , Reproducibility of ResultsSubject(s)
Humans , Female , Infant , Brain/metabolism , Brain/diagnostic imaging , Methyltransferases/genetics , Methyltransferases/metabolism , MutationABSTRACT
Objective: To investigate whether poor antidepressant tolerability is associated with functional brain changes in children and adolescents of parents with bipolar I disorder (at-risk youth). Methods: Seventy-three at-risk youth (ages 9-20 years old) who participated in a prospective study and had an available baseline functional magnetic resonance imaging (fMRI) scan were included. Research records were reviewed for the incidence of adverse reactions related to antidepressant exposure during follow-up. The sample was divided among at-risk youth without antidepressant exposure (n=21), at-risk youth with antidepressant exposure and no adverse reaction (n=12), at-risk youth with antidepressant-related adverse reaction (n=21), and healthy controls (n=20). The fMRI task was a continuous performance test with emotional distracters. Region-of-interest mean activation in brain areas of the fronto-limbic emotional circuit was compared among groups. Results: Right amygdala activation in response to emotional distracters significantly differed among groups (F3,66 = 3.1, p = 0.03). At-risk youth with an antidepressant-related adverse reaction had the lowest amygdala activation, while at-risk youth without antidepressant exposure had the highest activation (p = 0.004). Conclusions: Decreased right amygdala activation in response to emotional distracters is associated with experiencing an antidepressant-related adverse reaction in at-risk youth. Further studies to determine whether amygdala activation is a useful biomarker for antidepressant-related adverse events are needed.
Subject(s)
Humans , Child , Adolescent , Adult , Young Adult , Bipolar Disorder/drug therapy , Brain/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Emotions , Amygdala , Antidepressive Agents/adverse effectsABSTRACT
Resumen La presencia de lesiones quísticas de etiología oncológica en el encéfalo es cada vez más frecuente. El rol del especialista en imágenes es describir sus características, morfología y comportamiento con el contraste endovenoso, para llegar a realizar un diagnóstico presuntivo y enumerar sus diagnósticos diferenciales, y así orientar al médico tratante. Haremos una revisión de las lesiones quísticas de etiología oncológica de presentación frecuente en el encéfalo.
Abstract The presence of an oncologic cystic formation in the brain is frequent. The imaging specialist's role is to describe its features, morphology, and image enhancement characteristics with endovenous contrast, to make a presumptive diagnosis, and enumerated differential diagnoses and thus orientate the practitioner. We will analyze the most common expansive cystic formations.
Subject(s)
Brain Neoplasms/diagnostic imaging , Cysts/diagnostic imaging , Brain/pathology , Brain/diagnostic imaging , Magnetic Resonance Spectroscopy , Tomography, X-Ray Computed , Neurocytoma , Hemangioblastoma , EpendymomaSubject(s)
Humans , Leukoencephalopathies/chemically induced , COVID-19 , Brain/diagnostic imaging , SARS-CoV-2ABSTRACT
Stereotactic biopsies for lesions in the brainstem and deep brain are rare. This study aimed to summarize our 6-year experience in the accurate diagnosis of lesions in the brain stem and deep brain and to discuss the technical note and strategies. From December 2011 to January 2018, 72 cases of intracranial lesions in the brainstem or deep in the lobes undergoing stereotactic biopsy were retrospectively reviewed. An individualized puncture path was designed based on the lesion's location and the image characteristics. The most common biopsy targets were deep in the lobes (43 cases, 59.7%), including frontal lobe (33 cases, 45.8%), temporal lobe (4 cases, 5.6%), parietal lobe (3 cases, 4.2%), and occipital lobe (3 cases, 4.2 %). There were 12 cases (16.7%) of the brainstem, including 8 cases (11.1%) of midbrain, and 4 cases (5.6%) of pons or brachium pontis. Other targets included internal capsule (2 cases, 2.8%), thalamus (3 cases, 4.2%), and basal ganglion (12 cases, 16.7%). As for complications, one patient developed acute intracerebral hemorrhage in the biopsy area at 2 h post-operation, and one patient had delayed intracerebral hemorrhage at 7 days post-operation. The remaining patients recovered well after surgery. There was no surgery-related death. The CT-MRI-guided stereotactic biopsy of lesions in the brainstem or deep in the brain has the advantages of high safety, accurate diagnosis, and low incidence of complications. It plays a crucial role in the diagnosis of atypical, microscopic, diffuse, multiple, and refractory lesions.
Subject(s)
Humans , Brain/diagnostic imaging , Stereotaxic Techniques , Biopsy , Brain Stem/diagnostic imaging , Retrospective Studies , Image-Guided BiopsyABSTRACT
Major depressive disorder (MDD) causes great decrements in health and quality of life with increments in healthcare costs, but the causes and pathogenesis of depression remain largely unknown, which greatly prevent its early detection and effective treatment. With the advancement of neuroimaging approaches, numerous functional and structural alterations in the brain have been detected in MDD and more recently attempts have been made to apply these findings to clinical practice. In this review, we provide an updated summary of the progress in translational application of psychoradiological findings in MDD with a specified focus on potential clinical usage. The foreseeable clinical applications for different MRI modalities were introduced according to their role in disorder classification, subtyping, and prediction. While evidence of cerebral structural and functional changes associated with MDD classification and subtyping was heterogeneous and/or sparse, the ACC and hippocampus have been consistently suggested to be important biomarkers in predicting treatment selection and treatment response. These findings underlined the potential utility of brain biomarkers for clinical practice.
Subject(s)
Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging , Quality of LifeABSTRACT
The disorder of brain-gut interaction is an important cause of irritable bowel syndrome (IBS), but the dynamic characteristics of the brain remain unclear. Since there are many shortcomings for evaluating brain dynamic nature in the previous studies, we proposed a new method based on slope calculation by point-by-point analysis of the data from functional magnetic resonance imaging, and detected the abnormalities of brain dynamic changes in IBS patients. The results showed that compared with healthy subjects, there were dynamic changes in the brain for the IBS patients. After correction by false discovery rate (FDR), significant abnormalities were only found in two functional connections of the right posterior cingulate gyrus linked to left middle frontal gyrus, and the right posterior cingulate gyrus linked to left pallidus. The above results of the brain dynamic analysis were totally different from those of the brain static analysis of IBS patients. Our findings provide novel complementary information for illustrating the central nervous mechanism of IBS and may offer a new direction to explore central target for patients with IBS.
Subject(s)
Brain/diagnostic imaging , Brain Mapping , Gyrus Cinguli/diagnostic imaging , Humans , Irritable Bowel Syndrome/diagnostic imaging , Magnetic Resonance ImagingABSTRACT
OBJECTIVE@#To observe the changes of functional connectivity of brain pain-emotion regulation region in patients with cervical spondylosis of cervical type by functional magnetic resonance imaging (fMRI).@*METHODS@#Thirty-two subjects were selected. Of them, 16 patients with cervical spondylosis of cervical type were divided into an observation group and 16 healthy subjects into a control group. The patients in the observation group were treated with acupuncture at Tianzhu (BL 10), Jingbailao (EX-HN 15), Jianzhongshu (SI 15) and @*RESULTS@#In the observation group, the VAS score was (1.94±1.12) after the treatment, which was lower than (5.62±1.20) before treatment (@*CONCLUSION@#Pain involves the formation and expression of "pain-emotion-cognition". Acupuncture can systematically regulate the brain functional connections between cognitive regions such as dorsal prefrontal lobe and anterior cingulate gyrus and emotional regions such as insula and VTA in patients with cervical spondylosis of cervical type, suggesting that acupuncture has a multi-dimensional and comprehensive regulation effect on pain.
Subject(s)
Acupuncture Therapy , Brain/diagnostic imaging , Emotions , Humans , Magnetic Resonance Imaging , Pain , Spondylosis/therapyABSTRACT
OBJECTIVE@#To observe the efficacy of @*METHODS@#A total of 58 participants were included. Of them, 29 patients with insomnia were included into an observation group, and 29 healthy participants were included into a control group. The patients in the observation group were treated with @*RESULTS@#The total effective rate was 89.7% (26/29) in the observation group. In the observation group, the scores of PSQI, ISI and DISS, the A, B speed of NCT were all decreased after treatment (@*CONCLUSION@#The
Subject(s)
Acupuncture Therapy , Brain/diagnostic imaging , Emotions , Humans , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders/therapyABSTRACT
This study aimed to define the most consistent white matter microarchitecture pattern in Parkinson's disease (PD) reflected by fractional anisotropy (FA), addressing clinical profiles and methodology-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of whole-brain diffusion tensor imaging studies comparing PD with healthy controls (HC) using the anisotropic effect size-signed differential mapping. A total of 808 patients with PD and 760 HC coming from 27 databases were finally included. Subgroup analyses were conducted considering heterogeneity with respect to medication status, disease stage, analysis methods, and the number of diffusion directions in acquisition. Compared with HC, patients with PD had decreased FA in the left middle cerebellar peduncle, corpus callosum (CC), left inferior fronto-occipital fasciculus, and right inferior longitudinal fasciculus. Most of the main results remained unchanged in subgroup meta-analyses of medicated patients, early stage patients, voxel-based analysis, and acquisition with 30 diffusion directions. The subgroup meta-analysis of medication-free patients showed FA decrease in the right olfactory cortex. The cerebellum and CC, associated with typical motor impairment, showed the most consistent FA decreases in PD. Medication status, analysis approaches, and the number of diffusion directions have an important impact on the findings, needing careful evaluation in future meta-analyses.
Subject(s)
Anisotropy , Brain/diagnostic imaging , Corpus Callosum , Diffusion Tensor Imaging , Humans , Parkinson Disease/diagnostic imaging , White Matter/diagnostic imagingABSTRACT
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Subject(s)
Brain/diagnostic imaging , Electroencephalography , Magnetic Resonance Imaging , Neuroimaging , Transcranial Magnetic StimulationABSTRACT
Sleep is a complex physiological process of great significance to physical and mental health, and its research scope involves multiple disciplines. At present, the quantitative analysis of sleep mainly relies on the "gold standard" of polysomnography (PSG). However, PSG has great interference to the human body and cannot reflect the hemodynamic status of the brain. Functional near infrared spectroscopy (fNIRS) is used in sleep research, which can not only meet the demand of low interference to human body, but also reflect the hemodynamics of brain. Therefore, this paper has collected and sorted out the related literatures about fNIRS used in sleep research, concluding sleep staging research, clinical sleep monitoring research, fatigue detection research, etc. This paper provides a theoretical reference for scholars who will use fNIRS for fatigue and sleep related research in the future. Moreover, this article concludes the limitation of existing studies and points out the possible development direction of fNIRS for sleep research, in the hope of providing reference for the study of sleep and cerebral hemodynamics.