Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Electron. j. biotechnol ; 52: 59-66, July. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1283592

ABSTRACT

BACKGROUND: Many human genetic diseases arise from point mutations. These genetic diseases can theoretically be corrected through gene therapy. However, gene therapy in clinical application is still far from mature. Nearly half of the pathogenic single-nucleotide polymorphisms (SNPs) are caused by G:C>A:T or T:A>C:G base changes and the ideal approaches to correct these mutations are base editing. These CRISPR-Cas9-mediated base editing does not leave any footprint in genome and does not require donor DNA sequences for homologous recombination. These base editing methods have been successfully applied to cultured mammalian cells with high precision and efficiency, but BE4 has not been confirmed in mice. Animal models are important for dissecting pathogenic mechanism of human genetic diseases and testing of base correction efficacy in vivo. Cytidine base editor BE4 is a newly developed version of cytidine base editing system that converts cytidine (C) to uridine (U). RESULTS: In this study, BE4 system was tested in cells to inactivate GFP gene and in mice to introduce single-base substitution that would lead to a stop codon in tyrosinase gene. High percentage albino coat-colored mice were obtained from black coat-colored donor zygotes after pronuclei microinjection. Sequencing results showed that expected base changes were obtained with high precision and efficiency (56.25%). There are no off-targeting events identified in predicted potential off-target sites. CONCLUSIONS: Results confirm BE4 system can work in vivo with high precision and efficacy, and has great potentials in clinic to repair human genetic mutations.


Subject(s)
Animals , Mice , Adenosine Deaminase , Cytosine , CRISPR-Cas Systems , Gene Editing/methods , Base Sequence , Blotting, Western , Models, Animal , Real-Time Polymerase Chain Reaction , Mutation
2.
Rev. Hosp. Ital. B. Aires (2004) ; 41(1): 37-42, mar. 2021. ilus, tab
Article in Spanish | LILACS | ID: biblio-1178964

ABSTRACT

El término CRISPR, por su acrónimo en inglés refiere a Clustered Regularly Interspaced Short Palindromic Repeats, es decir, repeticiones palindrómicas cortas, agrupadas y regularmente esparcidas, por sus características en el genoma, pertenece naturalmente al sistema de defensa de bacterias y arqueas. Este ha sido adaptado biotecnológicamente para la edición del ADN de células eucariotas, incluso de células humanas. El sistema CRISPR-Cas para editar genes consta, en forma generalizada, de dos componentes: una proteína nucleasa (Cas) y un ARN guía (sgRNA). La simplicidad del complejo lo hace una herramienta molecular reprogramable capaz de ser dirigida y de editar cualquier sitio en un genoma conocido. Su principal foco son las terapias para enfermedades hereditarias monogénicas y para el cáncer. Sin embargo, además de editor de genes, la tecnología CRISPR se utiliza para edición epigenética, regulación de la expresión génica y método de diagnóstico molecular. Este artículo tiene por objetivo presentar una revisión de las aplicaciones de la herramienta molecular CRISPR-Cas, particularmente en el campo biomédico, posibles tratamientos y diagnósticos, y los avances en investigación clínica, utilizando terapia génica con CRISPR/Cas más relevantes hasta la fecha. (AU)


CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats, which naturally belong to the defense system of bacteria and archaea. It has been biotechnologically adapted for editing the DNA of eukaryotic cells, including human cells. The CRISPR-Cas system for editing genes generally consists of two components, a nuclease protein (Cas) and a guide RNA (sgRNA). The simplicity of the complex makes it a reprogrammable molecular tool capable of being targeted and editing any site in a known genome. Its main focus is therapies for monogenic inherited diseases and cancer. However, in addition to gene editor, CRISPR technology is used for epigenetic editing, regulation of gene expression, and molecular diagnostic methods. This article aims to present a review of the applications of the CRISPR-Cas molecular tool, particularly in the biomedical field, possible treatments and diagnoses, and the advances in clinical research, using the most relevant CRISPR-Cas gene therapy to date. (AU)


Subject(s)
Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems/genetics , Biotechnology , Genetic Therapy/methods , Gene Expression , Genome, Human/genetics , Gene Expression Regulation , Epigenomics/trends , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/therapeutic use , Genetic Diseases, Inborn/therapy , Neoplasms/therapy
3.
Neuroscience Bulletin ; (6): 1271-1288, 2021.
Article in English | WPRIM | ID: wpr-922636

ABSTRACT

Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.


Subject(s)
Animals , Brain , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Haplorhini , Phenotype , Protein Kinases/genetics
4.
Chinese Journal of Biotechnology ; (12): 4342-4350, 2021.
Article in Chinese | WPRIM | ID: wpr-921510

ABSTRACT

The CRISPR/Cas9 gene editing system has been widely used in basic research, gene therapy and genetic engineering due to its high efficiency, fast speed and convenience. Meanwhile, the discovery of novel CRISPR/Cas systems in the microbial community also accelerated the emergence of novel gene editing tools. CRISPR/Cpf1 is the second type (V type) CRISPR system that can edit mammalian genome. Compared with the CRISPR/Cas9, CRISPR/Cpf1 can use 5'T-PAM rich region to increase the genome coverage, and has many advantages, such as sticky end of cleavage site and less homologous recombination repair. Here we constructed three CRISPR/Cpf1 (AsCpf1, FnCpf1 and LbCpf1) expression vectors in silkworm cells. We selected a highly conserved BmHSP60 gene and an ATPase family BmATAD3A gene to design the target gRNA, and constructed gHSP60-266 and gATAD3A-346 knockout vectors. The efficiency for editing the target genes BmATAD3A and BmHSP60 by AsCpf1, FnCpf1 and LbCpf1 were analyzed by T7E1 analysis and T-clone sequencing. Moreover, the effects of target gene knockout by different gene editing systems on the protein translation of BmHSP60 and BmATAD3A were analyzed by Western blotting. We demonstrate the CRISPR/Cpf1 gene editing system developed in this study could effectively edit the silkworm genome, thus providing a novel method for silkworm gene function research, genetic engineering and genetic breeding.


Subject(s)
Animals , Bombyx/metabolism , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing , RNA, Guide/genetics
5.
Chinese Journal of Biotechnology ; (12): 3890-3904, 2021.
Article in Chinese | WPRIM | ID: wpr-921474

ABSTRACT

Clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats -associated protein (CRISPR/Cas) has been developed as a precise, efficient, affordable and sensitive nucleic acid detection tool due to its efficient targeted binding ability and programmability. At present, biosensors based on CRISPR-Cas system have shown excellent performance in the detection of nucleic acid of pathogens, which has attracted widespread attention, and is expected to replace the conventional detection methods. This review summarizes the latest research progress of biosensors based on CRISPR/Cas system for detecting nucleic acid of pathogens.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems/genetics , Nucleic Acids/genetics
6.
Chinese Journal of Biotechnology ; (12): 3880-3889, 2021.
Article in Chinese | WPRIM | ID: wpr-921473

ABSTRACT

In the application of CRISPR genome editing, direct cellular delivery of non-replicable Cas9/sgRNA may reduce unwanted gene targeting and integrational mutagenesis, thus offering greater specificity and safety. Cas9/sgRNA delivery system holds great potential for treating genetic diseases. This review summarizes the advances of Cas9/sgRNA delivery systems and its therapeutic applications, providing new understandings and inspirations for vector design and future clinical applications.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , RNA, Guide/genetics
7.
Chinese Journal of Biotechnology ; (12): 3071-3087, 2021.
Article in Chinese | WPRIM | ID: wpr-921407

ABSTRACT

In recent years, the genome editing technologies based on the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) have developed rapidly. The system can use homologous directed recombination (HDR) to achieve precise editing that it medicated, but the efficiency is extremely low, which limits its application in agriculture and biomedical fields. As an emerging genome editing technology, the CRISPR/Cas-mediated DNA base editing technologies can achieve targeted mutations of bases without generating double-strand breaks, and has higher editing efficiency and specificity compared with CRISPR/Cas-mediated HDR editing. At present, cytidine base editors (CBEs) that can mutate C to T, adenine base editors (ABEs) that can mutate A to G, and prime editors (PEs) that enable arbitrary base conversion and precise insertion and deletion of small fragments, have been developed. In addition, glycosylase base editors (GBEs) capable of transitioning from C to G and double base editors capable of editing both A and C simultaneously, have been developed. This review summarizes the development, advances, advantages and limitations of several DNA base editors. The successful applications of DNA base editing technology in biomedicine and agriculture, together with the prospects for further optimization and selection of DNA base editors, are discussed.


Subject(s)
Agriculture , CRISPR-Cas Systems/genetics , DNA/genetics , Gene Editing , Technology
8.
Chinese Journal of Biotechnology ; (12): 3061-3070, 2021.
Article in Chinese | WPRIM | ID: wpr-921406

ABSTRACT

The study of distinct genes, chromosomes and the spatio-temporal relationships between them is of great significance in genetics, developmental biology and biomedicine. CRISPR/Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. Recently, researchers have developed a series of advanced live cell imaging techniques based on the nuclease-inactivated mutant of Cas9 (dCas9), providing rapid and convenient tools for high-resolution imaging of specific sites in the chromatin and genome. This review summarizes the advances of CRISPR/dCas9 system in live cell imaging from three aspects, including the strategies of cell delivery, optimization of the fluorescence signals, as well as orthogonal and multicolor imaging. Furthermore, we shed light on the development trends and prospects of this field.


Subject(s)
CRISPR-Cas Systems/genetics , Chromatin , Endonucleases , Gene Editing
9.
Chinese Journal of Biotechnology ; (12): 2414-2424, 2021.
Article in Chinese | WPRIM | ID: wpr-887807

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein gene system can limit the horizontal gene transfer, thereby effectively preventing the invasion of foreign gene elements such as bacteriophages. CRISPR arrays of different bacteria are diverse. Based on the differences in the CRISPR system, this review summarizes the application of CRISPR in food-borne pathogen evolution analysis, detection and typing, virulence and antibiotic resistance in recent years. We also address bacterial detection typing method developed based on the characteristics of CRISPR arrays and the association of CRISPR with virulence and drug resistance of food-borne pathogens. The shortcomings of CRISPR in evolution, detection and typing, virulence and resistance applications are analyzed. In addition, we suggest standardizing CRISPR typing methods, improving and expanding the CRISPR database of pathogenic bacteria, and further exploring the co-evolution relationship between phages and bacteria, to provide references for further exploration of CRISPR functions.


Subject(s)
Bacteria/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drug Resistance, Microbial/genetics , Virulence/genetics
10.
Chinese Journal of Biotechnology ; (12): 2307-2321, 2021.
Article in Chinese | WPRIM | ID: wpr-887798

ABSTRACT

The CRISPR system is able to accomplish precise base editing in genomic DNA, but relies on the cellular homology-directed recombination repair pathway and is therefore extremely inefficient. Base editing is a new genome editing technique developed based on the CRISPR/Cas9 system. Two base editors (cytosine base editor and adenine base editor) were developed by fusing catalytically disabled nucleases with different necleobase deaminases. These two base editors are able to perform C>T (G>A) or A>G (T>C) transition without generating DNA double-stranded breaks. The base editing technique has been widely used in gene therapy, animal models construction, precision animal breeding and gene function analysis, providing a powerful tool for basic and applied research. This review summarized the development process, technical advantages, current applications, challenges and perspectives for base editing technique, aiming to help the readers better understand and use the base editing technique.


Subject(s)
Adenine , Animals , CRISPR-Cas Systems/genetics , Cytosine , DNA Breaks, Double-Stranded , Gene Editing
11.
Chinese Journal of Biotechnology ; (12): 2116-2126, 2021.
Article in Chinese | WPRIM | ID: wpr-887785

ABSTRACT

Carrimycin (CAM) is a new antibiotics with isovalerylspiramycins (ISP) as its major components. It is produced by Streptomyces spiramyceticus integrated with a heterogenous 4″-O-isovaleryltransferase gene (ist). However, the present CAM producing strain carries two resistant gene markers, which makes it difficult for further genetic manipulation. In addition, isovalerylation of spiramycin (SP) could be of low efficiency as the ist gene is located far from the SP biosynthesis gene cluster. In this study, ist and its positive regulatory gene acyB2 were inserted into the downstream of orf54 gene neighboring to SP biosynthetic gene cluster in Streptomyces spiramyceticus 1941 by using the CRISPR-Cas9 technique. Two new markerless CAM producing strains, 54IA-1 and 54IA-2, were obtained from the homologous recombination and plasmid drop-out. Interestingly, the yield of ISP in strain 54IA-2 was much higher than that in strain 54IA-1. Quantitative real-time PCR assay showed that the ist, acyB2 and some genes associated with SP biosynthesis exhibited higher expression levels in strain 54IA-2. Subsequently, strain 54IA-2 was subjected to rifampicin (RFP) resistance selection for obtaining high-yield CAM mutants by ribosome engineering. The yield of ISP in mutants resistant to 40 μg/mL RFP increased significantly, with the highest up to 842.9 μg/mL, which was about 6 times higher than that of strain 54IA-2. Analysis of the sequences of the rpoB gene of these 7 mutants revealed that the serine at position 576 was mutated to alanine existed in each sequenced mutant. Among the mutants carrying other missense mutations, strain RFP40-6-8 which carries a mutation of glutamine (424) to leucine showed the highest yield of ISP. In conclusion, two markerless novel CAM producing strains, 54IA-1 and 54IA-2, were successfully developed by using CRISPR-Cas9 technique. Furthermore, a novel CAM high-yielding strain RFP40-6-8 was obtained through ribosome engineering. This study thus demonstrated a useful combinatory approach for improving the production of CAM.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering , Ribosomes , Spiramycin , Streptomyces/genetics
12.
Acta Physiologica Sinica ; (6): 482-490, 2021.
Article in Chinese | WPRIM | ID: wpr-887683

ABSTRACT

S100 calcium binding protein A9 (S100A9) is involved in a variety of biological processes such as inflammation and tumor cell migration and invasion regulation. The purpose of this study was to construct S100A9 gene-edited mice by using CRISPR/Cas9 technology, thereby providing an animal model for exploring the biological functions of this gene. According to the S100A9 gene sequence, the single-stranded small guide RNA (sgRNA) targeting exons 2 and 3 was transcribed in vitro, and a mixture of Cas9 mRNA and candidate sgRNA was injected into mouse fertilized eggs by microinjection. Early embryos were obtained and transferred to surrogate mice, and F


Subject(s)
Animals , Bronchoalveolar Lavage Fluid , CRISPR-Cas Systems/genetics , Calgranulin B , Disease Models, Animal , Gene Knockout Techniques , Gene Targeting , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Phenotype
13.
Chinese Journal of Biotechnology ; (12): 1385-1395, 2021.
Article in Chinese | WPRIM | ID: wpr-878640

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9) has become a powerful genome editing tool, but has a limited range of recognizable protospacer adjacent motifs (PAMs) and shows off-target effects. To address these issues, we present a rational approach to optimize the xCas9 mutant derived from SpCas9 by directed evolution. Firstly, energy minimization with the Rosetta program was applied to optimize the three-dimensional structure of Cas9 to obtain the lowest energy conformation. Subsequently, combinatorial mutations were designed based on the mutations sites of xCas9 acquired during the directed evolution. Finally, optimal mutants were selected from the designed mutants by free energy ranking and subjected to experimental verification. A new mutant yCas9 (262A/324R/409N/480K/543D/694L/1219T) with multiple PAM recognition ability and low off-target effects was obtained and verified by DNA cleavage experiments. This mutant recognizes the NG, GAA and GAT PAMs and shows low off-target DNA cleavage activity guided by mismatched sgRNA, thus provides a gene editing tool with potential applications in biomedical field. Furthermore, we performed molecular dynamics simulations on the structures of SpCas9, xCas9 and yCas9 to reveal the mechanisms of their PAM recognition and off-target effects. These may provide theoretical guidance for further optimization and modification of CRISPR/Cas9 proteins.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , RNA, Guide/genetics , Streptococcus pyogenes/metabolism
14.
Chinese Journal of Biotechnology ; (12): 1205-1228, 2021.
Article in Chinese | WPRIM | ID: wpr-878625

ABSTRACT

Genome editing is a genetic manipulation technique that can modify DNA sequences at the genome level, including insertion, knockout, replacement and point mutation of specific DNA fragments. The ultimate principle of genome editing technology relying on engineered nucleases is to generate double-stranded DNA breaks at specific locations in genome and then repair them through non-homologous end joining or homologous recombination. With the intensive study of these nucleases, genome editing technology develops rapidly. The most used nucleases include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats associated Cas proteins. Based on introducing the development and principles of above mentioned genome editing technologies, we review the research progress of CRISPR/Cas9 system in the application fields of identification of gene function, establishment of disease model, gene therapy, immunotherapy and its prospect.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Technology , Transcription Activator-Like Effector Nucleases/metabolism
15.
Chinese Journal of Biotechnology ; (12): 980-990, 2021.
Article in Chinese | WPRIM | ID: wpr-878608

ABSTRACT

Aspergillus niger is a vital industrial workhouse widely used for the production of organic acids and industrial enzymes. This fungus is a crucial cell factory due to its innate tolerance to a diverse range of abiotic conditions, high production titres, robust growth during industrial scale fermentation, and status as a generally recognized as safe (GRAS) organism. Rapid development of synthetic biology and systems biology not only offer powerful approaches to unveil the molecular mechanisms of A. niger productivity, but also provide more new strategies to construct and optimize the A. niger cell factory. As a new generation of genome editing technology, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas) system brings a revolutionary breakthrough in targeted genome modification for A. niger. In this review, we focus on current advances to the CRISPR/Cas genome editing toolbox, its application on gene modification and gene expression regulation in this fungal. Moreover, the future directions of CRISPR/Cas genome editing in A. niger are highlighted.


Subject(s)
Aspergillus niger/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Genome
16.
Chinese Journal of Biotechnology ; (12): 950-965, 2021.
Article in Chinese | WPRIM | ID: wpr-878606

ABSTRACT

Saccharomyces cerevisiae is one of the most important hosts in metabolic engineering. Advanced gene editing technology has been widely used in the design and construction of S. cerevisiae cell factories. With the rapid development of gene editing technology, early gene editing technologies based on recombinase and homologous recombination have been gradually replaced by new editing systems. In this review, the principle and application of gene editing technology in S. cerevisiae are summarized. Here, we first briefly describe the classical gene editing techniques of S. cerevisiae. Then elaborate the genome editing system of MegNs, ZFNs and TALENs based on endonuclease. The latest research progress is especially introduced and discussed, including the CRISPR/Cas system, multi-copy integration of heterologous metabolic pathways, and genome-scale gene editing. Finally, we envisage the application prospects and development directions of Saccharomyces cerevisiae gene editing technology.


Subject(s)
CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing , Saccharomyces cerevisiae/genetics , Technology
17.
Protein & Cell ; (12): 39-56, 2021.
Article in English | WPRIM | ID: wpr-880896

ABSTRACT

Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.


Subject(s)
Alleles , Animals , CRISPR-Cas Systems , DNA End-Joining Repair , DNA, Circular/metabolism , Embryo, Nonmammalian , Gene Editing/methods , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, Reporter , Genetic Loci , Genotyping Techniques , Green Fluorescent Proteins/metabolism , Integrases/metabolism , Luminescent Proteins/metabolism , Mutagenesis, Insertional , Single-Cell Analysis , Zebrafish/metabolism
18.
Article in English | WPRIM | ID: wpr-880727

ABSTRACT

Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural/genetics , Gene Editing/methods , Genetic Therapy , Humans , Nobel Prize , Plant Breeding
19.
Article in Chinese | WPRIM | ID: wpr-880079

ABSTRACT

OBJECTIVE@#To identify differentiation related miRNA and evaluate roles of miRNA during ATRA induced myeloid differentiation.@*METHODS@#The small RNA sequencing was used to analyze differential expressed miRNAs in ATRA induced NB4 cells. Then the several up or down-regulated miRNA were selected as the research candidates. SgRNAs targeting the genome of each miRNA were designed and NB4 cells with inducible expression of Cas9 protein were generated. After transduced sgRNA into NB4/Cas9 cells, the mutation level by PCR and surveyor assay were evaluated. The cell differentiation level was investigated by surface CD11b expression via flow cytometry.@*RESULTS@#A total of 410 mature miRNAs which expressed in NB4 cells were detected out after treated by ATRA, 74 miRNAs were up-regulated and 55 were down-regulated miRNAs with DNA cleavage generated by CRISPR/Cas9 was assayed directly by PCR or surveyor assay, quantitative PCR showed that the expression of miRNA was downregulated, which evaluated that gene edition successfully inhibitied the expression of mature miRNA. MiR-223 knockout showed the myeloid differentation of NB4 significantly inhibitied, while miRNA-155 knockout showed the myeloid differentation of NB4 cells significantly increased.@*CONCLUSION@#CRISPR/Cas9 is a powerful tool for gene editing and can lead to miRNA knockout. Knockouts of miR-223 and miR-155 have shown a differentiation-related phenotype, and the potential mechanism is the integrative regulation of target genes.


Subject(s)
CRISPR-Cas Systems , Cell Differentiation , Gene Editing , MicroRNAs/genetics , Sequence Analysis, RNA , Tretinoin
20.
Article in English | WPRIM | ID: wpr-879961

ABSTRACT

To establish a rabbit model of proprotein convertase subtilisin/kexin type9 () point mutation with CRISPR/Cas9 gene editing technique. According to the PubMed gene protein data, the PCSK9 protein functional regions of human and rabbit were analyzed by Blast. The 386S (Ser) amino acid functional region of human gene was homologous to the 485S of rabbit gene. Three small guide RNAs and one single-stranded donor oligonucleotide were designed according to the 485S base substitution position and sequence analysis of rabbit gene. The synthetic small guide RNAs, Cas9 mRNA and single-stranded donor oligonucleotide were co-injected into the cytoplasm of rabbit fertilized eggs and the embryos were transferred into the pregnant rabbits. PCR, TA cloning and off-target analysis were performed on the F0 rabbits to identify whether the PCSK9 mutation was successful. Fifteen F0 rabbits were obtained. The sequencing results showed that one of them was PCSK9 point mutation homozygote and two of them were PCSK9 point mutation heterozygotes, and the mutation could be stably inherited. The rabbit model of PCSK9 point mutation was successfully constructed by CRISPR/Cas9 technique, which provides an animal model for exploring the molecular mechanism of impaired PCSK9 function and developing reliable and effective diagnosis and treatment measures.


Subject(s)
Animals , CRISPR-Cas Systems/genetics , Mutation , Point Mutation , Proprotein Convertase 9/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL