Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Article in Chinese | WPRIM | ID: wpr-1009225

ABSTRACT

OBJECTIVE@#To explore effect of nerve growth factor (NGF) antibody on knee osteoarthritis (KOA) pain model was evaluated by in vitro model.@*METHODS@#Thirty male SPF rats aged 28-week-old were divided into blank group (10 rats with anesthesia only). The other 20 rats were with monoiodoacetate (MIA) on the right knee joint to establish pain model of OA, and were randomly divided into control group (injected intraperitoneal injection of normal saline) and treatment group (injected anti-NGF) intraperitoneal after successful modeling, and 10 rats in each group. All rats were received retrograde injection of fluorogold (FG) into the right knee joint. Gait was assessed using catwalk gait analysis system before treatment, 1 and 2 weeks after treatment. Three weeks after treatment, right dorsal root ganglia (DRG) were excised on L4-L6 level, immunostained for calcitonin gene-related peptide (CGRP), and the number of DRGS was counted.@*RESULTS@#In terms of gait analysis using cat track system, duty cycle, swing speed and print area ratio in control and treatment group were significantly reduced compared with blank group (P<0.05). Compared with control group, duty cycle and swing speed of treatment group were significantly improved (P<0.05), and there was no significant difference in print area ratio between treatment group and blank group (P>0.05). The number of FG-labeled DRG neurons in control group was significantly higher than that in treatment group and blank group (P<0.05). The expression of CGRP in control group was up-regulated, and differences were statistically significant compared with treatment group (P<0.05).@*CONCLUSION@#Intraperitoneal injection of anti-NGF antibody inhibited gait injury and upregulation of CGRP in DRG neurons. The results suggest that anti-nerve growth factor therapy may be of value in treating knee pain. NGF may be an important target for the treatment of knee OA pain.


Subject(s)
Aged , Animals , Male , Rats , Calcitonin Gene-Related Peptide/metabolism , Disease Models, Animal , Ganglia, Spinal/metabolism , Knee Joint , Nerve Growth Factor/therapeutic use , Osteoarthritis, Knee/drug therapy , Pain/metabolism , Rats, Sprague-Dawley , Antibodies/therapeutic use
2.
Article in English | WPRIM | ID: wpr-1009495

ABSTRACT

PURPOSE@#The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway.@*METHODS@#We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant.@*RESULTS@#Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression.@*CONCLUSIONS@#CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.


Subject(s)
Animals , Rats , Apoptosis , Brain Injuries/pathology , Calcitonin Gene-Related Peptide/metabolism , Caspase 3 , Isoquinolines , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , Sulfonamides , Heat Stroke/pathology
3.
Int. j. morphol ; 41(1): 45-50, feb. 2023.
Article in English | LILACS | ID: biblio-1430521

ABSTRACT

SUMMARY: Neuropeptide calcitonin gene-related peptide (CGRP) is a neurotransmitter related to vasculogenesis during organ development. The vascular endothelial growth factor A (VEGF-A) is also required for vascular patterning during lung morphogenesis. CGRP is primarily found in organs and initially appears in pulmonary neuroendocrine cells during the early embryonic stage of lung development. However, the relationship between CGRP and VEGF-A during lung formation remains unclear. This study investigates CGRP and VEGF-A mRNA expressions in the embryonic, pseudoglandular, canalicular, saccular, and alveolar stages of lung development from embryonic day 12.5 (E12.5) to postnatal day 5 (P5) through quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Further, we analyzed the expression of CGRP via immunohistochemistry. The VEGF-A mRNA was mainly scattered across the whole lung body from E12.5. CGRP was found to be expressed in a few epithelial cells of the canalicular and the respiratory bronchiole of the lung from E12.5 to P5. An antisense probe for CGRP mRNA was strongly detected in the lung from E14.5 to E17.5. Endogenous CGRP may regulate the development of the embryonic alveoli from E14.5 to E17.5 in a temporal manner.


El péptido relacionado con el gen de la calcitonina (CGRP) es un neurotransmisor vinculado con la vasculogénesis durante el desarrollo de órganos. El factor de crecimiento endotelial vascular A (VEGF-A) también se requiere para el patrón vascular durante la morfogénesis pulmonar. El CGRP se encuentra principalmente en los órganos y aparece inicialmente en las células neuroendocrinas pulmonares durante la etapa embrionaria temprana del desarrollo pulmonar. Sin embargo, la relación entre CGRP y VEGF-A durante la formación de los pulmones sigue sin estar clara. Este estudio investiga las expresiones de ARNm de CGRP y VEGF-A en las etapas embrionaria, pseudoglandular, canalicular, sacular y alveolar del desarrollo pulmonar desde el día embrionario 12,5 (E12,5) hasta el día postnatal 5 (P5) a través de la reacción en cadena de la polimerasa cuantitativa en tiempo real. (qRT-PCR) e hibridación in situ. Además, analizamos la expresión de CGRP mediante inmunohistoquímica. El ARNm de VEGF-A se dispersó principalmente por todo parénquima pulmonar desde E12,5. Se encontró que CGRP se expresaba en unas pocas células epiteliales de los bronquiolos canaliculares y respiratorios del pulmón desde E12,5 a P5. Se detectó fuertemente una sonda antisentido para ARNm de CGRP en el pulmón de E14,5 a E17,5. El CGRP endógeno puede regular el desarrollo de los alvéolos embrionarios de E14,5 a E17,5 de manera temporal.


Subject(s)
Animals , Mice , Calcitonin Gene-Related Peptide/metabolism , Vascular Endothelial Growth Factor A/metabolism , Lung/growth & development , Lung/embryology , Immunohistochemistry , In Situ Hybridization , Neurotransmitter Agents , Neovascularization, Physiologic
4.
Article in Chinese | WPRIM | ID: wpr-939533

ABSTRACT

OBJECTIVE@#To investigate the changes of skin temperature, blood infusion and inflammatory cytokines of cutaneous tissue in the sensitized area of colitis model rats, as well as the relationship between sensory and sympathetic nerves and the formation of sensitized area, and to initially reveal the partial physical-chemical characteristics of the sensitized area in the colitis model rats.@*METHODS@#Thirty-five male SD rats were randomly divided into a control group (n=10), a model group (n=18) and a guanethidine group (n=7). 5% dextran sulfate sodium (DSS) was adopted for 6-day free drinking to establish colitis model in the model group and the guanethidine group. On day 6 and 7, in the guanethidine group, guanethidine solution (30 mg/kg) was injected intraperitoneally for sympathetic block. On day 7, after injection of evans blue (EB) solution, the EB extravasation areas on the body surface were observed to investigate the distribution and physical-chemical characteristics of the sensitized area. The control area was set up, 0.5 cm away from the sensitized area, and with the same nerve segment innervation. Disease activity index (DAI) score of rats was compared between the normal group and the model group, and the morphological changes in the colon tissue were investigated with HE method. Using infrared thermal imaging technology and laser speckle flow imaging technology, skin temperature and blood infusion were determined in the sensitized area and the control area of the rats in the model group. Immunofluorescence technique was adopted to observe the expression levels of the positive nerve fibers of substance P (SP), calcitonin gene-related peptide (CGRP) and tyrosine hydroxylase (TH), and the correlation with blood vessels; as well as the expression levels of SP positive nerve fibers/tryptase+ mast cells, and tryptase+ mast cells/5-hydroxytryptamine (5-HT) in skin tissue in the sensitized area and the control area of the rats in the model group. MSD multi-level factorial method and ELISA were applied to determine the contents of pro-inflammatory and anti-inflammatory cytokines (e.g. TNF-α, IL-1β, IL-6, IL-4 and IL-10) and anti-inflammatory substance corticosterone (CORT).@*RESULTS@#Sensitization occurred at the T12-S1 segments of the colitis model rats, especially at L2-L5 segments. Compared with the normal group, DAI score was increased in the rats of the model group (P<0.05), and the colonic mucosal damage was obvious, with the epithelial cells disordered, even disappeared, crypt destructed, submucosal edema and a large number of inflammatory cells infiltrated. In comparison with the control area, the skin temperature and blood infusion were increased in the sensitized area of the model group (P<0.05, P<0.01); as well as the expression levels of the positive nerve fibers of SP, CGRP and TH of skin tissue (P<0.05), which was specially distributed in peripheral vessels, the expression levels of SP positive nerve fibers/tryptase+ mast cells, and tryptase+ mast cells/5-HT of the skin tissue were all expanded (P<0.05) in the sensitized area of the model group. Compared with the model group, the number of sensitized areas was reduced in the guanethidine group (P<0.05). In comparison with the control area of the model group, in the sensitized area, the contents of pro-inflammatory cytokines, e.g. TNF-α, IL-1β and IL-6, and the anti-inflammatory substance CORT of skin tissue were all increased (P<0.05); and the contents of IL-6 and TNF-α were negatively correlated with CORT (P<0.05).@*CONCLUSION@#The sensitized areas on the body surface of colitis rats are mainly distributed in the L2-L5 segments. Sensory and sympathetic nerves are involved in the acupoint sensitization, and the sensitized areas may have the dynamic changes in pro-inflammatory and anti-inflammatory substances.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents , Calcitonin Gene-Related Peptide/metabolism , Colitis/metabolism , Cytokines/metabolism , Guanethidine , Interleukin-6 , Rats, Sprague-Dawley , Serotonin , Skin Temperature , Substance P/genetics , Tryptases , Tumor Necrosis Factor-alpha
5.
Clinics ; 75: e1448, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055884

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the relationship between the serum levels of calcitonin gene-related peptide (CGRP) and the prognosis of pediatric patients with severe pneumonia. METHODS: Children diagnosed with severe pneumonia (n=76) were stratified into the survival (n=58) and non-survival groups (n=18) according to their 28-day survival status and into the non-risk (n=51), risk (n=17) and high-risk (n=8) categories based on the pediatric critical illness score (PCIS). Demographic data and laboratory results were collected. Serum CGRP levels were determined by enzyme-linked immunosorbent assay (ELISA). A receiver operating characteristic (ROC) curve was generated to determine the cutoff score for high CGRP levels. RESULTS: Serum CGRP levels were significantly higher in the survival group than in the non-survival group and were significantly higher in the non-risk group than in the risk and high-risk groups. The ROC curve for the prognostic potential of CGRP yielded a significant area under the curve (AUC) value with considerable sensitivity and specificity. CONCLUSION: Our findings show that CGRP downregulation might be a diagnostic marker that predicts the prognosis and survival of children with severe pneumonia.


Subject(s)
Humans , Male , Female , Child , Pneumonia/blood , Protein Precursors/blood , Vasodilator Agents/metabolism , Calcitonin Gene-Related Peptide/genetics , Pneumonia/mortality , Prognosis , Calcitonin , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/blood , Survival Analysis , ROC Curve , Critical Illness
6.
Braz. oral res. (Online) ; 32: e125, 2018. tab, graf
Article in English | LILACS | ID: biblio-989466

ABSTRACT

Abstract: The aim of this study was to investigate the effect of a placebo, intracanal diode laser application, and low-level laser therapy (LLLT) on the change of the total amount of calcitonin gene-related peptide (CGRP) in the gingival crevicular fluid (GCF) (split-mouth study design). GCF sampling was performed on a contralateral tooth and experimental tooth (root canal-treated tooth) of thirty-nine patients. The patients were divided into three groups (n = 13), as follows: placebo (mock laser application), intracanal laser application, and LLLT. GCF sampling was repeated at the same sites (experimental and control teeth) one week after root canal treatment. The data were analyzed using the Pearson's correlation analysis and the independent-samples t-tests (p=0.05). In the placebo group, the total CGRP level changes in the GCF before and after treatment was significantly higher for experimental teeth than for control teeth (p<0.05). However, there was no significant difference between experimental and control teeth in the intracanal laser application and LLLT groups (p > 0.05). Intracanal laser application and low-level laser therapy have immunomodulation effects linked to the modulation of the total amount of CGRP in the GCF.


Subject(s)
Humans , Male , Female , Adult , Root Canal Therapy/methods , Calcitonin Gene-Related Peptide/radiation effects , Low-Level Light Therapy/methods , Calcitonin Gene-Related Peptide/metabolism , Case-Control Studies , Gingival Crevicular Fluid/radiation effects , Treatment Outcome , Lasers, Semiconductor
7.
Yonsei Medical Journal ; : 748-753, 2016.
Article in English | WPRIM | ID: wpr-21837

ABSTRACT

PURPOSE: The pathophysiology of discogenic low back pain is not fully understood. Tetrodotoxin-sensitive voltage-gated sodium (NaV) channels are associated with primary sensory nerve transmission, and the NaV1.7 channel has emerged as an analgesic target. Previously, we found increased NaV1.7 expression in dorsal root ganglion (DRG) neurons innervating injured discs. This study aimed to examine the effect of blocking NaV1.7 on sensory nerves after disc injury. MATERIALS AND METHODS: Rat DRG neurons innervating the L5/6 disc were labeled with Fluoro-Gold (FG) neurotracer. Twenty-four rats underwent intervertebral disc puncture (puncture group) and 12 rats underwent sham surgery (non-puncture group). The injury group was divided into a saline infusion group (puncture+saline group) and a NaV1.7 inhibition group, injected with anti-NaV1.7 antibody (puncture+anti-NaV1.7 group); n=12 per group. Seven and 14 days post-surgery, L1 to L6 DRGs were harvested and immunostained for calcitonin gene-related peptide (CGRP) (an inflammatory pain marker), and the proportion of CGRP-immunoreactive (IR) DRG neurons of all FG-positive neurons was evaluated. RESULTS: The ratio of CGRP-IR DRG neurons to total FG-labeled neurons in the puncture+saline group significantly increased at 7 and 14 days, compared with the non-puncture group, respectively (p<0.05). Application of anti-NaV1.7 into the disc significantly decreased the ratio of CGRP-IR DRG neurons to total FG-labeled neurons after disc puncture at 7 and 14 days (40% and 37%, respectively; p<0.05). CONCLUSION: NaV1.7 antibody suppressed CGRP expression in disc DRG neurons. Anti-NaV1.7 antibody is a potential therapeutic target for pain control in patients with lumbar disc degeneration.


Subject(s)
Animals , Male , Rats , Antibodies , Calcitonin Gene-Related Peptide/metabolism , Disease Models, Animal , Ganglia, Spinal/metabolism , Intervertebral Disc/drug effects , Intervertebral Disc Degeneration/metabolism , Low Back Pain/physiopathology , Lumbar Vertebrae/injuries , /metabolism , Neurons/metabolism , Pain/metabolism , Rats, Sprague-Dawley , Stilbamidines
8.
Acta cir. bras ; 30(8): 523-528, Aug. 2015. ilus
Article in English | LILACS | ID: lil-757990

ABSTRACT

PURPOSE: To investigate the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) after subcutaneous injection of dexamethasone prior to skin incision in rats.METHODS:Twenty seven Wistar-EPM-1 rats were randomly divided into three groups. The sham group (SG) of rats was injected with 0.9 % saline. The second group (Dexa) was injected with 1.0 mg/kg dexamethasone, and the third group (Dexa+) was injected with 10.0 mg/kg dexamethasone. In all groups, the three subcutaneous injections were performed 30 minutes prior to the surgical skin incision and tissue collection. SP and CGRP (15 kDa pro-CGRP and 5 kDa CGRP) were quantified by Western Blotting.RESULTS: No statistically significant differences (p>0.05) were found in pro-CGRP, CGRP and SP values in all three groups.CONCLUSION:The anti-inflammatory effect of dexamethasone did not occur when the substance P and calcitonin gene-related peptide levels were altered during the neurogenic inflammation process of skin wound healing in rats.


Subject(s)
Animals , Male , Anti-Inflammatory Agents/pharmacology , Calcitonin Gene-Related Peptide/drug effects , Dermatitis/drug therapy , Dexamethasone/pharmacology , Neurogenic Inflammation/drug therapy , Substance P/drug effects , Blotting, Western , Calcitonin Gene-Related Peptide/metabolism , Dermatitis/metabolism , Injections, Subcutaneous , Neurogenic Inflammation/metabolism , Random Allocation , Rats, Wistar , Substance P/metabolism , Time Factors , Wound Healing/drug effects
9.
Article in English | WPRIM | ID: wpr-56482

ABSTRACT

Lumbar disc herniation is commonly encountered in clinical practice and can induce sciatica due to mechanical and/or chemical irritation and the release of proinflammatory cytokines. However, symptoms are not confined to the affected spinal cord segment. The purpose of this study was to determine whether multisegmental molecular changes exist between adjacent lumbar spinal segments using a rat model of lumbar disc herniation. Twenty-nine male Sprague-Dawley rats were randomly assigned to either a sham-operated group (n=10) or a nucleus pulposus (NP)-exposed group (n=19). Rats in the NP-exposed group were further subdivided into a significant pain subgroup (n=12) and a no significant pain subgroup (n=7) using mechanical pain thresholds determined von Frey filaments. Immunohistochemical stainings of microglia (ionized calcium-binding adapter molecule 1; Iba1), astrocytes (glial fibrillary acidic protein; GFAP), calcitonin gene-related peptide (CGRP), and transient receptor potential vanilloid 1 (TRPV1) was performed in spinal dorsal horns and dorsal root ganglions (DRGs) at 10 days after surgery. It was found immunoreactivity for Iba1-positive microglia was higher in the L5 (P=0.004) dorsal horn and in the ipsilateral L4 (P=0.009), L6 (P=0.002), and S1 (P=0.002) dorsal horns in the NP-exposed group than in the sham-operated group. The expression of CGRP was also significantly higher in ipsilateral L3, L4, L6, and S1 segments and in L5 DRGs at 10 days after surgery in the NP-exposed group than in the sham-operated group (P<0.001). Our results indicate that lumbar disc herniation upregulates microglial activity and CGRP expression in many adjacent and ipsilateral lumbar spinal segments.


Subject(s)
Animals , Humans , Male , Rats , Astrocytes/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Ganglia, Spinal/metabolism , Immunohistochemistry , Intervertebral Disc Displacement/metabolism , Lumbar Vertebrae/metabolism , Microfilament Proteins/metabolism , Microglia/metabolism , Neuralgia/metabolism , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/metabolism , Up-Regulation
10.
Hist. ciênc. saúde-Manguinhos ; 21(4): 1475-1486, Oct-Dec/2014. tab, graf
Article in Spanish | LILACS | ID: lil-732506

ABSTRACT

Walter Álvarez Quispe, terapeuta kallawaya y biomédico especializado en cirugía general y ginecología, presenta la lucha de los terapeutas tradicionales y alternativos por la depenalización de estos sistemas médicos andinos realizada entre 1960 y 1990. Bolivia se torna el primer país en América Latina y el Caribe en despenalizar la medicina tradicional antes de los planteamientos de la Conferencia Internacional sobre Atención Primaria de Salud (Alma-Ata, 1978). Los datos aportados por el entrevistado aseguran que los logros alcanzados, principalmente por los kallawayas, responden a un proyecto propio y autónomo. Estas conquistas no se deben a las políticas oficiales de interculturalidad en salud, aunque busquen atribuirse para sí los logros alcanzados.


Walter Álvarez Quispe, a Kallawaya healer and biomedical practitioner specializing in general surgery and gynecology, presents the struggle of traditional and alternative healers to get their Andean medical systems depenalized between 1960 and 1990. Bolivia was the first country in Latin America and the Caribbean to decriminalize traditional medicine before the proposals of the International Conference on Primary Health Care (Alma-Ata, 1978). The data provided by the interviewee show that the successes achieved, mainly by the Kallawayas, stem from their own independent initiative. These victories are not the result of official policies of interculturality in healthcare, although the successes achieved tend to be ascribed to them.


Subject(s)
Animals , Guinea Pigs , Male , Bronchi/innervation , Bronchoconstriction/drug effects , Bronchoconstrictor Agents/pharmacology , Citric Acid/pharmacology , Neurons, Afferent/physiology , Sulfites/pharmacology , Administration, Inhalation , Acetylcholine/pharmacology , Airway Resistance/drug effects , Autacoids/pharmacology , Bradykinin/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Citric Acid/administration & dosage , Hydrogen-Ion Concentration , Histamine/pharmacology , In Vitro Techniques , Lung Compliance/drug effects , Lung/innervation , Lung/metabolism , Neurokinin A/pharmacology , Neurons, Afferent/drug effects , Serotonin/pharmacology , Substance P/pharmacology , Sulfites/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL