ABSTRACT
The study was designed to investigate the effect of Coconut Oil on the levels of some liver and hematological parameters in carbon tetrachloride intoxicated rabbits. Also the antioxidant capacity of Coconut Oil for various concentrations was assessed on the basis of percent scavenging of (DPPH) free radical. Experimental animals were divided into five groups, eight rabbits in each group. These were: group A (Normal control), group B (Toxic control), group C (Standard control), group D (Treated with Coconut Oil 50 mL/kg body weight after CCl4 intoxication), group E (Treated with Coconut Oil 200 mL/kg body weight after CCl4 intoxication). The effects observed were compared with a standard hepatoprotective drug silymarine (50 mL/kg body weight). The Coconut Oil (200 mL/kg body weight) significantly (P<0.05) reduced the elevated serum levels of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) when compared to a toxic control rabbits. The results of extract treated rabbits were similar to silymarine administered rabbits group. Treatment with Coconut Oil root and silymarine caused no significant changes in RBC, Platelets, (Hb), (MCH) concentration and (HCT) values. However, significant (P<0.05) increase was observed in the total WBC count. The present study suggested that Coconut Oil can be used as an herbal alternative (need further exploration i.e to detect its bioactive compound and its efficacy) for hepatoprotective activit.
O estudo foi desenhado para investigar o efeito do óleo de coco nos níveis de alguns parâmetros hepáticos e hematológicos em coelhos intoxicados com tetracloreto de carbono. Também a capacidade antioxidante do óleo de coco para várias concentrações foi avaliada com base na porcentagem de eliminação de radicais livres (DPPH). Os animais experimentais foram divididos em cinco grupos, oito coelhos em cada grupo. Estes foram: grupo A (controle normal), grupo B (controle tóxico), grupo C (controle padrão), grupo D (tratado com óleo de coco 50 mL/kg de peso corporal após intoxicação por CCl4), grupo E (tratado com óleo de coco 200 mL/kg de peso corporal após intoxicação por CCl4). Os efeitos observados foram comparados com um fármaco hepatoprotetor padrão silimarina (50 mL/kg de peso corporal). O óleo de coco (200 mL/kg de peso corporal) reduziu significativamente (P<0,05) os níveis séricos elevados de alanina transaminase (ALT), aspartato transaminase (AST) e fosfatase alcalina (ALP), quando comparado a um coelho controle tóxico. Os resultados dos coelhos tratados com extrato foram semelhantes aos do grupo de coelhos administrados com silimarina. O tratamento com raiz de óleo de coco e silimarina não causou alterações significativas nos valores de RBC, Plaquetas, (Hb), (MCH) e (HCT). No entanto, observou-se aumento significativo (P<0,05) na contagem total de leucócitos. O presente estudo sugeriu que o óleo de coco pode ser usado como uma alternativa fitoterápica (precisa de mais exploração, ou seja, para detectar seu composto bioativo e sua eficácia) para atividade hepatoprotetora.
Subject(s)
Rabbits , Carbon Tetrachloride , Palm Oil , Biomarkers/blood , LiverABSTRACT
SUMMARY: Carbon tetrachloride (CCl4) is a manufactured chemical and does not occur naturally in the environment. CCl4 is a clear liquid that evaporates very easily. It has a sweet odor. CCl4 is toxic to the mammalian liver and is hepatocarcinogenic in both rats and mice. Rosemary (Rosmarinus Officinalis) is commonly used as a spice and flavoring agent in food processing. It is known for its antioxidant properties. The present study aims to investigate the antioxidant activity of rosmarinic acid (RA) on CCl4-induced liver toxicity in adult male albino rats. Forty adult male albino rats were divided into 4 groups with 10 rats in each group. Group I (control group). Group II animals received RA at a dose of 50 mg/kg/day by oral gavage for 4 weeks. Group III animals received CCl4 intraperitoneally at a dose of 3ml/kg twice weekly for 4 weeks. Group IV animals received CCl4 Plus RA. At the end of the experiment, liver specimens are processed for histological, immunohistochemical, EM and biochemical studies. Administration of RA deceased the elevated serum liver enzymes (AST, ALT, and ALP), elevated MDA level and immunoexpression of the proapoptotic protein (Bax) induced by CCl4. It increased reduced glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and immunoexpression of the antiapoptotic protein (Bcl2). It also improved the histological and ultrastructural changes induced by CCl4. It appears that Rosmarinic acid has protective effects against CCl4-induced hepatotoxicity as indicated by biochemical, histological, immunohistochemical and ultrastructural results.
RESUMEN: El tetracloruro de carbono (CCl4) es un producto químico fabricado y no se encuentra de forma natural en el medio ambiente. CCl4 es un líquido transparente que se evapora fácilmente; tiene un olor dulce. CCl4 es tóxico para el hígado de los mamíferos y es hepatocarcinogénico tanto en ratas como en ratones. El romero (Rosmarinus officinalis) se usa comúnmente como condimento y agente aromatizante en el procesamiento de alimentos. Es conocido por sus propiedades antioxidantes. El presente estudio tuvo como objetivo investigar la actividad antioxidante del ácido rosmarínico (RA) sobre la toxicidad hepática inducida por CCl4 en ratas albinas macho adultas. Se dividieron cuarenta ratas albinas macho adultas en 4 grupos con 10 ratas en cada grupo. Grupo I (grupo control). Los animales del grupo II recibieron AR a una dosis de 50 mg / kg / día por sonda oral durante 4 semanas. Los animales del grupo III recibieron CCl4 por vía intraperitoneal a una dosis de 3 ml / kg dos veces por semana durante 4 semanas. Los animales del grupo IV recibieron CCl4 Plus RA. Al final del experimento, las muestras de hígado se procesaron para estudios histológicos, inmunohistoquímicos, EM y bioquímicos. La administración de AR eliminó las enzimas hepáticas séricas elevadas (AST, ALT y ALP), el nivel elevado de MDA y la inmunoexpresión de la proteína proapoptótica (Bax) inducida por CCl4. Aumentó el glutatión reducido (GSH), glutatión peroxidasa (GSH-Px), la superóxido dismutasa (SOD) y la inmunoexpresión de la proteína antiapoptótica (Bcl2). También mejoró los cambios histológicos y ultraestructurales inducidos por CCl4. El ácido rosmarínico puede tener efectos protectores contra la hepatotoxicidad inducida por CCl4, tal como lo indican los resultados bioquímicos, histológicos, inmunohistoquímicos y ultraestructurales.
Subject(s)
Animals , Male , Mice , Carbon Tetrachloride/toxicity , Cinnamates/administration & dosage , Depsides/administration & dosage , Chemical and Drug Induced Liver Injury/drug therapy , Antioxidants/administration & dosage , Superoxide Dismutase/analysis , Immunohistochemistry , Cinnamates/pharmacology , Oxidative Stress/drug effects , Microscopy, Electron, Transmission , Depsides/pharmacology , Glutathione Peroxidase/analysis , Malondialdehyde/analysis , Antioxidants/pharmacologyABSTRACT
Abstract Carbon tetrachloride (CCl4) represents an organic chemical that causes reactive oxygen species derived organ disturbances including male infertility. Melatonin (MLT) is a neurohormone with strong antioxidant capacity, involved in numerous physiological processes. In this study we evaluated the capability of MLT, administered in a single dose of 50 mg/kg, to preserve the testicular tissue function after an acute administration of CCl4 to rats. The disturbance in testicular tissue and the effects of MLT after CCl4 exposure were estimated using biochemical parameters that enabled us to determine the tissue (anti)oxidant status and the intensity of arginine/nitric oxide metabolism. Also, the serum levels of testosterone and the histopathological analysis of tissue gave us a better insight into the occurring changes. A significant diminution in tissue antioxidant defences, arginase activity and serum testosterone levels, followed by the increased production of nitric oxide and extensive lipid and protein oxidative damage, was observed in the CCl4-treated group. The application of MLT after the CCl4 caused changes, clearly visible at both biochemical and histological level, which could be interpreted mainly as a consequence of general antioxidant system stimulation and a radical scavenger. On the other hand, the application of MLT exerted a limited action on the nitric oxide signalling pathway.
Subject(s)
Animals , Male , Rats , Arginine/metabolism , Carbon Tetrachloride/adverse effects , Melatonin/analysis , Single Dose/classification , Infertility, Male , AntioxidantsABSTRACT
OBJECTIVE@#To investigate the molecular mechanism underlying the anti-hepatic fibrosis activity of ethyl acetate fraction Dicliptera chinensis (L.) Juss. (EDC) in human hepatic stellate cells (HSCs) in vitro and in a carbon tetrachloride (CCl4)-induced hepatic fibrosis mouse model in vivo.@*METHODS@#For in vitro study, HSCs were pre-treated with platelet-derived growth factor (10 ng/mL) for 2 h to ensure activation and treated with EDC for 24 h and 48 h, respectively. The effect of EDC on HSCs was assessed using cell counting kit-8 assay, EdU staining, transmission electron microscopy, immunofluorescence staining, and Western blot, respectively. For in vivo experiments, mice were intraperitoneally injected with CCl4 (2 ° L/g, adjusted to a 25% concentration in olive oil), 3 times per week for 6 weeks, to develop a hepatic fibrosis model. Forty 8-week-old male C57BL/6 mice were divided into 4 groups using a random number table (n=10), including control, model, positive control and EDC treatment groups. Mice in the EDC and colchicine groups were intragastrically administered EDC (0.5 g/kg) or colchicine (0.2 mg/kg) once per day for 6 weeks. Mice in the control and model groups received an equal volume of saline. Biochemical assays and histological examinations were used to assess liver damage. Protein expression levels of α -smooth muscle actin (α -SMA) and microtubule-associated protein light chain 3B (LC3B) were measured by Western blot.@*RESULTS@#EDC reduced pathological damage associated with liver fibrosis, downregulated the expression of α -SMA and upregulated the expression of LC3B (P<0.05), both in HSCs and the CCl4-induced liver fibrosis mouse model. The intervention of bafilomycin A1 and rapamycin in HSCs strongly supported the notion that inhibition of autophagy enhanced α -SMA protein expression levels (P<0.01). The results also found that the levels of phosphoinositide (PI3K), p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, and p-p70S6K all decreased after EDC treatment (P<0.05).@*CONCLUSIONS@#EDC has anti-hepatic fibrosis activity by inducing autophagy and might be a potential drug to be further developed for human liver fibrosis therapy.
Subject(s)
Animals , Male , Mice , Acetates , Autophagy , Carbon Tetrachloride , Hepatic Stellate Cells , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , TOR Serine-Threonine Kinases/metabolismABSTRACT
Landfill is one of the important sources of carbon tetrachloride (CT) pollution, and it is important to understand the degradation mechanism of CT in landfill cover for better control. In this study, a simulated landfill cover system was set up, and the biotransformation mechanism of CT and the associated micro-ecology were investigated. The results showed that three stable functional zones along the depth, i.e., aerobic zone (0-15 cm), anoxic zone (15-45 cm) and anaerobic zone (> 45 cm), were generated because of long-term biological oxidation in landfill cover. There were significant differences in redox condition and microbial community structure in each zone, which provided microbial resources and favorable conditions for CT degradation. The results of biodegradation indicated that dechlorination of CT produced chloroform (CF), dichloromethane (DCM) and Cl- in anaerobic and anoxic zones. The highest concentration of dechlorination products occurred at 30 cm, which were degraded rapidly in aerobic zone. In addition, CT degradation rate was 13.2-103.6 μg/(m2·d), which decreased with the increase of landfill gas flux. The analysis of diversity sequencing revealed that Mesorhizobium, Thiobacillus and Intrasporangium were potential CT-degraders in aerobic, anaerobic and anoxic zone, respectively. Moreover, six species of dechlorination bacteria and eighteen species of methanotrophs were also responsible for anaerobic transformation of CT and aerobic degradation of CF and DCM, respectively. Interestingly, anaerobic dechlorination and aerobic transformation occurred simultaneously in the anoxic zone in landfill cover. Furthermore, analysis of degradation mechanism suggested that generation of stable anaerobic-anoxic-aerobic zone by regulation was very important for the harmless removal of full halogenated hydrocarbon in vadose zone, and the increase of anoxic zone scale enhanced their removal. These results provide theoretical guidance for the removal of chlorinated pollutants in landfills.
Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Carbon Tetrachloride/metabolism , Methane/metabolism , Waste Disposal FacilitiesABSTRACT
The liver as an organ is important for the metabolism of drugs and toxins. However, it is not immune from environmental insults. Exposure of liver cells to carbon tetrachloride (CCl4) results in the generation of tricholoromethyl radicals, which induce liver toxicity. This study aims at investigating the ameliorative effect of the cinnamon aqueous extract (CAE) against CCl4-induced hepatotoxicity in male albino rats. Hepatotoxicity was induced in rats through the intraperitoneal administration of 0.5 mL kg-1body weight of CCl4. The analyses of the results obtained showed significant reduction in the levels of serum biochemical markers for 400 and 600 mg kg-1bw of CAE protected rats as compared with CCl4group. In addition, CAE administration reversed liver tissue damaged via increased antioxidants markers. Histopathological examination of CAE treatment on rats showed improved changes to the liver damage caused by CCl4 with no evidence of steatosis and inflammation. This result hence suggests that CAE has marked hepatoprotective and healing activities against CCl4-induced liver damage and could serve as a suitable candidate in drug discovery for the treatment of liver toxicity.
Subject(s)
Animals , Rats , Carbon Tetrachloride/toxicity , Cinnamomum zeylanicum/drug effects , Liver/pathology , Rats, Inbred Strains , Pharmaceutical Preparations/analysis , Biomarkers/analysis , Oxidative Stress/drug effects , Toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Antioxidants/toxicityABSTRACT
In order to investigate the effect of salidroside on inhibiting liver fibrosis and its relationship with CXC chemokine ligand 16(CXCL16) in vivo and in vitro, totally 45 C57 BL/6 J male mice were randomly divided into normal group, model group and salidroside group, with 15 mice in each group. The mice in model group and salidroside group were injected intraperitoneally with 15% carbontetrachloride(CCl_4) olive oil solution to establish liver fibrosis model, and the mice in normal group were injected intraperitoneally with the same dose of olive oil. Salidroside group was given with 100 mg·kg~(-1 )salidroside by gavage, while the normal group and model group received the same amount of double distilled water by gavage. All mice were sacrificed after 5 weeks of intragastric administration. The pathological changes of mouse liver were observed by hematoxylin-eosin(HE) staining, and the degree of liver fibrosis was observed by sirius red staining. The protein expressions of collagen Ⅰ(ColⅠ), α-smooth muscle actin(α-SMA), fibronectin(FN), CXCL16, phosphorylated Akt(p-Akt), Akt in liver tissues were detected by Western blot. Hepatic stellate cell line JS 1 was cultured in vitro and divided into control group, model group(100 μg·L~(-1) CXCL16) and salidroside group(100 μg·L~(-1) CXCL16+1×10~(-5) mol·L~(-1) salidroside). Cell migration was detected by cell scratch, the mRNA expressions of ColⅠ and α-SMA were detected by RT-PCR, and the protein expressions of p-Akt and Akt were detected by Western blot. As compared with the normal group, the protein expressions of ColⅠ, α-SMA, FN, CXCL16, and p-Akt in the model group were significantly increased, and salidroside could reduce the expression of these indicators(P<0.05 or P<0.01). In vitro, CXCL16 could promote the migration of JS 1, increase the mRNA expressions of ColⅠ and α-SMA in JS 1, and enhance Akt phosphorylation in JS 1(P<0.05 or P<0.01). As compared with the model group, salidroside could inhibit the migration of JS 1 induced by CXCL16(P<0.05), and reduce the high expression of ColⅠ and α-SMA mRNA and the phosphorylation of Akt in JS 1 induced by CXCL16(P<0.05). In conclusion, salidroside might attenuate CCl_4-induced liver fibrosis in mice by inhibiting the migration, activation and Akt phosphorylation of hepatic stellate cells induced by CXCL16.
Subject(s)
Animals , Male , Mice , Carbon Tetrachloride , Chemokine CXCL16 , Glucosides , Hepatic Stellate Cells , Liver/pathology , Liver Cirrhosis/genetics , PhenolsABSTRACT
This study aimed to investigate whether psoralen can aggravate hepatotoxicity induced by carbon tetrachloride(CCl_4) by inducing hepatocyte cycle arrest and delaying liver regeneration. Female C57 BL/6 mice aged 6-8 weeks were randomly divided into control group, model group(CCl_4 group), combined group(CCl_4+PSO group) and psoralen group(PSO group). CCl_4 group and CCl_4+PSO group were given CCl_4 intraperitoneally at a dose of 100 μL·kg~(-1) once; olive oil of the same volume was given to control group and PSO group intraperitoneally; 12 h, 36 h and 60 h after CCl_4 injection, PSO group and CCl_4+PSO group were administrated with PSO intragastrically at a dose of 200 mg·kg~(-1); 0.5% CMC-Na of the same volume was administrated to control group and PSO group intragastrically. The weight of mice was recorded every day. Serum alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were measured at 36 h, 60 h and 84 h after CCl_4 injection. Mice were sacrificed after collection of the last serum samples. Liver samples were collected, and liver weight was recorded. Histopathological and morphological changes of liver were observed by haematoxylin and eosin staining. The mRNA levels of HGF, TGF-β, TNF-α, p53 and p21 in liver were detected by RT-qPCR. Western blot was used to detect the levels of cell cycle-related proteins. According to the results, significant increase of serum ALT and AST and centrilobular necrosis with massive inflammatory cell infiltration were observed in CCl_4+PSO group. After PSO administration in CCl_4 model, the mRNA levels of HGF(hepatocyte growth factor) and TNF-α were reduced, while the mRNA expressions of TGF-β, p53 and p21 was up-regulated. The expression of PCNA(proliferating cell nuclear antigen) was significantly increased in CCl_4 and CCl_4+PSO group, while the relative protein level in CCl_4+PSO group was slightly lower than that in CCl_4 group. Compared with control and CCl_4 group, the expression of p27(cyclic dependent kinase inhibitor protein p27) was prominently increased in CCl_4+PSO group. These results indicated that hepatotoxicity induced by CCl_4 could be aggravated by intraperitoneal administration with PSO, and the repair process of liver could be delayed. The preliminary mechanism may be related to the inhibition of PCNA and regulation of some cell cycle-associated protein by psoralen, in which the significant up-regulation of p27, p53 and p21 may play important roles.
Subject(s)
Animals , Female , Mice , Alanine Transaminase , Aspartate Aminotransferases , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Ficusin , Liver , Liver RegenerationABSTRACT
BACKGROUND@#Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders.@*METHODS@#Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries.@*RESULTS@#Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), HO and nitrite increased in liver tissues of CCl treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl in rats retrieved the normal expression of these markers and prevented hepatic injuries.@*CONCLUSION@#Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Subject(s)
Animals , Male , Rats , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Drug Therapy , Pathology , Endoplasmic Reticulum Stress , Fibrosis , Drug Therapy , Genetics , Inflammation , Drug Therapy , Genetics , Liver , Metabolism , Protective Agents , Pharmacology , Rats, Sprague-Dawley , Urticaceae , ChemistryABSTRACT
This paper was to investigate the effect of total flavonoids of Lichi Semen(TFL) on carbon tetrachloride(CCl_4)-induced liver fibrosis in rats, analyze and predict its mechanism of action and potential quality markers(Q-marker). Firstly, male SD rats were taken and injected subcutaneously with a 40% CCl_4-vegetable oil solution twice a week for 8 consecutive weeks to establish a rat model of liver fibrosis. The rats with liver fibrosis were randomly divided into model group, silybin group(43.19 mg·kg~(-1)), Fuzheng Huayu Capsules group(462.75 mg·kg~(-1)), and TFL groups(100 mg·kg~(-1) and 25 mg·kg~(-1)), with normal rats as a blank group, 10 rats in each group. Except for the blank group, the rats in the other groups were subcutaneously injected with 40% CCl_4-vegetable oil solution of a maintenance dose, once a week. The rats in various treatment groups received corresponding doses of drugs, while the rats in the blank group and model group received the same volume of normal saline once a day for 4 weeks. At the end of the experiment, blood was collected from the abdominal aorta and the liver tissues were collected. The levels of total bilirubin(TBiL), direct bilirubin(DBiL), indirect bilirubin(IBiL), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) in serum were detected by using an automatic biochemical detector. Masson staining was used to observe the histopathological changes of rat liver. Then, the chemical compositions of TFL were collected, and the action targets of these chemical compositions were predicted through SWISS database and reverse molecular docking server(DRAR-CPI). After screening of disease targets of liver fibrosis by Gene Cards database, the protein-protein interaction was analyzed with use of STRING database, and GO(gene ontology) analysis and KEGG(Kyoto encyclopedia of genes and genomes) enrich analysis were also carried out. Moreover, an iTRAQ proteomics technology was used to determine protein expression in liver tissues of rats in TFL, model and blank groups to verify the targets. Furthermore, Cytoscape software was used to establish and visualize the network of chemical components, targets and pathways, and predict the potential Q-marker of TFL. The results showed that the levels of TBiL, DBiL, IBiL, ALT, and AST in the model group were significantly higher than those in the blank normal group(P<0.05), and the above levels in the treatment groups were lower than those in the model group, but with no significant differences. Masson staining showed that the liver damage and the degree of fibrosis were severe in the model group, and were relieved to different degrees in the treatment groups. Then, 74 chemical components were screened, which could act on 865 targets such as EGFR and SRC, participating in the regulation of cancer pathways, PI3 K-Akt signaling pathway, HIF-1 signaling pathway and other signaling pathways closely related to liver fibrosis. Pinocembrin, quercetin, epicatechin, procyanidin A2, naringenin, nobiletin, phlorizin and rutin showed the highest correlation with liver fibrosis-related targets and pathways. Proteomics results showed that a total of 18 proteins among the 45 proteins predicted by internet pharmacology were identified, among which 6 proteins were significantly expressed, including 5 up-regulated proteins and 1 down-regulated protein. The protein expression of ALB, PLG, HSP90 AA1, EGFR and MAP2 K1 was significantly returned to a normal state in the TFL treatment groups. In conclusion, TFL may demonstrate the anti-hepatic fibrosis and potential hepatoprotective effects by regulating the expression of ALB, PLG, HSP90 AA1, EGFR and MAP2 K1, which may be associated with the regulation of multiple signaling pathways related to liver fibrosis such as PI3 K-Akt pathway. Pinocembrin, quercetin, epicatechin, procyanidin A2, naringenin, nobiletin, phlorizin and rutin could be regarded as potential Q-markers of TFL for quality control.
Subject(s)
Animals , Male , Rats , Carbon Tetrachloride , Flavonoids , Liver/pathology , Liver Cirrhosis , Molecular Docking Simulation , Rats, Sprague-Dawley , SemenABSTRACT
BACKGROUND: The liver is an organ with remarkable regenerative capacity; however, once chronic fibrosis occurs, liver failure follows, with high mortality and morbidity rates. Continuous exposure to proinflammatory stimuli exaggerates the pathological process of liver failure; therefore, immune modulation is a potential strategy to treat liver fibrosis. Mesenchymal stem cells (MSCs) with tissue regenerative and immunomodulatory potential may support the development of therapeutics for liver fibrosis. METHODS: Here, we induced hepatic injury in mice by injecting carbon tetrachloride (CCl₄) and investigated the therapeutic potential of conditionedmedium from tonsil-derivedMSCs (T-MSCCM). In parallel, we used recombinant human IL-1Ra,which, as we have previously shown, is secreted exclusively from T-MSCs and resolves the fibrogenic activation of myoblasts. Hepatic inflammation and fibrosis were determined by histological analyses using H&E and Picro-Sirius Red staining. RESULTS: The results demonstrated that T-MSC CM treatment significantly reduced inflammation as well as fibrosis in the CCl₄-injured mouse liver. IL-1Ra injection showed effects similar to T-MSC CM treatment, suggesting that T-MSC CM may exert anti-inflammatory and anti-fibrotic effects via the endogenous production of IL-1Ra. The expression of genes involved in fibrosis was evaluated, and the results showed significant induction of alpha-1 type I collagen, transforming growth factor beta, and tissue inhibitor of metalloproteases 1 upon CCl₄ injection, whereas treatment with T-MSC CM or IL-1Ra downregulated their expression. CONCLUSION: Taken together, these data support the therapeutic potential of T-MSC CM and/or IL-1Ra for the alleviation of liver fibrosis, as well as in treating diseases involving organ fibrosis.
Subject(s)
Animals , Humans , Mice , Carbon Tetrachloride , Collagen Type I , Culture Media, Conditioned , Fibrosis , Inflammation , Interleukin 1 Receptor Antagonist Protein , Liver Cirrhosis , Liver Failure , Liver , Mesenchymal Stem Cells , Metalloproteases , Mortality , Myoblasts , Transforming Growth Factor betaABSTRACT
OBJECTIVE@#This study was designed to evaluate hematological disorders and the orchestrating roles of hepcidin and IL-6 in rat models of thioacetamide (TAA) and carbon tetrachloride (CCl4) hepatotoxicity.@*METHODS@#Rats were intraperitoneally injected with TAA (10 mg/100 g rat weight dissolved in isosaline) or CCl4 (100 μL/100 g rat weight diluted as 1:4 in corn oil) twice weekly for eight consecutive weeks to induce subchronic liver fibrosis. Blood and tissue samples were collected and analyzed.@*RESULTS@#CCl4 but not TAA significantly decreased the RBCs, Hb, PCV, and MCV values with minimal alterations in other erythrocytic indices. Both hepatotoxins showed leukocytosis, granulocytosis, and thrombocytopenia. By the end of the experiment, the erythropoietin level increased in the CCl4 model. The serum iron, UIBC, TIBC, transferrin saturation%, and serum transferrin concentration values significantly decreased, whereas that of ferritin increased in the CCl4 model. TAA increased the iron parameters toward iron overload. RT-PCR analysis revealed increased expression of hepatic hepcidin and IL-6 mRNAs in the CCl4 model and suppressed hepcidin expression without significant effect on IL-6 in the TAA model.@*CONCLUSION@#These data suggest differences driven by hepcidin and IL-6 expression between CCl4 and TAA liver fibrosis models and are of clinical importance for diagnosis and therapeutics of liver diseases.
Subject(s)
Animals , Male , Rats , Blood Chemical Analysis , Carbon Tetrachloride , Toxicity , Hepcidins , Pharmacology , Injections, Intraperitoneal , Interleukin-6 , Pharmacology , Iron , Blood , Metabolism , Leukocytosis , Therapeutics , Liver Cirrhosis , Therapeutics , Thioacetamide , Toxicity , Thrombocytopenia , Therapeutics , Transferrin , MetabolismABSTRACT
The study aimed to investigate the mechanism of hepatoprotective effect of C-21 steroidal glucosides from Cynanchum auriculatum( Baishouwu) on oxidative stress in mice with liver injury. Mice were randomly divided into normal group,model group,positive control group,Baishouwu high group and Baishouwu low group. The liver injury model was induced by intraperitoneal injection of CCl4 peanut oil solution. All mice were sacrificed to collect blood and liver specimens. The activities of serum levels of ALT and AST were detected. The content of MDA and the activity of SOD in liver homogenate were examined by colorimetry method. Tissues were stained with hematoxylin-eosin for histological examination. The hepatic protein expressions of NF-κB p65,p-IκBα,i NOS and COX-2 were detected by Western blot. The mRNA expressions of TNF-α and IL-6 were determined by RT-PCR. It was found that treatment with C-21 steroidal glucosides from Baishouwu successfully attenuated liver injury induced by CCl4,as shown by decreased levels of serum biochemical indicators( AST,ALT)( P<0. 01). Administration of total C-21 steroidal glucosides enhanced the activity of SOD( P<0. 01) and decreased the content of MDA( P<0. 01) in liver homogenate. Microscopic features suggested that treatment with C-21 steroidal glucosides from Baishouwu was effective in inhibiting CCl4-induced hepatocyte edema and degeneration. Further studies showed that NF-κB p65 overexpression induced by CCl4 was decreased by C-21 steroidal glucosides,leading to the markedly down-regulated protein expression levels of p-IκBα,i NOS and COX-2,as well as the depression of TNF-α and IL-6 mRNA expressions. In conclusion,total C-21 steroidal glucosides from Baishouwu exhibited potent effect on oxidative stress pathway in mice with liver injury induced by CCl4,with enhanced activity of SOD,decreased content of MDA,and down-regulated levels of NF-κB p65,p-IκBα,i NOS and COX-2.
Subject(s)
Animals , Mice , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Drug Therapy , Cynanchum , Chemistry , Glucosides , Pharmacology , Hepatocytes , Liver , Oxidative Stress , Random AllocationABSTRACT
BACKGROUND AND OBJECTIVES: The release of microvesicles (MVs) from mesenchymal stem cells (MSCs) has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell-based therapies. We investigated the effect of administration of MSC-MVs on the therapeutic potential of carbon tetrachloride (CCL₄) induced liver fibrosis in rats.METHODS: Our work included: isolation and further identification of bone marrow MSC-MVs by transmission electron microscopy (TEM). Liver fibrosis was induced in rats by CCl4 followed by injection of prepared MSC-MVs in injured rats. The effects of MSC-MVs were evaluated by biochemical analysis of liver functions, RNA gene expression quantitation for collagen-1α, transforming growth factor β (TGF-β), interleukin-1β (IL-1β), vascular endothelial growth factor (VEGF) by real time reverse transcription PCR (RT-PCR) techniques. Finally histopathological examination of the liver tissues was assessed for all studied groups.RESULTS: BM-MSC-MVs treated group showed significant increase in serum albumin levels, VEGF quantitative gene expression (p < 0.05), while it showed a significant decrease in serum alanine transaminase (ALT) enzyme levels, quantitative gene expression of TGF-β, collagen-1α, IL-1β compared to CCL₄ fibrotic group (p < 0.05). Additionally, the histopathological assessment of the liver tissues of BM-MSC-MVs treated group showed marked decrease in the collagen deposition & improvement of histopathological picture in comparison with CCL₄ fibrotic group.CONCLUSIONS: Our study demonstrates that BM-MSC-MVs possess anti-fibrotic, anti-inflammatory, and pro-angiogenic properties which can promote the resolution of CCL₄ induced liver fibrosis in rats.
Subject(s)
Animals , Rats , Alanine Transaminase , Bone Marrow , Carbon Tetrachloride , Collagen , Gene Expression , Liver Cirrhosis , Liver , Mesenchymal Stem Cells , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Reverse Transcription , RNA , Serum Albumin , Transforming Growth Factors , Vascular Endothelial Growth Factor AABSTRACT
BACKGROUND: Painters in the automotive sector are routinely exposed to volatile organic solvents, and the levels vary depending on the occupational health and safety controls enforced at the companies. This study investigates the levels of exposure to organic vapors and the existence of controls in the formal economy sector in southern Colombia. METHODS: This is an exploratory study of an observational and descriptive character. An analysis of solvents is conducted via the personal sampling of painters and the analysis of samples using the National Institute for Occupational Safety and Health 1501 method. The amount of solvents analyzed varied according to the budget allocated by the companies. The person in charge of the occupational safety and health management system was interviewed to learn about the exposure controls implemented at the companies. RESULTS: A medium exposure risk for toluene was found in one company. Another presented medium risk for carbon tetrachloride, xylene, ethylbenzene, and n-butanol. The others showed low risk of exposure and that the controls implemented were not sufficient or efficient. CONCLUSION: These results shed light on the working conditions of these tradespeople. The permissible limits established by Colombian regulations for the evaluated chemical contaminants were not exceeded. However, there were contaminants that exceeded the limits of action. The analysis of findings made it possible to propose improvements in occupational safety and health management systems to allow the optimization of working conditions for painters, prevent the occurrence of occupational diseases, and reduce costs to the country's health system.
Subject(s)
Humans , 1-Butanol , Carbon Tetrachloride , Colombia , Methods , Occupational Diseases , Occupational Health , Social Control, Formal , Solvents , Toluene , XylenesABSTRACT
Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride (CCl₄)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a CCl₄ group, a CCl₄+STM 100 mg/kg group, and a CCl₄+STM 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% CCl₄ twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of TGF-β1, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the CCl₄ group. The levels of Bax and cleaved caspase-3 proteins, and TGF-β1, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the CCl₄ group. In addition, STM markedly abrogated the repression of Bcl-2 by CCl₄. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated CCl₄-induced hepatocyte apoptosis in rats.
Subject(s)
Adult , Animals , Humans , Male , Rats , Apoptosis , Blotting, Western , Carbon Tetrachloride , Carbon , Caspase 3 , Collagen , Fibronectins , Gentianaceae , Hepatocytes , In Situ Nick-End Labeling , Liver , Rats, Sprague-Dawley , Repression, Psychology , RNA, Messenger , SwertiaABSTRACT
O presente estudo avaliou a hepatotoxicidade induzida pelo CCl4 durante o efeito glicocorticoide da dexametasona (DEX) na fisiopatologia da reação inflamatória aguda em tilápias do Nilo, Oreochromis niloticus, correlacionando a funcionalidade hepática à cinética de acúmulo celular em aerocistite infecciosa. Para tal, utilizou-se 84 tilápias do Nilo distribuídas em 4 tratamentos: controle, CCl4, DEX e CCl4+DEX. Sendo amostrados 7 animais por tratamento em três períodos, isto é: seis, 24 e 48h após indução de inflamação. Utilizou-se CCl4 em dose única de 0,5mL/kg, via intraperitoneal para causar o transtorno hepático. Para indução da aerocistite utilizou-se inóculo de Aeromonas hydrophila. A dexametasona foi administrada via intramuscular na dose de 2 mg/kg de peso vivo. Os resultados revelaram que quanto maior foi à atividade sérica de aspartato aminotransferase (AST) maior foi a alteração somática do fígado, sendo estes achados inversamente proporcionais ao acúmulo celular no foco inflamatório, demonstrando menor número de células inflamatórias nos animais acometidos com maior grau de distúrbios hepáticos induzidos pelo CCl4. O estudo histopatológico revelou alterações degenerativas transitórias na fase mais aguda, pois os fígados das tilápias revelaram o acúmulo lipídeos nos hepatócitos 6h após administração de CCl4, sendo esta degeneração gordurosa não mais observada nos tempos de 24 e 48h. Contudo, a administração de CCl4 em tilápias do Nilo resultou em degeneração hepática aguda e transitória, caracterizada pelo acúmulo de gordura nos hepatócitos, aumento de AST no sangue e hepatomegalia. Com a disfunção hepática houve comprometimento do recrutamento celular em aerocistite infecciosa, indicando que há participação do fígado na resposta imune inata em peixes.(AU)
The study evaluated the hepatotoxicity induced by CCl4 during the glucocorticoid effect of dexamethasone (DEX) on the pathophysiology of the acute inflammatory reaction in Nile tilapia, Oreochromis niloticus, correlating hepatic functionality with cellular accumulation kinetics in infectious aerocystitis. Eighty- four Nile tilapia were distributed into four treatments: control, CCl4, DEX and CCl4 + DEX. Seven tilapia were sampled per treatment in three periods: 6, 24 and 48h after induction of inflammation. CCl4 was used in a single dose of 0.5mL/kg intraperitoneally to cause hepatic disorder. Aeromonas hydrophila inoculum was used to induce aerocystitis. Dexamethasone was administered intramuscularly at the dose of 2mg/kg b. w. The results revealed a higher serum aspartate transaminase (AST) activity associated with greater somatic liver alteration, being these findings inversely proportional to the cellular accumulation in the inflammatory focus, demonstrating a lower number of inflammatory cells in the animals affected with a higher degree of hepatic disorders induced by CCl4. The histopathological study revealed transient degenerative changes in the most acute phase, as livers of tilapia showed accumulation of lipids in hepatocytes 6 hours after administration of CCl4, and this fatty degeneration was no longer observed in 24 and 48h. However, administration of CCl4 in Nile tilapia resulted in acute and transient liver degeneration, characterized by accumulation of fat in hepatocytes, increased AST in the blood and hepatomegaly. With liver dysfunction there was compromise of cellular recruitment in infectious aerocystitis, indicating that there is liver involvement in the innate immune response in tilapia.(AU)
Subject(s)
Animals , Carbon Tetrachloride , Cichlids/physiology , Cichlids/blood , Fatty Liver/physiopathologyABSTRACT
Trachyspermum ammi (T. ammi) has been used in folk medicine as anti-inflammatory, antipyretic, antibacterial, antifungal agent. The present study was conducted to investigate the protective effect of Trachyspermum ammi (T. ammi) essential oil against CC14- induced nephrotoxicity in mice. Thirty-five mice were divided into five groups as follows; positive control received olive oil 1 mL/ kg/ip, negative control received CC14 1 mg/kg/ip + 0.5 mL distilled water orally and tree treatment groups which received CC14 similar to the negative control and 200, 800 and 1600 µg/kg of T. ammi essential oil, respectively. All treatments were done twice a week (Saturday and Wednesday) for 45 days. On the last day, blood was sampled for urea and creatinine assessment and the left kidney was removed for stereological estimations. Essential oil of T. ammi at high dose significantly (p ≤ 0.05) decreased serum levels of creatinine and urea in comparison with CC14-treated group. Total volume of the kidney, cortex, proximal convoluted tubules (PC), glomerulus, vessels and interstitial tissue as well as total length of PC and vessel were significantly (p ≤ 0.05) increased following CC14 administration and were restored toward normal levels at high dose of T. ammi. Also, high dose of T. ammi improved glomerular loss significantly (p ≤ 0.05) as compared with CC14-treated group. Due to the chemical composition of T. ammi essential oil such as tymol, p-cymene, γ-terpinene which are antioxidant, it can be concluded that the essential oil of T. ammi can ameliorated renal injury induced following CC14 toxicity via its antioxidant components.
En la medicina popular se ha utilizado el aceite esencial de Trachyspermum ammi (T. ammi) como agente antiinflamatorio, antipirético, antibacteriano y anti fúngico. El presente estudio se realizó para investigar el efecto protector de Trachyspermum ammi (T. ammi) aceite esencial contra la nefrotoxicidad inducida en ratones. Treinta y cinco ratones fueron divididos en cinco grupos de la siguiente manera; el control positivo recibió 1 mL / kg / ip de aceite de oliva, el control negativo recibió 1 mg / kg / ip + 0,5 mL de agua destilada por vía oral y grupos de tratamiento arbóreo que recibieron un control similar al negativo y 200, 800 y 1600 mg / kg de T. aceite esencial de T. ammi, respectivamente. Todos los tratamientos se realizaron dos veces por semana (sábado y miércoles) durante 45 días. En el último día de tratamiento, se tomaron muestras de sangre para evaluar la urea y la creatinina, y se extrajo el riñón izquierdo para realizar estimaciones estereológicas. El aceite esencial de T. ammi a dosis altas significativamente (p ≤ 0,05) disminuyó los niveles séricos de creatinina y urea en comparación con el grupo tratado. El volumen total del riñón, la corteza, los túbulos contorneados proximales (PC), el glomérulo, los vasos y el tejido intersticial, así como la longitud total de la PC y el vaso aumentaron significativamente (p ≤ 0,05) después de la administración y se restablecieron a niveles normales con dosis altas de T. ammi. Además, una dosis alta de T. ammi mejoró significativamente la pérdida glomerular (p ≤ 0,05) en comparación con el grupo tratado. Debido a la composición química del aceite esencial de T. ammi como timol, p-cimeno, 𝛾-terpineno con propiedades antioxidantes, se puede concluir que el aceite esencial de T. ammi puede mejorar la lesión renal inducida después de la toxicidad a través de sus componentes antioxidantes.
Subject(s)
Animals , Male , Mice , Oils, Volatile/administration & dosage , Carbon Tetrachloride/toxicity , Apiaceae , Kidney Diseases/prevention & control , Oils, Volatile/chemistry , Kidney/drug effects , Kidney Diseases/chemically induced , Gas Chromatography-Mass Spectrometry , Mice, Inbred BALB CABSTRACT
The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl₄)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl₄ (1.5 ml/kg, twice a week for 14 days). The administration of CCl₄ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2′-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl₄ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl₄ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl₄ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.
Subject(s)
Animals , Rats , Carbon Tetrachloride , Cytochrome P-450 CYP2E1 , DNA Damage , Feeding Behavior , Gene Expression , Glutathione , Glutathione Peroxidase , Hep G2 Cells , Incidence , Injections, Intraperitoneal , Lipid Peroxidation , Liver , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Silymarin , XenobioticsABSTRACT
BACKGROUND@#The current study aimed to investigate the hepatoprotective effects of Sasa veitchii extract (SE) on carbon tetrachloride (CCl)-induced liver fibrosis in mice.@*METHODS@#Male C57BL/6J mice were intraperitoneally injected with CCl dissolved in olive oil (1 g/kg) twice per week for 8 weeks. SE (0.1 mL) was administered orally once per day throughout the study, and body weight was measured weekly. Seventy-two hours after the final CCl injection, mice were euthanized and plasma samples were collected. The liver and kidneys were collected and weighed.@*RESULTS@#CCl administration increased liver weight, decreased body weight, elevated plasma alanine aminotransferase, and aspartate aminotransferase and increased liver oxidative stress (malondialdehyde and glutathione). These increases were attenuated by SE treatment. Overexpression of tumor necrosis factor-α was also reversed following SE treatment. Furthermore, CCl-induced increases in α-smooth muscle actin, a marker for hepatic fibrosis, were attenuated in mice treated with SE. Moreover, SE inhibited CCl-induced nuclear translocation of hepatic nuclear factor kappa B (NF-κB) p65 and phosphorylation of mitogen-activated protein kinase (MAPK).@*CONCLUSION@#These results suggested that SE prevented CCl-induced hepatic fibrosis by inhibiting the MAPK and NF-κB signaling pathways.