Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Article in English | WPRIM | ID: wpr-929136

ABSTRACT

Poly Adenylate Binding Protein Interacting protein 1 (PAIP1) plays a critical role in translation initiation and is associated with the several cancer types. However, its function and clinical significance have not yet been described in oral squamous cell carcinoma (OSCC) and its associated features like lymph node metastasis (LNM). Here, we used the data available from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to analyze PAIP1 expression in oral cancer. The publicly available data suggests that PAIP1 mRNA and protein levels were increased in OSCC. The high PAIP1 expression was more evident in samples with advanced stage, LNM, and worse pattern of invasion. Moreover, the in vitro experiments revealed that PAIP1 knockdown attenuated colony forming, the aggressiveness of OSCC cell lines, decreasing MMP9 activity and SRC phosphorylation. Importantly, we found a correlation between PAIP1 and pSRC through the analysis of the IHC scores and CPTAC data in patient samples. Our findings suggest that PAIP1 could be an independent prognostic factor in OSCC with LNM and a suitable therapeutic target to improve OSCC patient outcomes.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms , Lymphatic Metastasis , Mouth Neoplasms/pathology , Peptide Initiation Factors/metabolism , Prognosis , Proteomics , RNA-Binding Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck
2.
Chinese Journal of Lung Cancer ; (12): 226-235, 2022.
Article in Chinese | WPRIM | ID: wpr-928803

ABSTRACT

BACKGROUND@#A lack of effective treatment for lung squamous cell carcinoma (LUSC) makes it an important factor restricting the 5-year survival rate of non-small cell lung cancer (NSCLC). Long non-coding RNA 00668 (LINC00668) was reported to play crucial regulatory roles in the tumorigenesis and progression of various cancers; however, its role in LUSC is unclear. The aim of this study was to investigate the prognosis value and biological function of LINC00668 in NSCLC, especially in LUSC.@*METHODS@#The expression pattern of LINC00668 and its relationship with clinical characteristics and prognosis of patients were investigated in the NSCLC especially LUSC based on The Cancer Genome Altas (TCGA) database. Its function in LUSC cells was explored in vitro.@*RESULTS@#LINC00668 expression was significantly up-regulated in LUSC patients and high expression level of LINC00668 was associated with advanced tumor-node-metastasis (TMN) stage. Moreover, the expression of LINC00668 significantly increased in smoking patients, and was a prognostic indicator for overall survival (OS) of smoking patients with LUSC. In vitro experiments showed that LINC00668 has significantly higher expression level in LUSC cell lines and tissues compared to normal bronchial epithelial cell and para-tumor tissues; meanwhile, functional assay indicated knockdown of LINC00668 effectively inhibited the migration and invasion of LUSC cells.@*CONCLUSIONS@#LINC00668 might closely relate to the development of LUSC, and inhibition of LINC00668 may reduce the metastasis of LUSC.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell/genetics , Cell Movement/genetics , Lung , Lung Neoplasms/genetics , RNA, Long Noncoding/genetics
3.
Chinese Medical Journal ; (24): 606-618, 2022.
Article in English | WPRIM | ID: wpr-927543

ABSTRACT

BACKGROUND@#Gene promoter methylation is a major epigenetic change in cancers, which plays critical roles in carcinogenesis. As a crucial regulator in the early stages of B-cell differentiation and embryonic neurodevelopment, the paired box 5 (PAX5) gene is downregulated by methylation in several kinds of tumors and the role of this downregulation in esophageal squamous cell carcinoma (ESCC) pathogenesis remains unclear.@*METHODS@#To elucidate the role of PAX5 in ESCC, eight ESCC cell lines, 51 primary ESCC tissue samples, and eight normal esophageal mucosa samples were studied and The Cancer Genome Atlas (TCGA) was queried. PAX5 expression was examined by reverse transcription-polymerase chain reaction and western blotting. Cell apoptosis, proliferation, and chemosensitivity were detected by flow cytometry, colony formation assays, and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays in ESCC cell lines with PAX5 overexpression or silencing. Tumor xenograft models were established for in vivo verification.@*RESULTS@#PAX5 methylation was found in 37.3% (19/51) of primary ESCC samples, which was significantly associated with age (P = 0.007) and tumor-node-metastasis stage (P = 0.014). TCGA data analysis indicated that PAX5 expression was inversely correlated with promoter region methylation (r = -0.189, P = 0.011 for cg00464519 and r = -0.228, P = 0.002 for cg02538199). Restoration of PAX5 expression suppressed cell proliferation, promoted apoptosis, and inhibited tumor growth of ESCC cell lines, which was verified in xenografted mice. Ectopic PAX5 expression significantly increased p53 reporter luciferase activity and increased p53 messenger RNA and protein levels. A direct interaction of PAX5 with the p53 promoter region was confirmed by chromatin immunoprecipitation assays. Re-expression of PAX5 sensitized ESCC cell lines KYSE150 and KYSE30 to fluorouracil and docetaxel. Silencing of PAX5 induced resistance of KYSE450 cells to these drugs.@*CONCLUSIONS@#As a tumor suppressor gene regulated by promoter region methylation in human ESCC, PAX5 inhibits proliferation, promotes apoptosis, and induces activation of p53 signaling. PAX5 may serve as a chemosensitive marker of ESCC.


Subject(s)
Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial Cells/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , PAX5 Transcription Factor/genetics , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
4.
Article in English | WPRIM | ID: wpr-887754

ABSTRACT

OBJECTIVES@#To investigate the effects of circ_0005379 on the proliferation, apoptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) cells and its mechanism.@*METHODS@#Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of circ_0005379 and miR-17-5p in OSCC tissues and SCC15 cell lines. Western blot was used to detect the expression levels of acyl-CoA oxidase 1 (ACOX1). The circ_0005379 overexpression vector was transfected into SCC15 cells. Methyl thiazolyl tetrazolium blue staining, flow cytometry, Transwell, and Western blot were used to detect the effects of circ_0005379 overexpression on the proliferation, apoptosis, migration, and invasion of SCC15 cells and the expression of E-cadherin, β-catenin, and Snail proteins. Dual luciferase reporter assay and RNA immunoprecipitation were used to examine the regulation of circ_0005379, miR-17-5p, miR-17-5p, and ACOX1 in SCC15 cells. A nude mouse xenograft model of SCC15 cells stably overexpressing circ_0005379 was established, and the effect of circ_0005379 overexpression on the growth of xenografts in nude mice was observed.@*RESULTS@#Compared with adjacent cancer tissues, the expression levels of circ_0005379 and ACOX1 proteins in OSCC tissues were decreased (@*CONCLUSIONS@#circ_0005379 may inhibit the proliferation, migration, and invasion of OSCC cells by downregulating the expression of miR-17-5p and upregulating ACOX1, which promote apoptosis and inhibit tumor growth


Subject(s)
Animals , Humans , Mice , Acyl-CoA Oxidase , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Head and Neck Neoplasms , Mice, Nude , MicroRNAs , Mouth Neoplasms/genetics , RNA, Circular , Squamous Cell Carcinoma of Head and Neck
5.
Frontiers of Medicine ; (4): 275-291, 2021.
Article in English | WPRIM | ID: wpr-880954

ABSTRACT

Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER = 1.95, P = 0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide
6.
Article in English | WPRIM | ID: wpr-880866

ABSTRACT

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Subject(s)
Humans , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Head and Neck Neoplasms , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Phosphofructokinase-2/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Microenvironment
7.
Article in English | WPRIM | ID: wpr-921388

ABSTRACT

OBJECTIVES@#To investigate the expression and mechanism of the long non-coding RNA (lncRNA) HCG22 in oral squamous cell carcinoma (OSCC).@*METHODS@#HCG22 levels were detected in the OSCC and adjacent tissues, OSCC cells, and normal oral keratinocytes. HCG22 expression in SCC-25 and HSC-3 cells was upregulated by transfection of the overexpressing plasmi dvector. Methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, and Transwell assay were employed to detect changes in cell proliferation, apoptosis, migration, and invasion ability, while Western blotting was used to detect the expression of epithelial-mesenchymal transformation-related proteins. The expression level of miR-650 in the cells was detected by real-time quantitative polymerase chain reaction (RT-qPCR), and dual-luciferase reporter gene assay was applied to assess the targeting relationship between HCG22 and miR-650.@*RESULTS@#Compared with that in adjacent tissues, the expression of HCG22 significantly decreased in OSCC tissues (@*CONCLUSIONS@#HCG22 is expressed at low levels in OSCC. Upregulation of the expression of this lncRNA can inhibit the proliferation, migration, invasion, and epithelial-mesenchymal transition of OSCC cells. The mechanism of action of HCG22 may be related to its targeted regulation of miR-650.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , MicroRNAs/genetics , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , Squamous Cell Carcinoma of Head and Neck
8.
Chinese Medical Journal ; (24): 2999-3008, 2021.
Article in English | WPRIM | ID: wpr-921262

ABSTRACT

BACKGROUND@#The association between miR-532-3p and tongue squamous cell carcinoma (TSCC) has been examined in the literature to improve the survival rate of patients with this tumor. However, further studies are needed to confirm the regulatory roles of this microRNA (miRNA) in TSCC. The objective of this study was to investigate the roles played by and the underlying mechanism used by the miR-532-3p/podoplanin (PDPN) axis in TSCC development.@*METHODS@#Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) were performed to evaluate the PDPN expression level in TSCC tissues and cells. The proliferative, adhesive, and migratory capabilities of TSCC cells (CAL-27 and CTSC-3) were examined using cell counting kit-8 (CCK-8), cell adhesion, and wound-healing assays, respectively. The dual-luciferase reporter (DLR) assay was later conducted to confirm the relationship between miR-532-3p and PDPN.@*RESULTS@#The results indicated that PDPN expression was enriched in TSCC tissues and cells, and that the expression of PDPN was associated with some clinicopathological parameters of TSCC, including lymph node metastasis (P = 0.001), tumor-node-metastasis (TNM) staging (P = 0.010), and grading (P = 0.010). Further analysis also showed that PDPN knockdown inhibited the viability, adhesive ability, and migratory capacity of CAL-27 and CTSC-3 cells, effects that could be reversed by the application of a miR-532-3p inhibitor. Additionally, PDPN was found to be a direct target of miR-532-3p.@*CONCLUSIONS@#This research suggested that by targeting PDPN, miR-532-3p could inhibit cell proliferation viability, adhesion, and migration in TSCC. Findings also revealed that the miR-532-3p/PDPN axis might provide more insights into the prognosis and treatment of TSCC.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Membrane Glycoproteins , MicroRNAs/genetics , Tongue Neoplasms/genetics
9.
Article in Chinese | WPRIM | ID: wpr-878425

ABSTRACT

OBJECTIVES@#To investigate the expression of cyclophilin A (CyPA) in oral squamous cell carcinoma (OSCC) and explore the effect of downregulating the expression of CyPA gene on the proliferation and invasion of SCC-25 cells.@*METHODS@#A total of 77 cases of patients with OSCC were selected. The expression levels of CyPA proteins in OSCC and adjacent normal tissues were evaluated. SCC-25 cells were cultured and divided into the CyPA interference sequence group, negative control group, and blank group. The expression levels of CyPA mRNA and protein in cells were detected by using real-time fluorescent quantitative polymerase chain reaction and Western blot, respectively. Cell proliferation was detected by using methyl thiazolyl tetrazolium and plate colony formation assays. Cell invasion was detected by using Transwell assay.@*RESULTS@#The positive expression rate of CyPA protein in OSCC tissues was 76.62%, which was higher than that in adjacent tissues (@*CONCLUSIONS@#The CyPA protein is highly expressed in OSCC tissues, and the downregulation of CyPA gene expression in SCC-25 cells can reduce cell proliferation and inhibit cell invasion.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclophilin A/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck
10.
Article in English | WPRIM | ID: wpr-878413

ABSTRACT

OBJECTIVES@#A study was conducted to investigate the molecular mechanism of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) influencing the invasion and metastasis of tongue squamous cell carcinoma and to provide a new target for clinical inhibition of invasion and metastasis of tongue squamous cell carcinoma.@*METHODS@#Ualcan website was used to analyze the expression of CHD1L in normal epithelial tissue and primary head and neck squamous cell carcinoma and to analyze the effect of lymph node metastasis on the expression of CHD1L in tissues with head and neck squamous cell carcinoma. The relationship between CHD1L expression and the survival rate of patients with head and neck squamous cell carcinoma was tested by the GEPIA website. Western blot was used to quantify the levels of CHD1L protein in human tongue squamous cell carcinoma CAL27 and immortalized human skin keratinocyte cell HaCaT. After knocking down CAL27 in human tongue squamous cell carcinoma cells with an RNA interference plasmid, the cells were designated as SiCHD1L/CAL27 and Scr/CAL27. Western blot was utilized to detect the expression of CHD1L in each group of cells. The change in CAL27 cell proliferation ability was tested by EdU proliferation test after CHD1L knockdown. The change of cell migration ability of each group cells was tested through the wound healing assay. Western blot was used to detect epithelial-mesenchymal transition (EMT) marker E-cadherin and Vimentin protein expression levels.@*RESULTS@#Ualcan database showed that the expression of CHD1L in primary head and neck squamous cell carcinoma tissues was higher than in normal epithelial tissues and in head and neck squamous cell carcinoma tissues with lymph node metastasis. GEPIA website analysis showed that the overall survival rate of patients with head and neck squamous cell carcinoma with high expression of CHD1L was significantly lower than that of patients with low expression. Western blot results showed that CHD1L expression in human tongue squamous carcinoma cells CAL27 was higher than that of human normal skin cells HaCaT. CHD1L expression in SiCHD1L/CAL27 cells was much lower than that in Scr/CAL27 cells. Results of EdU proliferation experiments showed the significant reduction in the cell proliferation ability of the SiCHD1L/CAL27 cells. Results of the wound healing experiments showed the reduction in the migration capacity of the SiCHD1L/CAL27 cells. The expression of E-cadherin increased, whereas that of Vimentin decreased, in SiCHD1L/CAL27 cells.@*CONCLUSIONS@#CHD1L promoted the EMT, proliferation, migration, and invasion ability of tongue squamous cell carcinoma cells.


Subject(s)
Humans , Adenosine Triphosphatases , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA Helicases , DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Neoplasm Invasiveness/genetics , Tongue , Tongue Neoplasms/genetics
11.
Chinese Medical Journal ; (24): 708-715, 2021.
Article in English | WPRIM | ID: wpr-878092

ABSTRACT

BACKGROUND@#Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers without effective therapy. To explore potential molecular targets in ESCC, we quantified the mutation spectrum and explored the relationship between gene mutation and clinicopathological characteristics and programmed death-ligand 1 (PD-L1) expression.@*METHODS@#Between 2015 and 2019, 29 surgically resected ESCC tissues and adjacent normal tissues from the Fourth Hospital of Hebei Medical University were subjected to targeted next-generation sequencing. The expression levels of PD-L1 were detected by immunohistochemistry. Mutational signatures were extracted from the mutation count matrix by using non-negative matrix factorization. The relationship between detected genomic alterations and clinicopathological characteristics and PD-L1 expression was estimated by Spearman rank correlation analysis.@*RESULTS@#The most frequently mutated gene was TP53 (96.6%, 28/29), followed by NOTCH1 (27.6%, 8/29), EP300 (17.2%, 5/29), and KMT2C (17.2%, 5/29). The most frequently copy number amplified and deleted genes were CCND1/FGF3/FGF4/FGF19 (41.4%, 12/29) and CDKN2A/2B (10.3%, 3/29). By quantifying the contribution of the mutational signatures to the mutation spectrum, we found that the contribution of signature 1, signature 2, signature 10, signature 12, signature 13, and signature 17 was relatively high. Further analysis revealed genetic variants associated with cell cycle, chromatin modification, Notch, and Janus kinase-signal transducer and activator of transcription signaling pathways, which may be key pathways in the development and progression of ESCC. Evaluation of PD-L1 expression in samples showed that 13.8% (4/29) of samples had tumor proportion score ≥1%. 17.2% (5/29) of patients had tumor mutation burden (TMB) above 10 mut/Mb. All samples exhibited microsatellite stability. TMB was significantly associated with lymph node metastasis (r = 0.468, P = 0.010), but not significantly associated with PD-L1 expression (r = 0.246, P = 0.198). There was no significant correlation between PD-L1 expression and detected gene mutations (all P > 0.05).@*CONCLUSION@#Our research initially constructed gene mutation profile related to surgically resected ESCC in high-incidence areas to explore the mechanism underlying ESCC development and potential therapeutic targets.


Subject(s)
Humans , B7-H1 Antigen , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , High-Throughput Nucleotide Sequencing , Mutation/genetics
12.
Article in Chinese | WPRIM | ID: wpr-942490

ABSTRACT

Objective: To explore the role and mechanism of long non-coding RNA RP11-159K7.2 in the progression of sinonasal squamous cell carcinoma (SNSCC). Methods: Sixty-five cases of SNSCC tissues and adjacent tissues were selected from the Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Harbin Medical University from 2009 to 2014. The expression of RP11-159K7.2 in SNSCC and adjacent tissues was detected by RNAscope in situ hybridization to observe its association with prognosis. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins 9 (CRISPR/Cas9) was used to knockout the expression of RP11-159K7.2 in RPMI-2650 cells (SNSCC cell line). Cell counting kit-8 (CCK-8), wound healing and Transwell were performed to observe the changes of proliferation, migration and invasion of SNSCC cells in vitro after down-regulation of RP11-159K7.2. Moreover, the growth of xenograft in nude mice after down-regulation of RP11-159K7.2 was examined in vivo. Mechanically, the protein chip, Western blot and RNA immunoprecipitation were performed to identify the proteins bound by RP11-159K7.2. SPSS 17.0 was used for statistical analysis. Results: The expression of RP11-159K7.2 in SNSCC tissue was significantly higher than that in adjacent tissues. RP11-159K7.2 expression was closely related with T grade, nodal metastasis and differentiation of SNSCC (χ2 value was 4.697, 4.235 and 10.753, respectively, all P<0.05). The five-year survival rate of RP11-159K7.2 high expression patients was significantly lower than that of RP11-159K7.2 low expression ones (P=0.013 7). After the down-regulation of RP11-159K7.2, the proliferation, migration and invasion ability of SNSCC cells decreased significantly, and the growth of SNSCC xenograft was significantly inhibited. There were 31 candidate proteins that may bind to RP11-159K7.2. RP11-159K7.2 directly bound to nuclear factor-κB (NF-κB) in SNSCC cells, and the regulation of RP11-159K7.2 on the proliferation and invasion of SNSCC cells depended on NF-κB. Conclusion: The increased expression of RP11-159K7.2 in SNSCC may serve as a potential molecular marker for SNSCC prognosis assessment. It is currently considered that the carcinogenic mechanism of RP11-159K7.2 in SNSCC is related to the regulation of NF-κB protein.


Subject(s)
Animals , Humans , Mice , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Transplantation , Prognosis , RNA, Long Noncoding/genetics
13.
Braz. j. med. biol. res ; 54(10): e10837, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285644

ABSTRACT

Circular RNAs (circRNAs) have been extensively elucidated with regard to their significant implications in oral squamous cell carcinoma (OSCC). This study performed the functional investigation of circRNA dehydrogenase E1 and transketolase domain containing 1 (circDHTKD1) in OSCC. RNA expression levels of different molecules were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular behaviors were detected by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) for cell viability, colony formation assay for clonal capacity, flow cytometry for cell apoptosis, wound healing assay for migration, and transwell assay for migration/invasion. Western blot was used for analyzing protein expression. RNA pull-down and dual-luciferase reporter assays were applied to assess the binding between targets. A xenograft tumor model was established in nude mice for in vivo experiments. Our expression analysis revealed that circDHTKD1 was upregulated in OSCC tissues and cells. circDHTKD1 knockdown was shown to impede OSCC cell growth and metastasis but motivate apoptosis. Additionally, circDHTKD1 served as a microRNA-326 (miR-326) sponge and the function of circDHTKD1 was achieved by sponging miR-326 in OSCC cells. Also, miR-326 inhibited OSCC development via targeting GRB2-associated-binding protein 1 (GAB1). circDHTKD1 could sponge miR-326 to alter GAB1 expression. Furthermore, circDHTKD1 contributed to OSCC progression in vivo via the miR-326/GAB1 axis. These data disclosed a specific circDHTKD1/miR-326/GAB1 signal axis in governing the malignant progression of OSCC, showing the considerable possibility of circDHTKD1 as a predictive and therapeutic target for clinical diagnosis and treatment of OSCC.


Subject(s)
Animals , Rabbits , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Head and Neck Neoplasms , Cell Movement , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Squamous Cell Carcinoma of Head and Neck , Mice, Nude
14.
Braz. j. med. biol. res ; 54(8): e10877, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249331

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is among the ten most frequent and deadly cancers, without effective therapies for most patients. More recently, drugs targeting deregulated growth factor signaling receptors have been developed, such as HGF-MET targeted therapy. We assessed MET and HGF genetic alterations and gene and protein expression profiles in ESCC patients from the Brazilian National Cancer Institute and publicly available datasets, as well as the intratumor heterogeneity of the alterations found. Our analyses showed that HGF and MET genetic alterations, both copy number and mutations, are not common in ESCC, affecting 5 and 6% of the cases, respectively. HGF showed a variable mRNA expression profile between datasets, with no alterations (GSE20347), downregulation (GSE45670), and upregulation in ESCC (our dataset and GSE75241). On the other hand, MET was found consistently upregulated in ESCC compared to non-tumor surrounding tissue, with median fold-changes of 5.96 (GSE20347), 3.83 (GSE45670), 6.02 (GSE75241), and 5.0 (our dataset). Among our patients, 84% of the tumors showed at least a two-fold increase in MET expression. This observation was corroborated by protein levels, with 55% of cases exhibiting positivity in 100% of the tumor cells. Intratumor heterogeneity was evaluated in at least four tumor biopsies from five patients and two cases showed a consistent increase in MET expression (at least two-fold) in all tumor samples. Our data suggested that HGF-MET signaling pathway was likely to be overactivated in ESCC, representing a potential therapeutic target, but eligibility for this therapy should consider intratumor heterogeneity.


Subject(s)
Humans , Esophageal Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Esophageal Squamous Cell Carcinoma/genetics , Head and Neck Neoplasms , Brazil , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Cell Line, Tumor
15.
Braz. j. med. biol. res ; 54(5): e10093, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153556

ABSTRACT

The aim of this study was to explore the effect of hsa_circ_0002162 on regulating cell proliferation, apoptosis, and invasion, and investigate its potential target microRNA (miRNA) in tongue squamous cell carcinoma (TSCC). Hsa_circ_0002162 expression was detected in human TSCC cell lines and human oral keratinocytes (HOK) cell line. Cell proliferation, apoptosis, invasion, and candidate target miRNA expressions were detected in hsa_circ_0002162 knockdown-treated CAL-27 cells and hsa_circ_0002162 overexpression-treated SCC-9 cells. In the rescue experiment, miR-33a-5p knockdown plasmid was transfected into hsa_circ_0002162 knockdown-treated CAL-27 cells, while miR-33a-5p overexpression plasmid was transfected into hsa_circ_0002162 overexpression-treated SCC-9 cells. Subsequently, cell proliferation, apoptosis, and invasion were detected, and then luciferase reporter assay was performed. Hsa_circ_0002162 expression was increased in human TSCC cell lines SCC-9, CAL-27, HSC-4, and SCC-25 compared with HOK. In CAL-27 cells, hsa_circ_0002162 knockdown inhibited cell proliferation and invasion and promoted apoptosis. In SCC-9 cells, hsa_circ_0002162 overexpression enhanced cell proliferation and invasion and suppressed apoptosis. Furthermore, a negative regulation of hsa_circ_0002162 on miR-33a-5p (but not miR-302b-5p and miR-545-5p) was observed. In the rescue experiment, miR-33a-5p knockdown increased cell proliferation and invasion, and decreased apoptosis in hsa_circ_0002162 knockdown-treated CAL-27 cells, whereas miR-33a-5p overexpression decreased cell proliferation and invasion, but increased apoptosis in hsa_circ_0002162 overexpression-treated SCC-9 cells. The luciferase reporter assay showed the direct binding of hsa_circ_0002162 to miR-33a-5p. In conclusion, hsa_circ_0002162 had an important role in malignant progression of TSCC through targeting miR-33a-5p.


Subject(s)
Humans , Tongue Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Tongue , Cell Line, Tumor , RNA, Circular
16.
Braz. oral res. (Online) ; 35: e019, 2021. tab
Article in English | LILACS, BBO | ID: biblio-1132747

ABSTRACT

Abstract Matrix degradation is an important event in the progression, invasion and metastasis of malignant head and neck lesions. Imbalances, mutations and polymorphisms of MMPs and their inhibitors are observed in several cancer subtypes. The aim of this study was to evaluate the association of the MMP-7 gene promoter (181 A/G) and MMP-9 (-1562 C/T) polymorphisms in oral tongue squamous cell carcinoma (OTSCC). MMP-7 (rs11568818) and MMP-9 (rs3918242) single-nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 71 cases of OTSCC. Normal tissue specimens were obtained from 60 healthy volunteers to serve as the control. The MMP-7 G allele and MMP-9 T allele were more frequent in the OTSCC group than the control group, but only when these two SNPs were taken together was a significant association found with the nodal metastasis of OTSCC (p < 0.001). Based on our results, SNPs in the promoter region of MMP-7 and MMP-9 appear to be associated with greater risk of developing OTSCC, and with a higher propensity to form metastatic tumors. In this respect, molecular studies investigating polymorphisms may be useful in predicting tumor behavior.


Subject(s)
Humans , Tongue Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 7/genetics , Case-Control Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genotype
17.
Braz. dent. j ; 31(6): 634-639, Nov.-Dec. 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132353

ABSTRACT

Abstract Micro-RNA-221(miR-221) is one of oncogenic miRNAs that plays a vital role in the development and progression of oral cancers. The aim of this study is to introduce a new gene therapy for oral squamous cell carcinoma by blocking the expression of oncogenic miR-221 by its inhibitor. The present work was performed on squamous cell carcinoma cell line SCC-25 and anti-miR-221 was delivered to the cells using an ultrasound micro bubbles. Assessment of the effect of miR-221 inhibitor on SCC-25 cells was done using MTT assay, cell cycle analysis and apoptosis detection. In addition, reverse transcription-polymerase chain reaction was also used to detect the expression -miR-221 and its target genes. Using ANOVA, statistical analysis of the results showed significant inhibition of cell viability with and induction of cell apoptosis of SCC-25 cell line after transfection. Moreover, the expression of miR-221, Epidermal growth factor receptor (EGFR) and CDKNIB/p27 were downregulated without significant difference. Transfection of SCC-25 by inhibitor of miR-221 resulting in blockage of its expression leading to arresting of tumor growth. These results proved the effective role of micro-RNA inhibitors as novel therapeutic agent for oral cancers.


Resumo Micro-RNA-221 (miR-221) é um dos miRNAs oncogênicos que desempenham um papel vital no desenvolvimento e progressão de carcinomas orais. O objetivo deste estudo é apresentar uma nova terapia gênica para o carcinoma epidermóide oral por meio do bloqueio da expressão do miR-221 oncogênico por seu inibidor. O presente trabalho foi realizado na linhagem de células de carcinoma de células escamosas SCC-25 e o anti-miR-221 foi administrado às células usando micro-bolhas de ultrassom. A avaliação do efeito do inibidor miR-221 em células SCC-25 foi feita usando ensaio de MTT, análise do ciclo celular e detecção de apoptose. Além disso, a reação em cadeia da polimerase com transcrição reversa também foi usada para detectar a expressão -miR-221 e seus genes-alvo. Usando ANOVA, a análise estatística dos resultados mostrou inibição significativa da viabilidade celular e indução da apoptose celular da linhagem celular SCC-25 após a transfecção. Além disso, a expressão de miR-221, receptor do fator de crescimento epidérmico (EGFR) e CDKNIB/p27 foram regulados para baixo sem diferença significativa. A transfecção de SCC-25 por inibidor de miR-221 resultou no bloqueio de sua expressão, levando à interrupção do crescimento do tumor. Esses resultados comprovaram o papel eficaz dos inibidores de micro-RNA como novo agente terapêutico para carcinomas orais.


Subject(s)
Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/therapeutic use , Mouth Neoplasms/therapy , Genetic Therapy , Apoptosis , Cell Line, Tumor , Cell Proliferation
18.
Braz. j. med. biol. res ; 53(12): e9317, 2020. graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132508

ABSTRACT

LINC00355 has been reported aberrantly over-expressed and associated with poor prognosis in various types of cancer. However, reports regarding the effect of LINC00355 on lung squamous cell carcinoma (SCC) are rare. This study aimed to explore the function of LINC00355 in the development and progression of lung SCC and reveal the underlying mechanism. The expression and subcellular location of LINC00355 were determined by qRT-PCR and RNA-FISH, respectively. The lung SCC cell growth was analyzed by CCK-8 assay, transwell invasion, wound healing, colony formation, and flow cytometry assays. Reactive oxygen species level was evaluated by DCFH-DA probes. Bioinformatics online websites, luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), and RNA pull-down assays were utilized to investigate the interaction among LINC00355, miR-466, and Ly-1 antibody reactive clone (LYAR). The results showed that LINC00355 was upregulated in lung SCC and was positively associated with poor overall survival in lung SCC patients. LINC00355 was mainly located in the cytoplasm of SCC cells. Additionally, LINC0035 functioned as a competing endogenous RNA (ceRNA) to target miR-466, and LYAR was identified as a direct target of miR-466. LINC00355 expression negatively correlated with miR-466 level, and positively correlated with LYAR level. Mechanistically, knockdown of LINC00355 inhibited cell proliferation, migration and invasion, promoted cell apoptosis in vitro, and suppressed tumor growth in vivo through targeting miR-466, and thus down-regulated LYAR expression. These findings provide a new sight for understanding the molecular mechanism of lung SCC and indicate that LINC00355 may serve as a potential biomarker for the diagnosis and treatment of lung SCC.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , RNA, Long Noncoding/genetics , Lung Neoplasms/genetics , Nuclear Proteins , Gene Expression Regulation, Neoplastic , Clone Cells , MicroRNAs , Cell Line, Tumor , DNA-Binding Proteins , Lung
19.
Article in Chinese | WPRIM | ID: wpr-878384

ABSTRACT

OBJECTIVE@#The microRNA (miRNA) prognostic model can predict the prognosis of patients with oral squamous cell carcinoma (OSCC) on the basis of bioinformatics. Moreover, it can accurately group OSCC patients to improve targeted treatment.@*METHODS@#We downloaded the miRNA and mRNA expression profile and clinical data of OSCC from The Cancer Genome Atlas (TCGA). The risk score model of miRNA was screened and established by univariate and multivariate Cox regression models. The performance of this prognostic model was tested by receiver operating characteristic (ROC) curves and area under the curve (AUC). The target genes of six miRNAs were predicted and intersected with differential mRNA for enrichment analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and gene ontology (GO) enrichment analysis. A protein protein interaction network (PPI) was constructed to screen hub genes.@*RESULTS@#By using univariate and multivariate Cox regression analyses, the prognostic risk model was obtained. The AUC of the ROC curve for predicting 5-year survival in the training group, test group, and whole cohort were 0.757, 0.673, and 0.724, respectively. Furthermore, univariate Cox regression and multivariate Cox regression considering other clinical factors showed that the six-miRNAs signature could serve as an independent prognostic factor (P<0.001). The top 10 hub genes in the PPI network screened by intersecting target genes include CCNB1, EGF, KIF23, MCM10, ITGAV, MELK, PLK4, ADCY2, CENPF, and TRIP13. EGF and ADCY2 were associated with survival prognosis (P<0.05).@*CONCLUSIONS@#The six-miRNAs signature could efficiently function as a novel and independent prognostic model for OSCC patients, which may be a new method to guide the accurate targeting treatment of OSCC.


Subject(s)
Humans , ATPases Associated with Diverse Cellular Activities , Biomarkers, Tumor , Carcinoma, Squamous Cell/genetics , Cell Cycle Proteins , Computational Biology , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck
20.
Salud pública Méx ; 61(3): 329-338, may.-jun. 2019. graf
Article in English | LILACS | ID: biblio-1094471

ABSTRACT

Abstract: Objective: To review the state-of-the-art in relation to the current information on squamous cell lung cancer (SCLC). We describe the genetic anomalies reported, their effect, and finally the most promising therapeutic agents. Materials and methods: We reviewed published articles in peer-reviewed journals as well as current treatment guidelines from local and international resources. Results: SCLC represents a smaller proportion of the global burden of disease for lung cancer compared to its more frequent presentation, the adenocarcinoma. However, more than 400 000 cases are reported annually, a substantial population for whom therapeutic options are scarce and with limited efficacy. Several groups have been given the task of elucidating the mechanisms that lead to the development of SCLC, including molecular anomalies that can be used as targets for drug design. Conclusion: There are potential therapeutic targets for SCLC, which must be studied in clinical trials for validation.


Resumen: Objetivo: Revisar el estado del arte en relación con la información actual sobre el cáncer de pulmón de células escamosas (CPCE) y describir las anomalías genéticas reportadas, su efecto y los agentes terapéuticos más prometedores. Material y métodos: Se realizó una revisión de artículos publicados en revistas indizadas, así como las guías de tratamiento publicadas por instancias locales e internacionales. Resultados: El CPCE representa una proporción menor de la carga mundial de la enfermedad por cáncer pulmonar en comparación con su presentación más frecuente, el adenocarcinoma. Sin embargo, más de 400 000 casos son reportados anualmente, una población sustancial para quienes las opciones terapéuticas son escasas y con una eficacia limitada. Diversos grupos se han dado a la tarea de elucidar los mecanismos que conllevan al desarrollo del CPCE, incluyendo anomalías moleculares que puedan servir como blancos para el diseño de fármacos. Conclusiones: Existen blancos terapéuticos potenciales para el CPCE que deben ser estudiados en ensayos clínicos para ser validados.


Subject(s)
Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Precision Medicine , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL