Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.472
Filter
1.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Article in English | LILACS | ID: biblio-1528818

ABSTRACT

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Subject(s)
Animals , Male , Mice , Osteoporosis/drug therapy , Resveratrol/administration & dosage , Osteogenesis/drug effects , Cell Differentiation/drug effects , Blotting, Western , Disease Models, Animal , Sirtuin 1 , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Resveratrol/pharmacology , Mice, Inbred C57BL
2.
Braz. j. biol ; 84: e250151, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350306

ABSTRACT

Abstract Mammals have a limited capacity to regenerate their tissues and organs. One of the mechanisms associated with natural regeneration is dedifferentiation. Several small molecules such as vitamin C and growth factors could improve reprogramming efficiency. In this study, the NTERA2-D1 (NT2) cells were induced towards differentiation (NT2-RA) with 10-5 M retinoic acid (RA) for three days and then subjected to various amounts of vitreous humor (VH). Results show that the growth rate of these cells was reduced, while this rate was partly restored upon treatment with VH (NT2-RA-VH). Cell cycle analysis with PI method also showed that the numbers of cells at the S phase of the cell cycle in these cells were increased. The levels of SSEA3 and TRA-1-81 antigens in NT2-RA were dropped but they increased in NT2- RA-VH to a level similar to the NT2 cells. The level of SSEA1 had an opposite pattern. Expression of OCT4 gene dropped after RA treatment, but it was recovered in NT2-RA-VH cells. In conclusion, we suggest VH as a potent mixture for improving the cellular reprogramming leading to dedifferentiation.


Resumo Os mamíferos têm uma capacidade limitada de regenerar seus tecidos e órgãos. Um dos mecanismos associados à regeneração natural é a desdiferenciação. Várias moléculas pequenas, como vitamina C e fatores de crescimento, podem melhorar a eficiência da reprogramação. Neste estudo, as células NTERA2-D1 (NT2) foram induzidas à diferenciação (NT2-RA) com ácido retinóico (RA) 10-5 M por três dias e depois submetidas a várias quantidades de humor vítreo (VH). Os resultados mostram que a taxa de crescimento dessas células foi reduzida, enquanto essa taxa foi parcialmente restaurada após o tratamento com VH (NT2-RA-VH). A análise do ciclo celular com o método PI também mostrou que o número de células na fase S do ciclo celular nessas células estava aumentado. Os níveis de antígenos SSEA3 e TRA-1-81 em NT2-RA diminuíram, mas aumentaram em NT2-RA-VH a um nível semelhante ao das células NT2. O nível de SSEA1 teve um padrão oposto. A expressão do gene OCT4 diminuiu após o tratamento com AR, mas foi recuperado em células NT2-RA-VH. Em conclusão, sugerimos o VH como uma mistura potente para melhorar a reprogramação celular levando à desdiferenciação.


Subject(s)
Humans , Vitreous Body , Cell Proliferation , Cell Dedifferentiation , Tretinoin , Tumor Cells, Cultured , Cell Differentiation , Cell Division , Cell Line
3.
Actual. osteol ; 19(2): 128-143, sept. 2023. ilus, tab
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1523882

ABSTRACT

El presente trabajo muestra la obtención de un material a partir de un polímero sintético (TerP) y otro natural, mediante entrecruzamiento físico y su caracterización fisicoquímica y biológica, con el fin de emplearlos para regeneración de tejido óseo. Las membranas fueron obtenidas por la técnica de evaporación del solvente y caracterizadas por espectroscopia FTIR, ensayos de hinchamiento, medidas de ángulo de contacto y microscopia electrónica de barrido (SEM). Se encontró que la compatibilidad entre los polímeros que la constituyen es estable a pH fisiológico y que, al incorporar mayor cantidad del TerP a la matriz, esta se vuelve más hidrofóbica y porosa. Además, teniendo en cuenta la aplicación prevista para dichos materiales, se realizaron estudios de biocompatibilidad y citotoxicidad con células progenitoras de médula ósea (CPMO) y células RAW264.7, respectivamente. Se evaluó la proliferación celular, la producción y liberación de óxido nítrico (NO) al medio de cultivo durante 24 y 48 horas y la expresión de citoquinas proinflamatorias IL-1ß y TNF-α de las células crecidas sobre los biomateriales variando la cantidad del polímero sintético. Se encontró mayor proliferación celular y menor producción de NO sobre las matrices que contienen menos proporción del TerP, además de poseer una mejor biocompatibilidad. Los resultados de este estudio muestran que el terpolímero obtenido y su combinación con un polímero natural es una estrategia muy interesante para obtener un biomaterial con posibles aplicaciones en medicina regenerativa y que podría extenderse a otros sistemas estructuralmente relacionados. (AU)


In the present work, the preparation of a biomaterial from a synthetic terpolymer (TerP) and a natural polymer, physically crosslinked, is shown. In order to evaluate the new material for bone tissue regeneration, physicochemical and biological characterizations were performed. The membranes were obtained by solvent casting and characterized using FTIR spectroscopy, swelling tests, contact angle measurements, and scanning electron microscopy (SEM). It was found that the compatibility between the polymers is stable at physiological pH and the incorporation of a higher amount of TerP into the matrix increases hydrophobicity and porosity.Furthermore, considering the intended application of these materials, studies of biocompatibility and cytotoxicity were conducted with Bone Marrow Progenitor Cells (BMPCs) and RAW264.7 cells, respectively. Cell proliferation, NO production and release into the culture medium for 24 and 48 hours, and proinflammatory cytokine expression of IL-1ß and TNF-α from cells grown on the biomaterials while varying the amount of the synthetic polymer were evaluated. Greater cell proliferation and lower NO production were found on matrices containing a lower proportion of TerP, in addition to better biocompatibility. The results of this study demonstrate that the obtained terpolymer and its combination with a natural polymer is a highly interesting strategy for biomaterial preparation with potential applications in regenerative medicine. This approach could be extended to other structurally related systems. (AU)


Subject(s)
Animals , Rats , Osteogenesis , Polymers/chemistry , Biocompatible Materials/chemical synthesis , Bone and Bones/chemistry , Bone Regeneration , Chitosan/chemistry , Polymers/toxicity , Biocompatible Materials/toxicity , Materials Testing , Cell Differentiation , Chromatography, Gel , Spectroscopy, Fourier Transform Infrared , Cell Culture Techniques , Nuclear Magnetic Resonance, Biomolecular , Chitosan/toxicity
4.
Biol. Res ; 56: 7-7, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429908

ABSTRACT

BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs. Key points Knockdown of YULINK with morpholino in embryos of double transgenic zebrafish exhibited abnormal venous formation. Tube formation and phosphorylated EPHB4 were decreased in YULINK knockdown HUVECs. FLIM-FRET, immunoprecipitation, as well as other imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B and TICAM2) and endosome markers (Clathrin and RHOB). Knockdown of YULINK decreased the internalization of VEGF and VEGFR2 in HUVECs.


Subject(s)
Humans , Animals , Saccharomyces cerevisiae , Zebrafish/genetics , Cell Differentiation , Cell Movement , Neovascularization, Physiologic , Human Umbilical Vein Endothelial Cells
5.
Chinese Journal of Biotechnology ; (12): 2695-2705, 2023.
Article in Chinese | WPRIM | ID: wpr-981226

ABSTRACT

The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.


Subject(s)
Animals , Lipogenesis/genetics , Adipogenesis/genetics , Goats/genetics , Adipocytes , Cell Differentiation/genetics , Sequence Analysis , Cloning, Molecular
6.
Chinese Journal of Biotechnology ; (12): 1773-1788, 2023.
Article in Chinese | WPRIM | ID: wpr-981169

ABSTRACT

A triple-transgenic (tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1) bone marrow mesenchymal stem cell line (BMSCs) capable of stably synthesizing dopamine (DA) transmitters were established to provide experimental evidence for the clinical treatment of Parkinson's disease (PD) by using this cell line. The DA-BMSCs cell line that could stably synthesize and secrete DA transmitters was established by using the triple transgenic recombinant lentivirus. The triple transgenes (TH/DDC/GCH1) expression in DA-BMSCs was detected using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Moreover, the secretion of DA was tested by enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). Chromosome G-banding analysis was used to detect the genetic stability of DA-BMSCs. Subsequently, the DA-BMSCs were stereotactically transplanted into the right medial forebrain bundle (MFB) of Parkinson's rat models to detect their survival and differentiation in the intracerebral microenvironment of PD rats. Apomorphine (APO)-induced rotation test was used to detect the improvement of motor dysfunction in PD rat models with cell transplantation. The TH, DDC and GCH1 were expressed stably and efficiently in the DA-BMSCs cell line, but not expressed in the normal rat BMSCs. The concentration of DA in the cell culture supernatant of the triple transgenic group (DA-BMSCs) and the LV-TH group was extremely significantly higher than that of the standard BMSCs control group (P < 0.000 1). After passage, DA-BMSCs stably produced DA. Karyotype G-banding analysis showed that the vast majority of DA-BMSCs maintained normal diploid karyotypes (94.5%). Moreover, after 4 weeks of transplantation into the brain of PD rats, DA-BMSCs significantly improved the movement disorder of PD rat models, survived in a large amount in the brain microenvironment, differentiated into TH-positive and GFAP-positive cells, and upregulated the DA level in the injured area of the brain. The triple-transgenic DA-BMSCs cell line that stably produced DA, survived in large numbers, and differentiated in the rat brain was successfully established, laying a foundation for the treatment of PD using engineered culture and transplantation of DA-BMSCs.


Subject(s)
Rats , Animals , Dopamine , Parkinson Disease/metabolism , Mesenchymal Stem Cells/metabolism , Cell Line , Brain/metabolism , Cell Differentiation , Mesenchymal Stem Cell Transplantation
7.
Chinese Journal of Biotechnology ; (12): 1684-1695, 2023.
Article in Chinese | WPRIM | ID: wpr-981163

ABSTRACT

C-fos is a transcription factor that plays an important role in cell proliferation, differentiation and tumor formation. The aim of this study was to clone the goat c-fos gene, clarify its biological characteristics, and further reveal its regulatory role in the differentiation of goat subcutaneous adipocytes. We cloned the c-fos gene from subcutaneous adipose tissue of Jianzhou big-eared goats by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed its biological characteristics. Using real-time quantitative PCR (qPCR), we detected the expression of c-fos gene in the heart, liver, spleen, lung, kidney, subcutaneous fat, longissimus dorsi and subcutaneous adipocytes of goat upon induced differentiation for 0 h to 120 h. The goat overexpression vector pEGFP-c-fos was constructed and transfected into the subcutaneous preadipocytes for induced differentiation. The morphological changes of lipid droplet accumulation were observed by oil red O staining and bodipy staining. Furthermore, qPCR was used to test the relative mRNA level of the c-fos overexpression on adipogenic differentiation marker genes. The results showed that the cloned goat c-fos gene was 1 477 bp in length, in which the coding sequence was 1 143 bp, encoding a protein of 380 amino acids. Protein structure analysis showed that goat FOS protein has a basic leucine zipper structure, and subcellular localization prediction suggested that it was mainly distributed in the nucleus. The relative expression level of c-fos was higher in the subcutaneous adipose tissue of goats (P < 0.05), and the expression level of c-fos was significantly increased upon induced differentiation of subcutaneous preadipocyte for 48 h (P < 0.01). Overexpression of c-fos significantly inhibited the lipid droplets formation in goat subcutaneous adipocytes, significantly decreased the relative expression levels of the AP2 and C/EBPβ lipogenic marker genes (P < 0.01). Moreover, AP2 and C/EBPβ promoter are predicted to have multiple binding sites. In conclusion, the results indicated that c-fos gene was a negative regulatory factor of subcutaneous adipocyte differentiation in goats, and it might regulate the expression of AP2 and C/EBPβ gene expression.


Subject(s)
Animals , Goats/genetics , Cell Differentiation/genetics , Adipogenesis/genetics , Gene Expression Regulation , Proteins/genetics , Cloning, Molecular
8.
West China Journal of Stomatology ; (6): 175-184, 2023.
Article in English | WPRIM | ID: wpr-981109

ABSTRACT

OBJECTIVES@#This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.@*METHODS@#Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.@*RESULTS@#We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).@*CONCLUSIONS@#Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.


Subject(s)
Humans , Anti-Inflammatory Agents/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemokine CXCL12 , Lipopolysaccharides/pharmacology , Osteogenesis , Periodontal Ligament/metabolism , Receptors, Chemokine/metabolism , Stem Cells , Interleukin-8/metabolism
9.
West China Journal of Stomatology ; (6): 165-174, 2023.
Article in English | WPRIM | ID: wpr-981108

ABSTRACT

OBJECTIVES@#This study aimed to investigate the effect of new biomimetic micro/nano surfaces on the osteoclastic differentiation of RAW264.7 macrophages by simulating natural osteons for the design of concentric circular structures and modifying graphene oxide (GO).@*METHODS@#The groups were divided into smooth titanium surface group (SS), concentric microgrooved titanium surface group (CMS), and microgroove modified with GO group (GO-CMS). The physicochemical properties of the material surfaces were studied using scanning electron microscopy (SEM), contact-angle measurement, atomic force microscopy, X-ray photoelectron spectroscopy analysis, and Raman spectroscopy. The effect of the modified material surface on the cell biological behavior of RAW264.7 was investigated by cell-activity assay, SEM, and laser confocal microscopy. The effect on the osteoclastic differentiation of macrophages was investiga-ted by tartrate-resistant acid phosphatase (TRAP) immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR) experiments.@*RESULTS@#Macrophages were arranged in concentric circles along the microgrooves, and after modification with GO, the oxygen-containing groups on the surface of the material increased and hydrophilicity increased. Osteoclasts in the GO-CMS group were small in size and number and had the lowest TRAP expression. Although it promoted the proliferation of macrophages in the GO-CMS group, the expression of osteoclastic differentiation-related genes was lower than that in the SS group, and the difference was statistically significant (P<0.05).@*CONCLUSIONS@#Concentric circular microgrooves restricted the fusion of osteoclasts and the formation of sealing zones. Osteomimetic concentric microgrooves modified with GO inhibited the osteoclastic differentiation of RAW 264.7 macrophages.


Subject(s)
Graphite/pharmacology , Titanium/pharmacology , Haversian System , Macrophages , Cell Differentiation , Oxides/pharmacology , Surface Properties
10.
West China Journal of Stomatology ; (6): 140-148, 2023.
Article in English | WPRIM | ID: wpr-981105

ABSTRACT

OBJECTIVES@#To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism.@*METHODS@#Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis.@*RESULTS@#FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells.@*CONCLUSIONS@#rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFβ/BMP signaling pathway.


Subject(s)
Humans , Rats , Animals , Dental Cementum , Core Binding Factor Alpha 1 Subunit/metabolism , Cell Differentiation , Bone Morphogenetic Proteins/metabolism , Transforming Growth Factor beta/pharmacology
11.
Acta Physiologica Sinica ; (6): 429-438, 2023.
Article in Chinese | WPRIM | ID: wpr-981018

ABSTRACT

It has been well documented that exercise can improve bone metabolism, promote bone growth and development, and alleviate bone loss. MicroRNAs (miRNAs) are widely involved in the proliferation and differentiation of bone marrow mesenchymal stem cells, osteoblasts, osteoclasts and other bone tissue cells, and regulation of balance between bone formation and bone resorption by targeting osteogenic factors or bone resorption factors. Thus miRNAs play an important role in the regulation of bone metabolism. Recently, regulation of miRNAs are shown to be one of the ways by which exercise or mechanical stress promotes the positive balance of bone metabolism. Exercise induces changes of miRNAs expression in bone tissue and regulates the expression of related osteogenic factors or bone resorption factors, to further strengthen the osteogenic effect of exercise. This review summarizes relevant studies on the mechanism whereby exercise regulates bone metabolism via miRNAs, providing a theoretical basis for osteoporosis prevention and treatment with exercise.


Subject(s)
Humans , MicroRNAs/metabolism , Osteogenesis/genetics , Cell Differentiation , Osteoblasts , Bone Resorption/metabolism
12.
Acta Physiologica Sinica ; (6): 269-278, 2023.
Article in Chinese | WPRIM | ID: wpr-981004

ABSTRACT

DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.


Subject(s)
Male , Animals , Humans , Mice , Transcription Factors/genetics , Mammals/metabolism , Cell Differentiation , Neoplasms/genetics
13.
Acta Physiologica Sinica ; (6): 205-215, 2023.
Article in Chinese | WPRIM | ID: wpr-980998

ABSTRACT

Vascular wall-resident stem cells (VW-SCs) play a critical role in maintaining normal vascular function and regulating vascular repair. Understanding the basic functional characteristics of the VW-SCs will facilitate the study of their regulation and potential therapeutic applications. The aim of this study was to establish a stable method for the isolation, culture, and validation of the CD34+ VW-SCs from mice, and to provide abundant and reliable cell sources for further study of the mechanisms involved in proliferation, migration and differentiation of the VW-SCs under various physiological and pathological conditions. The vascular wall cells of mouse aortic adventitia and mesenteric artery were obtained by the method of tissue block attachment and purified by magnetic microbead sorting and flow cytometry to obtain the CD34+ VW-SCs. Cell immunofluorescence staining was performed to detect the stem cell markers (CD34, Flk-1, c-kit, Sca-1), smooth muscle markers (SM22, SM MHC), endothelial marker (CD31), and intranuclear division proliferation-related protein (Ki-67). To verify the multipotency of the isolated CD34+ VW-SCs, endothelial differentiation medium EBM-2 and fibroblast differentiation medium FM-2 were used. After culture for 7 days and 3 days respectively, endothelial cell markers and fibroblast markers of the differentiated cells were evaluated by immunofluorescence staining and q-PCR. Furthermore, the intracellular Ca2+ release and extracellular Ca2+ entry signaling were evaluated by TILLvisION system in Fura-2/AM loaded cells. The results showed that: (1) High purity (more than 90%) CD34+ VW-SCs from aortic adventitia and mesenteric artery of mice were harvested by means of tissue block attachment method and magnetic microbead sorting; (2) CD34+ VW-SCs were able to differentiate into endothelial cells and fibroblasts in vitro; (3) Caffeine and ATP significantly activated intracellular Ca2+ release from endoplasmic reticulum of CD34+ VW-SCs. Store-operated Ca2+ entry (SOCE) was activated by using thapsigargin (TG) applied in Ca2+-free/Ca2+ reintroduction protocol. This study successfully established a stable and efficient method for isolation, culture and validation of the CD34+ VW-SCs from mice, which provides an ideal VW-SCs sources for the further study of cardiovascular diseases.


Subject(s)
Mice , Animals , Endothelial Cells , Cell Differentiation/physiology , Stem Cells , Adventitia , Fibroblasts , Cells, Cultured , Antigens, CD34/metabolism
14.
Chinese Journal of Hepatology ; (12): 781-784, 2023.
Article in Chinese | WPRIM | ID: wpr-986212

ABSTRACT

Hepatic parenchymal cells are a type of liver cells that performs important functions such as metabolism and detoxification. The contribution of hepatic parenchymal cells, bile duct cells, and hepatic stem/progenitor cells to new hepatic parenchymal cells in the process of liver injury repair has become a controversial issue due to their strong proliferation ability. Lineage tracing technology, which has emerged in the past decade as a new method for exploring the origin of cells, can trace specific type of cells and their daughter cells by labeling cells that express the specific gene and their progeny. The article reviews the current literature on the origin and contribution of hepatic parenchymal cells by this technique. About 98% of new hepatic parenchymal cells originate from the existing hepatic parenchymal cells during liver homeostasis and after acute injury. However, under conditions of severe liver injury, such as inhibition of hepatic parenchymal cell proliferation, bile duct cells (mainly liver stem/progenitor cells) become the predominant source of hepatic parenchymal cells, contributing a steady increased hepatocyte regeneration with the extension of time.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Bile Ducts , Stem Cells , Liver Regeneration/physiology , Cell Differentiation
15.
Chinese Journal of Hepatology ; (12): 776-780, 2023.
Article in Chinese | WPRIM | ID: wpr-986211

ABSTRACT

Type II innate lymphoid cell (ILC2) is a newly identified innate immunological cell that belongs to the lymphocyte lineage in cell morphology, resides in the body's mucosal tissues, and has the dual functions of innate and adaptive immunity to promote tissue remodeling and repair after injury. Additionally, it is involved in the occurrence and development of a variety of liver diseases and plays an important role in maintaining the immunological homeostasis of the liver region. This article reviews the differentiation, development, and biological functions of ILC2, with particular attention to the research progress in liver diseases.


Subject(s)
Humans , Immunity, Innate , Lymphocytes , Cell Differentiation , Liver Diseases
16.
Chinese Journal of Pathology ; (12): 447-453, 2023.
Article in Chinese | WPRIM | ID: wpr-985699

ABSTRACT

Objective: To investigate the clinicopathological features and immunohistochemical phenotypes of gastric SMARCA4-deficient undifferentiated carcinoma, and to discuss the daily diagnostics of this entity and analyze its prognosis. Methods: The cases of gastric SMARCA4-deficient undifferentiated carcinoma diagnosed at the Department of Pathology, Peking University Cancer Hospital, China from January 2010 to August 2022 were collected. The histological sections were reviewed, the immunohistochemical results and clinicopathological features were analyzed, and relevant literature was reviewed. Results: Pure foci of undifferentiated carcinoma were seen in 7 cases, and 1 case was accompanied by a moderately differentiated tubular adenocarcinoma component. Undifferentiated carcinoma foci showed similar sheet-like or solid diffuse growth pattern, medium-sized tumor cells characterized by 1-2 nucleoli, and abundant cytoplasm and rhabdoid appearance. The average patient age was 65±8 years. Six patients were male and 2 were female. Immunohistochemical staining showed that undifferentiated carcinoma of all 8 tumors were negative for SMARCA4 (BRG1). Among 7 patients who underwent SMARCA2 (BRM) and SMARCB1 (INI1) staining, 4 cases showed loss of BRM expression, 2 cases showed weakly positive staining, and 1 case was diffusely positive, but all 7 cases were diffusely strong positive for INI1. The neuroendocrine marker, synaptophysin, was weakly positive in 5 cases, while CgA and CD56 were negative in 8 cases. Ki-67 index was more than 70%. Two cases were mismatch repair deficient and showed the loss of MLH1/PMS2 expression, while 1 case showed only MSH2 loss. PD-L1 staining showed that combined positive score (CPS)≥1 in 4 cases (CPS ranging from 1 to 55) and CPS<1 in the other 3 cases. Four patients had clinical stage Ⅳ disease. Two of them died within 3 months after diagnosis. Conclusions: Gastric SMARCA4-deficient undifferentiated carcinoma/rhabdoid carcinoma is a rare group of highly malignant tumors with a poor prognosis. Loss of the core subunit of SWI/SNF complex may be associated with the development of dedifferentiated histological pattern and aggressive tumor progression, which may be more frequently accompanied with mismatch repair deficiency.


Subject(s)
Male , Female , Humans , Carcinoma/pathology , Adenocarcinoma , Colorectal Neoplasms , Cell Differentiation , Stomach Neoplasms , Biomarkers, Tumor , DNA Helicases , Nuclear Proteins , Transcription Factors
17.
Chinese Journal of Preventive Medicine ; (12): 923-928, 2023.
Article in Chinese | WPRIM | ID: wpr-985497

ABSTRACT

To establish and identify induced pluripotent stem cells (iPSCs) derived from patients with Aicardi-Goutières syndrome (AGS) with TREX1 gene 667G>A mutation, and obtain a specific induced pluripotent stem cell model for Aicardi-Goutières syndrome (AGS-iPSCs). A 3-year-old male child with Aicardi-Goutieres syndrome was admitted to Zhongshan People's Hospital in December 2020. After obtaining the informed consent of the patient's family members, 5 ml peripheral blood samples from the patient were collected, and mononuclear cells were isolated. Then,the peripheral blood mononuclear cells(PBMCs) were transduced with OCT3/4, SOX2, c-Myc and Klf4 by using Sendai virus, and PBMCs were reprogrammed into iPSCs. The pluripotency and differentiation ability of the cells were identified by cellular morphological analysis, real-time PCR, alkaline phosphatase staining (AP), immunofluorescence, teratoma formation experiments in mice. The results showed that the induced pluripotent stem cell line of Aicardi-Goutieres syndrome was successfully constructed and showed typical embryonic stem-like morphology after stable passage, RT-PCR showed mRNA expression of stem cell markers, AP staining was positive, OCT4, SOX2, NANOG, SSEA4, TRA-1-81 and TRA-1-60 pluripotency marker proteins were strongly expressed. In vivo teratoma formation experiments showed that iPSCs differentiate into the ectoderm (neural tube like tissue), mesoderm (vascular wall tissue) and endoderm (glandular tissue). Karyotype analysis also confirmed that iPSCs still maintained the original karyotype (46, XY). In conclusion, induced pluripotent stem cell line for Aicardi-Goutières syndrome was successfully established using Sendai virus, which provided an important model platform for studying the pathogenesis of the disease and for drug screening.


Subject(s)
Animals , Male , Mice , Child, Preschool , Cell Differentiation , Induced Pluripotent Stem Cells/pathology , Leukocytes, Mononuclear , Teratoma/pathology
18.
Chinese Journal of Burns ; (6): 190-195, 2023.
Article in Chinese | WPRIM | ID: wpr-971169

ABSTRACT

Wound healing is a slow and complex biological process, including inflammatory reaction, cell proliferation, cell differentiation, cell migration, angiogenesis, extracellular matrix deposition, tissue remodeling, and so on. Wnt signaling pathway can be divided into classical pathway and non-classical pathway. Wnt classical pathway, also known as Wnt/β-catenin signaling pathway, plays an important role in cell differentiation, cell migration, and maintenance of tissue homeostasis. Many inflammatory factors and growth factors are involved in the upstream regulation of this pathway. The activation of Wnt/β-catenin signaling pathway plays an important role in the occurrence, development, regeneration, repair and related treatment of skin wounds. This article review the relationship between Wnt/β-catenin signaling pathway and wound healing, meanwhile summarizes its effects on important processes of wound healing, such as inflammation, cell proliferation, angiogenesis, hair follicle regeneration, and skin fibrosis, as well as the role of inhibitors of Wnt signaling pathway in wound healing.


Subject(s)
Humans , Wnt Signaling Pathway , Cell Differentiation , Cell Movement , Cell Proliferation , Inflammation , Wound Healing
19.
Journal of Experimental Hematology ; (6): 170-178, 2023.
Article in Chinese | WPRIM | ID: wpr-971120

ABSTRACT

OBJECTIVE@#To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.@*METHODS@#BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.@*RESULTS@#Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.@*CONCLUSION@#The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.


Subject(s)
Humans , Adipogenesis , Bone Diseases/metabolism , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Mesenchymal Stem Cells/physiology , Multiple Myeloma/metabolism , Orlistat/pharmacology , Osteogenesis/genetics
20.
Journal of Experimental Hematology ; (6): 154-161, 2023.
Article in Chinese | WPRIM | ID: wpr-971118

ABSTRACT

OBJECTIVE@#To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.@*METHODS@#Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.@*RESULTS@#The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.@*CONCLUSION@#The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.


Subject(s)
Humans , Osteogenesis/genetics , Bone Marrow/metabolism , Multiple Myeloma/metabolism , Drug Resistance, Neoplasm , Peroxisome Proliferator-Activated Receptors/pharmacology , Cell Differentiation , Adipogenesis , Cytokines/metabolism , Adipocytes/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured , PPAR gamma/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL