Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Rev. bras. med. esporte ; 27(spe2): 73-78, Apr.-June 2021. graf
Article in English | LILACS | ID: biblio-1280080

ABSTRACT

ABSTRACT Myoblasts fuse into multinucleated muscle fibers to form and promote the growth of skeletal muscle. In order to analyze the role of myostatin (MSTN) in body fat, skeletal muscle cell proliferation and differentiation and energy metabolism, this study will use the antisense RNA technology of gene chip technology to study it. The results showed that the MSTN gene regulated the growth and proliferation of myoblasts and affected the development of skeletal muscle by affecting the expression of Cdc42, bnip2, p38 and other genes; knockout or overexpression of the MSTN gene would lead to a trend of fat-related genes from fat synthesis to fat decomposition; after the MSTN gene was knocked down, the expression levels of cpti-b, PPARG and other genes in the cells were corresponding after MSTN overexpression, the relative expression of the PPARG gene decreased. It is suggested that the knockout or overexpression of MSTN may affect lipid accumulation, and cpti-b and PPARG may directly regulate lipid level. It is hoped that this experiment can provide a reference for the study of MSTN effect on fat deposition.


RESUMO Os mioblastos se fundem eM fibras musculares multinucleadas para formar e promover o crescimento do músculo esquelético. A fim de analisar o papel da miostatina (MSTN) na gordura corporal, proliferação de células musculares esqueléticas e diferenciação e metabolismo energético, este estudo utilizará a tecnologia anti-RNA de chips genéticos para estudá-la. Os resultados mostraram que o gene MSTN regulava o crescimento e a proliferação de mioblastos e afetava o desenvolvimento do músculo esquelético, afetando a expressão de Cdc42, bnip2, p38 e outros genes; a eliminação ou sobrexpressão do gene MSTN conduziria a uma tendência de os genes adiposos sintetizarem a gordura até sua decomposição; após a eliminação do gene MSTN, os níveis de expressão de cpti-b, PPARG e outros genes nas células mostraram-se correspondentes após a sobrexpressão do gene MSTN, e a expressão relativa do gene PPARG diminuiu. Sugere-se que a eliminação ou sobrexpressão da MSTN possa afetar a acumulação de lipídeos, e o cpti-b e o PPARG podem regular diretamente o nível lipídico. Espera-se que esta experiência possa fornecer uma referência para o estudo do efeito da MSTN sobre a deposição de gordura.


RESUMEN Los mioblastos se funden en fibras musculares multinucleadas para formar y promover el crecimiento del músculo esquelético. A fin de analizar el papel de la miostatina (MSTN) en la grasa corporal, proliferación de células musculares esqueléticas y diferenciación y metabolismo energético, este estudio utilizará la tecnología anti-RNA de chips genéticos para estudiarla. Los resultados mostraron que el gen MSTN regulaba el crecimiento y la proliferación de mioblastos y afectaba el desarrollo del músculo esquelético, afectando la expresión de Cdc42, bnip2, p38 y otros genes; la eliminación o sobreexpresión del gen MSTN conduciría a una tendencia de que los genes adiposos sinteticen la grasa hasta su descomposición; después de la eliminación del gen MSTN, los niveles de expresión de cpti-b, PPARG y otros genes en las células se mostraron correspondientes después de la sobreexpresión del gen MSTN, y la expresión relativa del gen PPARG disminuyó. Se sugiere que la eliminación o sobreexpresión de la MSTN pueda afectar la acumulación de lipídos, y el cpti-b y el PPARG pueden regular directamente el nivel lipídico. Se espera que esta experiencia pueda proveer una referencia para el estudio del efecto de la MSTN sobre el depósito de grasa.


Subject(s)
Animals , Cattle , Cell Differentiation/physiology , Adipocytes/metabolism , Myoblasts, Skeletal/metabolism , Cell Proliferation/physiology , Energy Metabolism , Myostatin/metabolism , Oligonucleotide Array Sequence Analysis
2.
Braz. j. med. biol. res ; 53(4): e9282, 2020. graf
Article in English | LILACS | ID: biblio-1089351

ABSTRACT

Vitiligo is an acquired pigmentary disorder resulting from selective destruction of melanocytes. Emerging studies have suggested that T helper cell 17 (Th17) is potentially implicated in vitiligo development and progression. It was recently discovered that metabotropic glutamate receptor 4 (mGluR4) can modulate Th17-mediated adaptive immunity. However, the influence of mGluR4 on melanogenesis of melanocytes has yet to be elucidated. In the present study, we primarily cultured mouse bone marrow-derived dendritic cells (BMDC) and then knocked down and over-expressed mGluR4 using transfection. Transduced BMDC were co-cultured with CD4+ T cells and the expression of Th17-related cytokines were measured. The morphology and melanogenesis of B16 cells were observed after being treated with co-culture medium of CD4+ T cells and transduced BMDC. We found that mGluR4 knockdown did not affect the co-stimulatory CD80 and CD86 upregulation after lipopolysaccharide stimulation but did increase the expression of Th17-related cytokines, and further down-regulated the expression of microphthalmia-associated transcription factor (MITF) and the downstream genes, decreased melanin production, and destroyed the morphology of B16 cells. Conversely, over-expression of mGluR4 reduced the expression of CD80 and CD86, suppressed the production of Th17-related cytokines, increased the expression of MITF, and did not destroy the morphology of B16 cells. Our study confirmed that mGluR4 modulated the Th17 cell polarization and resulted in the alteration of melanogenesis and morphology of B16 cells. Collectively, these findings suggest mGluR4 might be a potent target involved in the immune pathogenesis of vitiligo.


Subject(s)
Animals , Male , Vitiligo/immunology , Dendritic Cells/cytology , Bone Marrow Cells/cytology , Cell Differentiation/physiology , Receptors, Metabotropic Glutamate/physiology , Th17 Cells/immunology , Vitiligo/genetics , RNA, Small Interfering/immunology , Th17 Cells/cytology , Flow Cytometry , Melanins/biosynthesis , Melanocytes/cytology , Mice, Inbred C57BL
3.
Braz. oral res. (Online) ; 34: e006, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055522

ABSTRACT

Abstract Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.


Subject(s)
Signal Transduction/physiology , Smad1 Protein/physiology , Induced Pluripotent Stem Cells/cytology , Ameloblasts/cytology , Phosphorylation , Time Factors , Gene Expression , Cell Differentiation/physiology , Cell Differentiation/genetics , Cells, Cultured , Blotting, Western , Fluorescent Antibody Technique , Culture Media, Serum-Free , Reverse Transcriptase Polymerase Chain Reaction , MAP Kinase Signaling System/physiology , Activin Receptors/analysis , Activin Receptors/physiology , RNA Interference , p38 Mitogen-Activated Protein Kinases/analysis , p38 Mitogen-Activated Protein Kinases/physiology , Bone Morphogenetic Protein Receptors, Type II/analysis , Bone Morphogenetic Protein Receptors, Type II/physiology , Smad1 Protein/analysis
4.
Braz. oral res. (Online) ; 34: e006, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089380

ABSTRACT

Abstract Induced pluripotent stem (iPS) cells could be induced into ameloblast-like cells by ameloblasts serum-free conditioned medium (ASF-CM), and bone morphogenetic proteins (BMPs) might be essential during the regulation of this process. The present study investigates the signal transduction that regulates the ameloblastic differentiation of iPS cells induced by ASF-CM. Mouse iPS cells were characterized and then cultured for 14 days in epithelial cell medium (control) or ASF-CM. Bone morphogenetic protein receptor II (BMPR-II) siRNA, inhibitor of Smad1/5 phosphorylation activated by activin receptor-like kinase (ALK) receptors, and inhibitors of mitogen-activated protein kinases (MAPKs) phosphorylation were used to treat the iPS cells in combination with ASF-CM. Real-time PCR, western blotting, and immunofluorescent staining were used to evaluate the expressions of ameloblast markers ameloblastin, enamelin, and cytokeratin-14. BMPR-II gene and protein levels increased markedly in ASF-CM-treated iPS cells compared with the controls, while the mRNA levels of Bmpr-Ia and Bmpr-Ib were similar between the ASF-CM and control groups. ASF-CM stimulation significantly increased the gene and protein expression of ameloblastin, enamelin and cytokeratin-14, and phosphorylated SMAD1/5, p38 MAPK, and ERK1/2 MAPK compared with the controls. Knockdown of BMPR-II and inhibition of Smad1/5 phosphorylation both could significantly reverse the increased expression of ameloblastin, enamelin, and cytokeratin-14 induced by ASF-CM, while neither inhibition of p38 nor ERK1/2 phosphorylation had significant reversing effects. We conclude that smad1/5 signaling transduction, activated by ALK receptors, regulates the ameloblastic differentiation of iPS cells induced by ameloblast-conditioned medium.


Subject(s)
Signal Transduction/physiology , Smad1 Protein/physiology , Induced Pluripotent Stem Cells/cytology , Ameloblasts/cytology , Phosphorylation , Time Factors , Gene Expression , Cell Differentiation/physiology , Cell Differentiation/genetics , Cells, Cultured , Blotting, Western , Fluorescent Antibody Technique , Culture Media, Serum-Free , Reverse Transcriptase Polymerase Chain Reaction , MAP Kinase Signaling System/physiology , Activin Receptors/analysis , Activin Receptors/physiology , RNA Interference , p38 Mitogen-Activated Protein Kinases/analysis , p38 Mitogen-Activated Protein Kinases/physiology , Bone Morphogenetic Protein Receptors, Type II/analysis , Bone Morphogenetic Protein Receptors, Type II/physiology , Smad1 Protein/analysis
5.
Int. j. morphol ; 37(3): 1132-1141, Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1012409

ABSTRACT

Spermatogonial stem cells (SSCs) have self-renewal and differentiation capacity essential for sperm production throughout the male reproductive life. The electrospun polycaprolactone/gelatin (PCL/Gel) nanofibrous scaffold mimics important features of the extracellular matrix (ECM), which can provide a promising technique for the proliferation and differentiation of SSCs in vitro. The goal of the present study was to investigate the effects of PCL/Gel nanofibrous scaffold on the propagation and differentiation of neonate mouse SSCs (mSSCs). mSSCs were enzymatically isolated, and the cells were purified by differential plating method and seeded on scaffold. After 2 weeks, viability, colony number and diameter, and expression of specific spermatogonial cell genes were investigated. After mSSCs propagation, the cells were cultivated in a differentiation medium on the scaffold for another 2 weeks, and differentiating cells were analyzed by real-time PCR. The number of mSSC colony (P<0.01) and expression levels of specific spermatogonial genes Plzf and Inga6 (P<0.01) and also differentiation genes c-Kit, Tp1 and Ptm1 (P<0.05) were higher in scaffold group compared with control during the culture period. We conclude that mSSCs can be expanded and can differentiate toward spermatid cells on PCL/Gel nanofibrous scaffold with improved developmental parameters.


Las células madre espermatogónicas (CME) tienen capacidad de auto renovación y diferenciación esenciales para la producción de esperma a lo largo de la vida reproductiva masculina. El «scaffold¼ nanofibroso de policaprolactona / gelatina (PCL / Gel) electrohilado imita características importantes de la matriz extracelular (MEC), que puede proporcionar una técnica prometedora para la proliferación y diferenciación de CME in vitro. El objetivo del presente estudio fue investigar los efectos del «scaffold¼ nanofibroso PCL / Gel en la propagación y diferenciación de CME de ratones neonatos (mSSC). Los mSSC se aislaron enzimáticamente y las células se purificaron mediante un método de siembra diferencial y se sembraron en un «scaffold¼. Después de 2 semanas, se investigaron la viabilidad, el número y el diámetro de las colonias y la expresión de genes específicos de células espermatogónicas. Después de la propagación de mSSC, las células se cultivaron en un medio de diferenciación en el «scaffold¼ durante otras 2 semanas, y las células se analizaron mediante PCR en tiempo real. El número de colonias mSSC (P <0,01) y los niveles de expresión de los genes espermatogónicos específicos Plzf e Inga6 (P <0,01) y también los genes de diferenciación c-Kit, Tp1 y Ptm1 (P <0,05) fueron mayores en el grupo de «scaffold¼ en comparación con el control durante el período de cultivo. Concluimos que los mSSC pueden expandirse y diferenciarse en células espermátidas en un «scaffold¼ de nanofibras PCL / Gel con parámetros de desarrollo mejorados.


Subject(s)
Animals , Male , Mice , Spermatogonia/cytology , Spermatogonia/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Polyesters/chemistry , Cell Differentiation/genetics , Cell Survival , Fluorescent Antibody Technique , Cell Proliferation/genetics , Tissue Scaffolds , Nanofibers/chemistry , Real-Time Polymerase Chain Reaction , Animals, Newborn
6.
Arq. bras. oftalmol ; 82(1): 78-84, Jan.-Feb. 2019. tab
Article in English | LILACS | ID: biblio-973874

ABSTRACT

ABSTRACT The transparency and maintenance of corneal epithelial integrity are essential for its optical properties and, to preserve these characteristics, the epithelium undergoes continuous renewal. This renewal depends on the control of cell proliferation and differentiation mediated by mitogenic factors responsible for increasing mitoses and stimulating cellular migration. Cell-cell communication plays a pivotal role in epithelial healing process, and several cytokines and growth factors are involved in this process. Understanding the cross-talk and paracrine effects of these cytokines and growth factors released can help in the search for new therapeutic strategies to treat ocular surface diseases.


RESUMO A transparência e a manutenção da integridade epitelial da córnea são essenciais para suas propriedades ópticas e, para preservar tais características, o epitélio sofre renovação contínua. Essa renovação depende do controle da proliferação e diferenciação celular mediadas por fatores mitogênicos responsáveis pelo aumento das mitoses e estímulo à migração celular. A comunicação célula-célula desempenha um papel fundamental no processo de cicatrização epitelial, e várias citocinas e fatores de crescimento estão envolvidos neste processo. Compreender os efeitos cruzados e paracrinos dessas citocinas e fatores de crescimento liberados pode ajudar na busca de novas estratégias terapêuticas para o tratamento de doenças da superfície ocular.


Subject(s)
Humans , Wound Healing/physiology , Epithelium, Corneal/physiology , Intercellular Signaling Peptides and Proteins/therapeutic use , Cell Differentiation/physiology , Epithelium, Corneal/cytology , Corneal Diseases/therapy , Intercellular Signaling Peptides and Proteins/physiology , Cell Proliferation/physiology , Epithelial Cells/physiology , Fibroblasts/physiology
7.
J. appl. oral sci ; 27: e20180317, 2019. tab, graf
Article in English | LILACS | ID: biblio-984571

ABSTRACT

Abstract Bone morphogenetic protein type 2 (BMP-2) and retinoic acid (RA) are osteoinductive factors that stimulate endogenous mechanisms of bone repair which can be applied on management of osseous defects in oral and maxillofacial fields. Objective Considering the different results of RA on osteogenesis and its possible use to substitute/potency BMP-2 effects, this study evaluated the outcomes of BMP-2, RA, and BMP-2+RA treatments on in vitro osteogenic differentiation of human adipose-derived stem cells (ASCs) and the signaling pathway(s) involved. Material and Methods ASCs were treated every other day with basic osteogenic medium (OM) alone or supplemented with BMP-2, RA, or BMP-2+RA. Alkaline phosphatase (ALP) activity was determined using the r-nitrophenol method. Extracellular matrix mineralization was evaluated using von Kossa staining and calcium quantification. Expression of osteonectin and osteocalcin mRNA were determined using qPCR. Smad1, Smad4, phosphorylated Smad1/5/8, BMP-4, and BMP-7 proteins expressions were analyzed using western blotting. Signaling pathway was evaluated using the IPA® software. Results RA promoted the highest ALP activity at days 7, 14, 21, and 28, in comparison to BMP-2 and BMP-2+RA. BMP-2+RA best stimulated phosphorylated Smad1/5/8 protein expression at day 7 and Smad4 expression at days 7, 14, 21, and 28. Osteocalcin and osteonectin mRNA expressions were best stimulated by BMP-2+RA at day 7. Matrix mineralization was most improved by BMP-2+RA at days 12 and 32. Additionally, BMP-2+RA promoted the highest BMP signaling pathway activation at days 7 and 14, and demonstrated more activation of differentiation of bone-forming cells than OM alone. Conclusions In summary, RA increased the effect of BMP-2 on osteogenic differentiation of human ASCs.


Subject(s)
Humans , Osteogenesis/drug effects , Tretinoin/pharmacology , Cell Differentiation/drug effects , Bone Morphogenetic Protein 2/drug effects , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/physiology , Reference Values , Time Factors , Osteocalcin/analysis , Osteocalcin/drug effects , Osteonectin/analysis , Osteonectin/drug effects , Cell Differentiation/physiology , Cells, Cultured , Blotting, Western , Reproducibility of Results , Analysis of Variance , Alkaline Phosphatase/analysis , Alkaline Phosphatase/adverse effects , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cells/metabolism
8.
Braz. j. med. biol. res ; 52(9): e8551, 2019. graf
Article in English | LILACS | ID: biblio-1019565

ABSTRACT

Fibroblasts are a highly heterogeneous population of cells, being found in a large number of different tissues. These cells produce the extracellular matrix, which is essential to preserve structural integrity of connective tissues. Fibroblasts are frequently engaged in migration and remodeling, exerting traction forces in the extracellular matrix, which is crucial for matrix deposition and wound healing. In addition, previous studies performed on primary myoblasts suggest that the E3 ligase MuRF2 might function as a cytoskeleton adaptor. Here, we hypothesized that MuRF2 also plays a functional role in skeletal muscle fibroblasts. We found that skeletal muscle fibroblasts express MuRF2 and its siRNA knock-down promoted decreased fibroblast migration, cell border accumulation of polymerized actin, and down-regulation of the phospho-Akt expression. Our results indicated that MuRF2 was necessary to maintain the actin cytoskeleton functionality in skeletal muscle fibroblasts via Akt activity and exerted an important role in extracellular matrix remodeling in the skeletal muscle tissue.


Subject(s)
Animals , Rats , Cell Differentiation/physiology , Muscle, Skeletal/physiology , Ubiquitin-Protein Ligases/physiology , Cell Proliferation/physiology , Fibroblasts/physiology , Muscle Proteins/physiology , Blotting, Western , Fluorescent Antibody Technique , Muscle, Skeletal/metabolism , Ubiquitin-Protein Ligases/metabolism , Fibroblasts/metabolism , Muscle Proteins/metabolism
9.
Arq. bras. oftalmol ; 81(5): 376-383, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-950491

ABSTRACT

ABSTRACT Purposes: To develop an efficient and xeno-free standard eye-derived induced pluripotent stem cell reprogramming protocol for use during induced pluripotent stem cell-based cell therapies in treating retinal degenerative diseases and to compare the relative effectiveness of both animal- and non-animal-derived culture systems in the generation of induced pluripotent stem cells. Methods: Primary cultured human pterygium fibroblasts and human Tenon's capsule fibroblasts were induced to induced pluripotent stem cells using a non-in­tegrated virus under two xeno-free systems; as part of this study, a traditional non-xeno-free reprogramming system was also assessed. Induced pluripotent stem cell clones were selected and counted by live staining. Reprogramming efficiencies were evaluated between the fibroblasts and among different culture systems. In a series of experiments, such as PCR and immunofluorescence staining, the induced pluripotent stem cells were characterized. Results: Human pterygium fibroblast- and human Tenon's capsule fibroblast-derived induced pluripotent stem cells were successfully established using different reprogramming systems, under which they exhibited properties of induced pluripotent stem cells. Reprogramming efficiencies of induced pluripotent stem cells using the cell therapy system, the traditional system, and the E6/E8 system were 0.014%, 0.028%, and 0.001%, respectively, and those of human pterygium fibroblast- and human Tenon's capsule fibroblast-derived induced pluripotent stem cells-using the aforementioned systems-were 0.018% and 0.017%, respectively. Conclusions: Sendai virus facilitates induced pluripotent stem cell reprogramming of ocular fibroblasts-both human pterygium and human Tenon's capsule fibroblasts being safe and efficient for induced pluripotent stem cell reprogramming. Although the reprogramming efficiencies of ocular-derived induced pluripotent stem cells under xeno-free conditions were not superior to those observed using the traditional reprogramming system, the cell therapy system reprogramming system is a good option when induced pluripotent stem cells are to be induced under xeno-free conditions.


RESUMO Objetivos: Desenvolver um protocolo padrão, eficiente e xeno-livre, para a reprogramação de células-tronco pluripotentes induzidas, que possa ser usado durante as terapias de células-tronco pluripotentes induzidas para o tratamento de doenças degenerativas da retina, e comparar a eficácia relativa de sistemas de cultivo de origem animal e de origem não animal na geração de células-tronco pluripotentes induzidas. Métodos: Cultivos primários de fibroblastos de pterígio humano e de fibroblastos da cápsula de Tenon humanos foram induzidos a células-tronco pluripotentes induzidas usando um vírus não integrado sob dois sistemas xeno-livres; um sistema tradicional de reprogramação não xeno-livre também foi avaliado como parte deste estudo. Os clones de células-tronco pluripotentes induzidas foram selecionados e contados por coloração de células vivas. As eficiências de reprogramação foram avaliadas entre os diferentes fibroblastos e entre os diferentes sistemas de cultivo. Uma série de experimentos, como o PCR e a coloração por imunofluorescência, foram conduzidos para caracterizar as células-tronco pluripotentes induzidas. Resultados: Célu­las-tronco pluripotentes induzidas derivadas de fibroblastos de pterígio humano e fibroblastos da cápsula de Tenon humanos foram estabelecidas com sucesso sob diferentes sistemas de reprogramação e exibiram propriedades de células-tronco pluripotentes induzidas. As eficiências de reprogramação das células-tronco pluripotentes induzidas usando o sistema de terapia celular, o sistema tradicional e o sistema E6/E8 foram 0,014, 0,028% e 0,001%, respectivamente. Além disso, as efi­ciências de reprogramação de células-tronco pluripotentes induzidas derivadas de fibroblastos de pterígio humano e de fibroblastos da cápsula de Tenon humanos usando todos os sistemas acima foram de 0,018% e 0,017%, respectivamente. Conclusões: O vírus Sendai pode ser usado para facilitar a reprogramação de fibroblastos oculares pelas células-tronco pluripotentes induzidas. Tanto os fibroblastos de pterígio humano quanto os fibroblastos da cápsula de Tenon humanos são seguros e eficientes para a reprogramação de células-tronco pluripotentes induzidas. Embora as eficiências de reprogramação das células-tronco pluripotentes induzidas de origem ocular sob condições xeno-livres não tenham sido superiores às eficiências observadas para o sistema tradicional de reprogramação, o sistema de reprogramação sistema de terapia celular é uma boa opção para a indução de células-tronco pluripotentes induzidas sob condições xeno-livres.


Subject(s)
Humans , Pterygium/pathology , Cell Culture Techniques/methods , Eye/cytology , Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/cytology , Fibroblasts/cytology , Cell Differentiation/physiology , Cell Transdifferentiation
10.
Braz. j. med. biol. res ; 51(12): e7574, 2018. graf
Article in English | LILACS | ID: biblio-974257

ABSTRACT

Bone fracture is a common medical condition, which may occur due to traumatic injury or disease-related conditions. Evidence suggests that microRNAs (miRNAs) can regulate osteoblast differentiation and function. In this study, we explored the effects and mechanism of miR-221 on the growth and migration of osteoblasts using MC3T3-E1 cells. The expression levels of miR-221 in the different groups were measured by qRT-PCR. Then, miR-221 mimic and inhibitor were transfected into MC3T3-E1 cells, and cell viability and migration were measured using the CCK-8 assay and the Transwell migration assay. Additionally, the expression levels of differentiation-related factors (Runx2 and Ocn) and ZFPM2 were measured by qRT-PCR. Western blot was used to measure the expression of cell cycle-related proteins, epithelial-mesenchymal transition (EMT)-related proteins, ZFPM2, and Wnt/Notch, and Smad signaling pathway proteins. miR-221 was significantly up-regulated in the patients with lumbar compression fracture (LCM) and trochanteric fracture (TF). miR-221 promoted ALP, Runx2, and OPN expressions in MC3T3-E1 cells. miR-221 overexpression significantly increased cell proliferation, migration, differentiation, and matrix mineralization, whereas suppression of miR-221 reversed these effects. Additionally, the results displayed that ZFPM2 was a direct target gene of miR-221, and overexpression of ZFPM2 reversed the promoting effects of miR-221 overexpression on osteoblasts. Mechanistic study revealed that overexpression of miR-221 inactivated the Wnt/Notch and Smad signaling pathways by regulating ZFPM2 expression. We drew the conclusions that miR-221 overexpression promoted osteoblast proliferation, migration, and differentiation by regulation of ZFPM2 expression and deactivating the Wnt/Notch and Smad signaling pathways.


Subject(s)
Humans , Animals , Rabbits , Cell Differentiation/physiology , Cell Movement/physiology , MicroRNAs/physiology , Cell Proliferation/physiology , DNA-Binding Proteins/physiology , Fractures, Bone/blood , Osteoblasts/physiology , Reference Values , Transcription Factors/blood , Cell Survival/physiology , Blotting, Western , Analysis of Variance , 3T3 Cells , MicroRNAs/blood , DNA-Binding Proteins/blood
11.
Acta cir. bras ; 32(11): 984-994, Nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-886180

ABSTRACT

Abstract Purpose: To investigate the use Aldefluor® and N, N - Dimethylaminobenzaldehyde (DEAB) to design a protocol to sort keratinocyte stem cells from cultured keratinocytes from burned patients. Methods: Activated Aldefluor® aliquots were prepared and maintained at temperature between 2 to 8°C, or stored at -20°C. Next, the cells were collected following the standard protocol of sample preparation. Results: Best results were obtained with Aldefluor® 1.5µl and DEAB 15 µl for 1 x 106 cells, incubated at 37°C for 15 minutes. Flow cytometer range for keratinocyte stem cells separation was evaluated. There were 14.8% of stem cells separated in one sample of keratinocyte culture used to pattern the protocol. After being defined the ideal concentration, the same test pattern was performed in other keratinocyte samples. We observed a final mean of 10.8%. Conclusion: Aldefluor® has been shown as a favorable marking of epidermal keratinocyte stem cells for subsequent separation on a flow cytometer, with detection of 10.8% of epidermal keratinocyte stem cells, in this protocol.


Subject(s)
Humans , Animals , Stem Cells/cytology , Keratinocytes/cytology , Cell Differentiation/physiology , Flow Cytometry/methods , Skin/cytology , Biomarkers/analysis , Cells, Cultured , Clinical Protocols , Cell Culture Techniques
12.
Medicina (B.Aires) ; 77(4): 314-320, ago. 2017. ilus
Article in Spanish | LILACS | ID: biblio-894485

ABSTRACT

La autofagia es un proceso de reciclado de partes de la célula. Como se describe en esta revisión, ocurre naturalmente preservando a las células de la acumulación de toxinas, moléculas y organelas dañadas y además permite los procesos de desarrollo y diferenciación de los tejidos. En el transcurso de la autofagia, el procesamiento de los sustratos a reciclar genera ATP, lo que constituye una fuente alternativa de energía en situaciones de estrés. En este sentido, bajo condiciones hostiles como hipoxia o falta de nutrientes, el proceso puede dispararse de modo exacerbado llevando a la muerte celular. Algunas alteraciones en su funcionamiento pueden involucrar el desarrollo de diversas patologías, tales como el daño hepático, el cáncer y las enfermedades neurodegenerativas.


Autophagy is a process of recycling parts of the cell. As described in this review, it occurs naturally in order to preserve cells from the accumulation of toxins, damaged molecules and organelles, and to allow processes of tissue development and differentiation. In the course of autophagy, the processing of the substrates to be recycled generates ATP, thus providing an alternative source of energy in stress situations. In this sense, under hostile conditions such as hypoxia or lack of nutrients, the autophagy process can be exacerbated leading to cell death. Some alterations in its functioning may involve the development of various pathologies, including liver damage, cancer and neurodegenerative diseases.


Subject(s)
Humans , Autophagy/physiology , Cell Differentiation/physiology , Cell Survival/physiology , Neurodegenerative Diseases/pathology , Energy Metabolism/physiology , Neoplasms/pathology , Cell Hypoxia , Adenosine Triphosphate/metabolism , Neurodegenerative Diseases/physiopathology , Neoplasms/physiopathology
13.
Arq. bras. oftalmol ; 80(4): 268-272, July-Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-888124

ABSTRACT

ABSTRACT Various approaches have been taken to improve our knowledge of the microenvironmental regulation of limbal epithelial stem cells. Researchers have extensively investigated the roles of growth factors, survival factors, cytokines, enzymes, and permeable molecules secreted by the limbal cells. However, recent evidence suggests that stem cell fate (i.e., self-renewal or differentiation) can also be influenced by biophysical and mechanical cues related to the supramolecular organization and the liquid crystalline (mesophase) nature of the stromal extracellular matrix. These cues can be sensed by stem cells and transduced into intracellular biochemical and functional responses, a process known as mechanotransduction. The objective of this review is to offer perspectives on the supramolecular microenvironmental regulation of limbal epithelial stem cells and the differentiation of their progeny.


RESUMO Muitas abordagens têm sido utilizadas para ampliar entendimentos sobre a regulação microambiental das células tronco epiteliais limbais. Neste contexto, pesquisadores têm exaustivamente investigado a participação de fatores de crescimento, fatores de sobrevida, citocinas, enzimas e moléculas permeáveis secretadas pelas células limbais. Entretanto, evidências recentes sugerem que o destino (ie. autorrenovação ou recrutamento para a via de diferenciação) das células tronco também sofre influência de estímulos biofísicos ou mecânicos relacionados à organização supramolecular e à natureza liquido-cristalina (mesofases) da matriz extracelular estromal. Esses estímulos podem ser percebidos e traduzidos pelas células tronco em sinais bioquímicos que geram respostas funcionais, através de um processo designado de mecanotransdução. Objetiva-se, com a presente revisão, oferecer ao leitor perspectivas supramoleculares sobre a regulação microambiental das células tronco epiteliais limbais e a diferenciação de sua progênie.


Subject(s)
Humans , Stem Cells/physiology , Cell Differentiation/physiology , Limbus Corneae/cytology , Epithelium, Corneal/cytology , Mechanotransduction, Cellular/physiology , Extracellular Matrix/physiology , Epithelium, Corneal/physiology , Stem Cell Niche/physiology
14.
Biol. Res ; 50: 14, 2017. tab, graf
Article in English | LILACS | ID: biblio-838965

ABSTRACT

BACKGROUND: Kidney diseases are a global health problem. Currently, over 2 million people require dialysis or transplant which are associated with high morbidity and mortality; therefore, new researches focused on regenerative medicine have been developed, including the use of stem cells. RESULTS: In this research, we generate differentiated kidney cells (DKCs) from mouse pluripotent stem cells (mPSCs) analyzing their morphological, genetic, phenotypic, and spectroscopic characteristics along differentiation, highlighting that there are no reports of the use of Fourier transform infrared (FTIR) spectroscopy to characterize the directed differentiation of mPSCs to DKCs. The genetic and protein experiments proved the obtention of DKCs that passed through the chronological stages of embryonic kidney development. Regarding vibrational spectroscopy analysis by FTIR, bands related with biomolecules were shown on mPSCs and DKCs spectra, observing distinct differences between cell lineages and maturation stages. The second derivative of DKCs spectra showed changes in the protein bands compared to mPSCs. Finally, the principal components analysis obtained from FTIR spectra allowed to characterize chemical and structurally mPSCs and their differentiation process to DKCs in a rapid and non-invasive way. CONCLUSION: Our results indicated that we obtained DKCs from mPSCs, which passed through the chronological stages of embryonic kidney development. Moreover, FTIR spectroscopy resulted in a non-invasive, rapid and precise technic that together with principal component analysis allows to characterize chemical and structurally both kind of cells and also discriminate and determine different stages along the cell differentiation process.


Subject(s)
Animals , Mice , Cell Differentiation/physiology , Spectroscopy, Fourier Transform Infrared/methods , Pluripotent Stem Cells/physiology , Kidney/cytology , Immunohistochemistry , Gene Expression , Cells, Cultured , Fluorescent Antibody Technique , Principal Component Analysis , Pluripotent Stem Cells/cytology , Real-Time Polymerase Chain Reaction
15.
Braz. oral res. (Online) ; 31: e112, 2017. graf
Article in English | LILACS | ID: biblio-952076

ABSTRACT

Abstract: Cellular retinoic acid-binding protein 2 (CRABP2) has been detected in several organs during embryonic development. Recent studies have demonstrated that CRABP2 plays important roles in the retinoic acid, β-catenin and Notch signaling pathways, as well as in the interaction between epithelial and mesenchymal cells, which are important for human dental pulp stem cells (hDPSCs) and tooth development. In the present study, the expression of CRABP2 during mouse molar development and the role of CRABP2 in hDPSC odontoblastic differentiation were evaluated. CRABP2 was gradually decreased during the development of the first maxillary molar, which exhibited the same trend as the expression of CRABP2 during the odontoblastic induction of hDPSCs. CRABP2 knockdown inhibited the proliferative ability of hDPSCs, while it enhanced odontoblastic differentiation via promoting mineralization nodule formation and upregulating the activity of alkaline phosphatase and the expression of mineralization-related genes. The present study uncovered a novel function of CRABP2 in hDPSCs. Our data suggest that CRABP2 may act as a regulator during the proliferation and differentiation of hDPSCs.


Subject(s)
Humans , Animals , Male , Female , Stem Cells/physiology , Cell Differentiation/physiology , Receptors, Retinoic Acid/physiology , Dental Pulp/cytology , Cell Proliferation/physiology , Odontoblasts/physiology , Reference Values , Time Factors , Immunohistochemistry , Down-Regulation/physiology , Cell Communication , Cells, Cultured , Blotting, Western , Analysis of Variance , Anthraquinones , Receptors, Retinoic Acid/analysis , Reverse Transcriptase Polymerase Chain Reaction , Coloring Agents , Alkaline Phosphatase , Mice, Inbred C57BL
16.
Acta cir. bras ; 31(1): 59-66, Jan. 2016. graf
Article in English | LILACS | ID: lil-771849

ABSTRACT

PURPOSE: To describe a new technique for isolation of a mesenchymal stem cells (MSCs) population from the olfactory mucosa in rabbits. METHODS: Olfactory stem cells (OSCs) were retrieved from under the cribriform plate of the Ethmoid bone. Several assays were accomplished to characterize the cell population and attest its viability in vitro. The cells were submitted to flow cytometry with the antibodies CD34, CD45, CD73, CD79, CD90 and CD105 and also they were induced to differentiate in three lineages. Functional evaluation involved analysis of in vitro growth behavior, colony forming unit like fibroblasts (CFU-f) and cryopreservation response. Further transduction with Green Fluorescent Protein (GFP) was also performed. RESULTS: The OSCs showed mesenchymal features, as positive response to CD34, CD73 and CD90 antibodies and plasticity. Additionally, these cells have high proliferated rate, and they could be cultured through many passages and kept the ability to proliferate and differentiate after cryopreservation. The positive response to the transduction signalizes the possibility of cellular tracking in vivo. This is a desirable feature in case those cells are used for pre-clinical trials. CONCLUSION: The cells harvested were mesenchymal stem cells and the technique described is therefore efficient for rabbit olfactory stem cells isolation.


Subject(s)
Animals , Rabbits , Cell Separation/methods , Mesenchymal Stem Cells/cytology , Olfactory Mucosa/cytology , /physiology , /physiology , Thy-1 Antigens/physiology , Cells, Cultured , Colony-Forming Units Assay , Cryopreservation , Cell Differentiation/physiology , Cell Plasticity/physiology , Cell Proliferation/physiology , Ethmoid Bone/cytology , Flow Cytometry , Green Fluorescent Proteins/metabolism , Olfactory Mucosa/growth & development
17.
Braz. j. med. biol. res ; 49(10): e5373, 2016. graf
Article in English | LILACS | ID: lil-792522

ABSTRACT

Stem cells from human exfoliated deciduous teeth (SHEDs) have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS) in vitro. Modified platelet-rich plasma (mPRP) would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance. Platelets were harvested by automatic blood cell analyzer and activated by repeated liquid nitrogen freezing and thawing. The platelet-related cytokines were examined and analyzed by ELISA. SHEDs were extracted and cultured with different concentrations of mPRP or 10% FBS medium. Alkaline phosphatase (ALP) activity was measured. Mineralization factors, RUNX2 and OCN, were measured by real-time PCR. SHEDs were characterized with mesenchymal stem cells (MSCs) markers including vimentin, CD44, and CD105. mPRP at different concentrations (2, 5, 10, and 20%) enhanced the growth of SHEDs. Moreover, mPRP significantly stimulated ALP activity and promoted expression of RUNX2 and OCN compared with 10% FBS. mPRP could efficiently facilitate proliferation and differentiation of SHEDs, and 2% mPRP would be an optimal substitute for 10% FBS during SHEDs expansion and differentiation in clinical scale manufacturing.


Subject(s)
Humans , Animals , Cattle , Cell Proliferation/physiology , Dental Pulp/cytology , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma , Tooth, Deciduous/cytology , Alkaline Phosphatase/antagonists & inhibitors , Analysis of Variance , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/analysis , Culture Media , Enzyme-Linked Immunosorbent Assay , Platelet-Derived Growth Factor/analysis , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Time Factors , Transforming Growth Factor beta1/analysis
18.
Braz. oral res. (Online) ; 30(1): e20, 2016. tab, graf
Article in English | LILACS | ID: biblio-951968

ABSTRACT

Abstract The aim of this study was to evaluate whether medium modification improves the odontogenic differentiation of human dental pulp stem cells (DPSC) in vitro and in vivo. DPSC isolated from human impacted third molar teeth were analysed for clusters of differentiation with flow cytometry. Odontogenic differentiation was stimulated by medium modification with the addition of bone morphogenetic protein 2 (BMP2). The expression of dentin sialophosphoprotein, dentin matrix protein 1, enamelysin/matrix metalloproteinase 20 and the phosphate-regulating gene with homologies to endopeptidases on the X chromosome of the cells were analysed with RT-PCR at 7, 14 and 21 days. Then, DPSC were transplanted on the back of immunocompromised mice via a hydroxyapatite tricalcium phosphate scaffold, and the structure of the formed tissue was investigated. The cells were identified as mesenchymal stem cells with a 98.3% CD73 and CD90 double-positive cell rate. The increase in mineralization capacity and expression of human enamel-dentin specific transcripts proportional to the culture period were determined after differentiation. Six weeks after transplantation, an osteo-dentin matrix was formed in the group in which odontogenic differentiation was stimulated, and the odontogenic characteristics of the matrix were confirmed by histological examination and RT-PCR analysis. Odontogenic differentiation of the isolated and characterized human DPSC was improved with medium modification by the addition of BMP2 in vitro and in vivo. The defined medium and applied technique have a potential use for forming reparative dentin in the future, but the effects of the method should be investigated in long-term studies.


Subject(s)
Humans , Animals , Adult , Mice , Young Adult , Stem Cells/cytology , Cell Differentiation/drug effects , Culture Media/chemistry , Dental Pulp/cytology , Bone Morphogenetic Protein 2/pharmacology , Phosphoproteins/analysis , Sialoglycoproteins/analysis , Time Factors , Cell Differentiation/physiology , Cells, Cultured , Reproducibility of Results , Extracellular Matrix Proteins/analysis , Actins/analysis , Reverse Transcriptase Polymerase Chain Reaction , Stem Cell Transplantation/methods , Cell Proliferation/drug effects , Cell Proliferation/physiology , Matrix Metalloproteinase 20/analysis , PHEX Phosphate Regulating Neutral Endopeptidase/analysis , Bone Morphogenetic Protein 2/chemistry , Flow Cytometry , Odontogenesis/drug effects , Odontogenesis/physiology
19.
Braz. oral res. (Online) ; 30(1): e120, 2016. tab, graf
Article in English | LILACS | ID: biblio-951977

ABSTRACT

Abstract This study was designed to determine the in vivo performance of three different materials as scaffolds for dental pulp stem cells (DPSC) undergoing induced odontogenic differentiation. An odontogenic medium modified by the addition of recombinant human bone morphogenetic protein 2 was used in the experimental groups to induce differentiation. Mesenchymal stem cell medium was used in the control groups. DPSC were transplanted onto the backs of mice via three scaffolds: copolymer of L-lactide and DL-lactide (PLDL), copolymer of DL-lactide (PDL) and hydroxyapatite tricalcium phosphate (HA/TCP). The expression levels of dentin sialo-phosphoprotein (DSPP), dentin matrix protein-1 (DMP1), enamelysin/matrix metalloproteinase 20 (MMP20) and phosphate-regulating gene with homologies to endopeptidases on X chromosome (PHEX) were analysed using RT-PCR. The expressions in the experimental groups were compared to those in the control groups. The transcript expressions at 6 and 12 weeks were significantly different for all scaffolds (p < 0.05), except for the expression of DSPP in the PLDL group with regard to the time variable. Although there was a decrease in the expression of enamelysin/MMP20 in PLDL and HA/TCP at 12 weeks, all other expressions increased and reached their highest level at 12 weeks. The highest DSPP expression was in the PDL group (p < 0.05). The highest expression of DMP1 was detected in the HA/TCP group (p < 0.05). The highest expression of PHEX was in the PLDL group (p < 0.05). Consequently, PLDL and PDL seemed to be promising scaffold candidates for odontogenic regeneration at least as HA-TCP, when they were applied with the DPSC induced for odontogenic differentiation.


Subject(s)
Humans , Animals , Polymers/chemistry , Stem Cells/physiology , Cell Differentiation/physiology , Dental Pulp/cytology , Tissue Scaffolds/chemistry , Phosphoproteins/analysis , Sialoglycoproteins/analysis , Time Factors , Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Gene Expression , Reproducibility of Results , Extracellular Matrix Proteins/analysis , Durapatite/chemistry , Cell Culture Techniques , Dental Enamel/chemistry , Dentin/chemistry , Dioxanes/chemistry , Matrix Metalloproteinase 20/analysis , PHEX Phosphate Regulating Neutral Endopeptidase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL