Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.833
Filter
1.
Braz. j. med. biol. res ; 54(2): e9017, 2021. graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142574

ABSTRACT

The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.


Subject(s)
Animals , Rabbits , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , MAP Kinase Signaling System , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Melitten/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Caspase 3 , Apoptotic Protease-Activating Factor 1 , Neoplasm Invasiveness
2.
Frontiers of Medicine ; (4): 170-177, 2021.
Article in English | WPRIM | ID: wpr-880966

ABSTRACT

Nanosecond pulsed electric field (nsPEF) is a novel, nonthermal, and minimally invasive modality that can ablate solid tumors by inducing apoptosis. Recent animal experiments show that nsPEF can induce the immunogenic cell death of hepatocellular carcinoma (HCC) and stimulate the host's immune response to kill residual tumor cells and decrease distant metastatic tumors. nsPEF-induced immunity is of great clinical importance because the nonthermal ablation may enhance the immune memory, which can prevent HCC recurrence and metastasis. This review summarized the most advanced research on the effect of nsPEF. The possible mechanisms of how locoregional nsPEF ablation enhances the systemic anticancer immune responses were illustrated. nsPEF stimulates the host immune system to boost stimulation and prevail suppression. Also, nsPEF increases the dendritic cell loading and inhibits the regulatory responses, thereby improving immune stimulation and limiting immunosuppression in HCC-bearing hosts. Therefore, nsPEF has excellent potential for HCC treatment.


Subject(s)
Animals , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Immunity , Liver Neoplasms/therapy , Neoplasm Recurrence, Local
3.
Article in English | WPRIM | ID: wpr-880866

ABSTRACT

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Head and Neck Neoplasms , Humans , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Phosphofructokinase-2/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Microenvironment
4.
Article in English | WPRIM | ID: wpr-880864

ABSTRACT

C18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


Subject(s)
Animals , Apoptosis , Carcinoma, Squamous Cell , Cell Line, Tumor , Down-Regulation , Endoplasmic Reticulum Stress , Head and Neck Neoplasms , Mice , Mouth Neoplasms , Oxidoreductases
5.
Article in English | WPRIM | ID: wpr-880862

ABSTRACT

Oral squamous cell carcinoma (OSCC) has a high incidence of metastasis. Tumour immunotherapy targeting PD-L1 or PD-1 has been revolutionary; however, only a few patients with OSCC respond to this treatment. Therefore, it is essential to gain insights into the molecular mechanisms underlying the growth and metastasis of OSCC. In this study, we analysed the expression levels of protein kinase D3 (PKD3) and PD-L1 and their correlation with the expression of mesenchymal and epithelial markers. We found that the expression of PKD3 and PD-L1 in OSCC cells and tissues was significantly increased, which correlated positively with that of mesenchymal markers but negatively with that of epithelial markers. Silencing PKD3 significantly inhibited the growth, metastasis and invasion of OSCC cells, while its overexpression promoted these processes. Our further analyses revealed that there was positive feedback regulation between PKD3 and PD-L1, which could drive EMT of OSCC cells via the ERK/STAT1/3 pathway, thereby promoting tumour growth and metastasis. Furthermore, silencing PKD3 significantly inhibited the expression of PD-L1, and lymph node metastasis of OSCC was investigated with a mouse footpad xenograft model. Thus, our findings provide a theoretical basis for targeting PKD3 as an alternative method to block EMT for regulating PD-L1 expression and inhibiting OSCC growth and metastasis.


Subject(s)
Animals , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell , Cell Line, Tumor , Feedback , Head and Neck Neoplasms , Humans , Mice , Mouth Neoplasms , Protein Kinase C , STAT1 Transcription Factor , Squamous Cell Carcinoma of Head and Neck
6.
Article in English | WPRIM | ID: wpr-880860

ABSTRACT

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial-mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.


Subject(s)
Animals , Carcinoma, Squamous Cell , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Fibroblast Growth Factor 8 , Head and Neck Neoplasms , Humans , Mice , Mouth Neoplasms , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck
7.
Article in Chinese | WPRIM | ID: wpr-880841

ABSTRACT

OBJECTIVE@#To investigate the effects of overexpression of long noncoding RNA (lncRNA) MEG3 on the proliferation and invasion of glioblastoma U251 cells by suppressing the expression of hypoxia inducible factor 1@*METHODS@#The expression of lncRNA MEG3 and HIF1@*RESULTS@#The expression of MEG3 was significantly lower and HIF1@*CONCLUSIONS@#MEG3 overexpression inhibits the proliferation and invasion of U251 cells through suppressing the expression of HIF1


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , MicroRNAs , RNA, Long Noncoding/genetics
8.
Article in Chinese | WPRIM | ID: wpr-880834

ABSTRACT

OBJECTIVE@#To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells.@*METHODS@#Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice.@*RESULTS@#Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (@*CONCLUSIONS@#Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.


Subject(s)
Animals , Cell Line, Tumor , DNA Methylation , Female , Gene Expression , Ginsenosides/pharmacology , Humans , Mice , Mice, Nude , Ovarian Neoplasms/genetics , Promoter Regions, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/genetics
9.
Article in Chinese | WPRIM | ID: wpr-880832

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms.@*METHODS@#BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3.@*RESULTS@#CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (@*CONCLUSIONS@#Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Flavonols , HMGB1 Protein/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor , Stomach Neoplasms
10.
Article in Chinese | WPRIM | ID: wpr-880829

ABSTRACT

OBJECTIVE@#To establish a mouse model bearing orthotopic temozolomide (TMZ)-resistant glioma that mimics the development of drug resistance in gliomas @*METHODS@#Seventy-eight adult C57BL/6 mice were randomly divided into 6 groups (@*RESULTS@#The mouse models bearing TMZresistant glioma was successfully established. The cells from the high-dose induced group showed a significantly higher colony-forming rate than those from the high-dose control group (@*CONCLUSIONS@#Progressive increase of TMZ doses in mice bearing orthotopic gliomas can effectively induce TMZ resistance of the gliomas.


Subject(s)
Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm , Glioma/drug therapy , Mice , Mice, Inbred C57BL , Temozolomide/therapeutic use
11.
Article in English | WPRIM | ID: wpr-880693

ABSTRACT

Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) can effectively inhibit the growth of EGFR-dependent mutant non-small cell lung cancer (NSCLC). Unfortunately, NSCLC patients often develop severe drug resistance after long-term EGFR-TKI treatment. Studies have shown that the disorder of energy metabolism in tumor cells can induce EGFR-TKI resistance. Due to the drug action, gene mutation and other factors, tumor cells undergo metabolic reprogramming, which increases the metabolic rate and intensity of tumor cells, promotes the intake and synthesis of nutrients (such as sugar, fat and glutamine), forms a microenvironment conducive to tumor growth, enhances the bypass activation, phenotype transformation and abnormal proliferation of tumor cells, and inhibits the activity of immune cells and apoptosis of tumor cells, ultimately leading to drug resistance of tumor cells to EGFR-TKI. Therefore, targeting energy metabolism of NSCLC may be a potential way to alleviate TKI resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Epidermal Growth Factor , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , Tumor Microenvironment
12.
Article in English | WPRIM | ID: wpr-880631

ABSTRACT

OBJECTIVES@#Radiotherapy is one of the main therapies for colorectal cancer, but radioresistance often leads to radiotherapy failure. To improve the radioresistance, we explore the effect of oligomycin A, the H@*METHODS@#The effects of different concentrations of oligomycin A on the survival rate and glycolysis of HT29 colorectal cancer cells at different time points were investigated via MTT and glycolysis assay. siRNA-PFK1 was synthesized in vitro and transfected into HT29 cells. The effects of oligomycin A on radiosensitivity of HT29 colorectal cancer cells were measured via MTT and colony formation assay. Western blotting was used to detect the effect of oligomycin A on the expression of glycolytic enzyme PFK1. We compared difference between the effects of siRNA-PFK1 group and oligomycin A combined with siRNA-PFK1 group on cell survival and glycolysis. After 4 Gy X-ray irradiation, the effects of cell survival and glycolysis between the siRNA-PFK1 group and the oligomycin A combined with siRNA-PFK1 group were compared.@*RESULTS@#Compared with the 0 μmol/L oligomycin A group, the cell survival rate of HT29 cells treated with 4 μmol/L oligomycin A was significantly increased (@*CONCLUSIONS@#Oligomycin A can promote the radioresistance of HT29 colorectal cancer cells, which may be related to up-regulation of the PFK1 expression and increase of cell glycolysis.


Subject(s)
Cell Line, Tumor , Colorectal Neoplasms/genetics , HT29 Cells , Humans , Oligomycins/pharmacology , Radiation Tolerance
13.
Article in English | WPRIM | ID: wpr-880617

ABSTRACT

OBJECTIVES@#To investigate the effects of propofol on the proliferation and invasion of glioma U87 cells and to explore the possible anti-tumor mechanisms.@*METHODS@#The glioma U87 cells was divided into a blank group, a positive control group, and the propofol groups (1.00, 2.00 or 5.00 mmol/L). Cell counting kit-8 (CCK-8) was used to detect cell proliferation; Transwell method was used to detect the effect of propofol on invasion and migration of U87 cells; real-time PCR was used to detect the expression of microRNA-134 (miR-134); Western blotting was used to detect the expression levels of reproduction-related protein Ki-67, invasion-related protein metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway-related protein.@*RESULTS@#Compared with the blank group, the proliferation, invasion and migration capacity of U87 cells were reduced in the positive control group and the propofol groups after 48 hours (all @*CONCLUSIONS@#Propofol can decrease the proliferation rate, and the invasion and migration abilities of U87 cells, which may be achieved by up-regulation of miR-134 and suppression of PI3K/Akt signaling pathway.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Glioma/genetics , Humans , Matrix Metalloproteinase 2/genetics , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/genetics , Propofol/pharmacology , Proto-Oncogene Proteins c-akt/genetics
14.
Article in Chinese | WPRIM | ID: wpr-880151

ABSTRACT

OBJECTIVE@#To investigate the effect of the tripartite motif containing 31 (TRIM31) gene silencing on the proliferation and apoptosis of multiple myeloma cells and its possible mechanism.@*METHODS@#The normal bone marrow plasma cells (nPCs) were selected as control, and the mRNA and protein expression levels of TRIM31 in human multiple myeloma cell lines (U266, RPMI-8226, NCI-H929 and KMS-11) were detected by RT-qPCR and Western blot. Recombinant lentivirol vector containing shRNA-TRIM31 and its negative control were used to infect U266 cells respectively, and the mRNA expression level of TRIM31 in infected cells was detected by RT-qPCR. Then cell proliferation, colony forming and apoptosis were analyzed by CCK-8, soft agar assay, and flow cytometry, respectively. The protein expression levels of TRIM31, cleaved-caspase-3, BCL-2, Bax, p-Akt (Ser473), Akt and PI3K (p110α) were evaluated by Western blot. In addition, the PI3K/Akt signaling pathway-specific inhibitor LY294002 and TRIM31-shRNA lentivirus were used to interfere with U266 cells, and the cell proliferation, apoptosis, and protein expression of p-Akt (Ser473) and Akt were detected by CCK-8, flow cytometry and Western blot, respectively.@*RESULTS@#Compared with nPCs, the expression levels of TRIM31 mRNA and protein in U266, RPMI-8226, NCI-H929 and KMS-11 cells were significantly increased (P<0.001), especially in U266 cells. After lentivirus infection, the levels of TRIM31 mRNA and protein in U266 cells were significantly decreased (P<0.001). TRIM31 silencing significantly inhibited the proliferation of U266 cells (P<0.05), attenuated the ability of cell cloning, improved cell apoptosis, up-regulated the protein expressions of cleaved-caspase-3 and Bas as well as down-regulated expressions of BCL-2, p-Akt (Ser473) and PI3K (p110α). There was no significant effect on Akt protein. Intervention of LY294002 significantly enhanced the inhibition on cell proliferation and the promotion on apoptosis mediated by TRIM31 gene silencing in U266 cells.@*CONCLUSION@#TRIM31 gene silencing can inhibit U266 cell proliferation and promote its apoptosis, which may be closely related to inhibition of PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Silencing , Humans , Multiple Myeloma , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
15.
Article in Chinese | WPRIM | ID: wpr-880150

ABSTRACT

OBJECTIVE@#To investigate the effects of autophagy inhibitor ROC-325 and its combination with bortezomib on the proliferation, apoptosis and autophagy of multiple myeloma cell lines.@*METHODS@#Multiple myeloma cells were treated with ROC-325 at different concentration. The cell proliferation was detected by CCK-8. Apoptosis was determined by Caspase-3/7 and Caspase-9 activity assays. Autophagy was detected by monodansylcadaverine staining. The apoptosis-related proteins (PARP and Caspase-3) and autophagy-related proteins (P62, Beclin-1, and LC3A/B) were analyzed by Western blot. The combined effect with bortezomib on bortezomib-resistant cell line was detected by CCK-8.@*RESULTS@#ROC-325 inhibited the proliferation of RPMI 8226, RPMI 8226-BTZ100, U266 and IM9 cells in a dose-dependent manner (r=-0.8275, r=-0.9079, r=-0.9422, r=-0.9305), the 72 h IC@*CONCLUSION@#ROC-325 can inhibit the proliferation, induce the apoptosis of myeloma cells through the mitochondrial pathway, inhibit the autophagy of myeloma cells by affecting the fusion of autophagosomes and lysosomes, and overcome bortezomib resistance by the combination of ROC-325 with bortezomib.


Subject(s)
Apoptosis , Autophagy , Bortezomib/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Hydroxychloroquine/analogs & derivatives , Multiple Myeloma
16.
Article in Chinese | WPRIM | ID: wpr-880127

ABSTRACT

Sickle cell disease (SCD) is a single gene genetic disease, which seriously threatens the life span and quality of patients. On the basis of the pathogenesis of SCD and the alternative therapy based on fetal hemoglobin F (HbF), the research progress of transcription factors involved in the regulation of HbF gene expression, such as BCL11A, ZBTB7A, KLF-1, c-MYB and SOX6, as well as the application of CRISPR / Cas9, TALEN, zinc finger nuclease and other gene editing technologies in this field has been made, providing a solid theoretical basis for the exploration of new treatment schemes for β- like hemoglobin diseases, such as sickle cell disease and β- thalassemia.


Subject(s)
Anemia, Sickle Cell/therapy , Cell Line, Tumor , DNA-Binding Proteins , Fetal Hemoglobin/genetics , Genetic Therapy , Humans , Repressor Proteins/genetics , Transcription Factors
17.
Article in Chinese | WPRIM | ID: wpr-880105

ABSTRACT

OBJECTIVE@#To study the effect of PX-12 on apoptosis of multiple myeloma (MM) cell line induced by bortezomib.@*METHODS@#MM cell line H929 cells were divided into PX-12 group, bortezomib group, combination group, and control group. 5.0 μmol/L PX-12, 20 nmol/L bortezomib, combination of the two drugs, and DMSO were given to the above mentioned group, respectively. After culture for 24, 48, and 72 hours, the changes of cell viability were observed, the MM cell activity was detected by MTT method, and the cell cycle distribution and apoptosis of each group was detected by flow cytometry. The intracellular ROS level was measured by H@*RESULTS@#MTT assay showed that after culture for 72 hours, the activity of H929 cells in PX-12 group (P<0.05) and bortezomib group (P<0.01) was significantly lower than that in the control group, while that in the combination group was decreased most significantly (P<0.01). After culture for 48 hours, cells in G1 phase in PX-12 group was decreased to 40%, while cells in S phase and G@*CONCLUSION@#PX-12 can increase the apoptosis of MM cell line H929 induced by bortezomib, which may be caused by increasing of ROS level.


Subject(s)
Apoptosis , Bortezomib/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Multiple Myeloma
18.
Article in Chinese | WPRIM | ID: wpr-880103

ABSTRACT

OBJECTIVE@#To investigate the effect of autophagy on the drug resistance of different human lymphoma cells.@*METHODS@#Human Burkitt's lymphoma cell Daudi, human B lymphoma cell SUDHL-4, and human mantle cell lymphoma cell JeKo-1 were taken as the research subjects. The expression of Atg5 was inhibited by the treatments of autophagy inhibitors or stable interference via lentivirus infection. The autophagy activity of B lymphoma cell was changed, and the changes of lymphoma cells to the drug resistance of ADR and VCR was observed.@*RESULTS@#JeKo-1 cells showed the strongest resistance to ADR and VCR, followed by SUDHL-4, and Daudi cells showed the weakest resistance to ADR and VCR. At the same time, JeKo-1 cells showed the strongest autophagy activity, followed by SUDHL-4, and Daudi cells showed the weakest autophagy activity. After the treatments of autophagy inhibitors or stable Atg5 interference, the resistance of lymphoma cells to ADR and VCR was significantly weakened, and there was the positive correlation at the drug resistance and the autophagy activity of B lymphoma cell.@*CONCLUSION@#The higher autophagy activity in lymphoma cells, the lower chemotherapy resistance of the lymphoma cells after autophagy was inhibited.


Subject(s)
Adult , Autophagy , Burkitt Lymphoma , Cell Line, Tumor , Drug Resistance , Humans , Lymphoma, B-Cell
19.
Article in Chinese | WPRIM | ID: wpr-880102

ABSTRACT

OBJECTIVE@#To investigate the effect of long non-coding RNA-TUC338 on the proliferation and migration of lymphoma cells.@*METHODS@#The expression of TUC338 in different lymphoma cells was detected by fluorescence quantitative PCR, cell proliferation by sulforhodamine B (SRB) assay, migration of lymphoma cells by transwell assay, and protein expression in PI3K/AKT signaling pathway by Western blot.@*RESULTS@#The expression levels of TUC338 in lymphoma cells Daudi, U937, BC-3, and Raji significantly increased in comparison with human normal T lymphocytes H9 (t=13.277, 10.103, 16.200, and 26.687, P=0.002, 0.005, 0.001, and 0.000). Compared with NC-siRNA group, the number of cells crossing the chamber of TUC338-siRNA group was significantly reduced (t=30.508, P=0.000), the protein expression levels of p-PI3K and p-AKT significantly decreased (t=16.872 and 18.371, P=0.000 and 0.000), and OD@*CONCLUSION@#The expression of TUC338 significantly increases in lymphoma cells, and silence of TUC338 effectively inhibits the activation of PI3K/AKT signaling pathway, thereby inhibiting the proliferation and migration of lymphoma cells, which has a potential application value in diagnosis and treatment of lymphoma.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , Signal Transduction
20.
Article in Chinese | WPRIM | ID: wpr-880101

ABSTRACT

OBJECTIVE@#To investigate the effect of 2-methoxyestradiol (2-ME2) to lymphoma Raji cells and its mechanism.@*METHODS@#Different concentrations of 2-ME2 were used to treat lymphoma Raji cells. CCK8 method was used to detect the effect of 2-ME2 to proliferation of Raji cells. Flow cytometry FITC/PI double labeling method was used to detect early apoptosis of the cells. Western blotting was used to detect the effect of 2-ME2 to the expression of BCL-2, Bax, Caspase-3 and C-myc proteins in Raji cells.@*RESULTS@#2-ME2 significantly inhibited the proliferation of Raji cells. The inhibition rate increased with the increasing of drug concentration, and increased significantly with the prolongation of drug treatment time (r=0.9215). Flow cytometry FITC/PI double staining showed that the apoptotic rate of 2.5 μmol/L 2-ME2 treatment group was (33.79±1.63) %, while the apoptosis rate of the 48 h group was (51.90±2.72) %, and that of the control group was (7.08±0.36) %. After treated with 2.5 μmol/L 2-ME2 for 12 h, the expression of Bax protein was up-regulated, BCL-2 protein was down-regulated, caspase-3 protein expression was up-regulated, and C-myc protein expression was down-regulated, all of them showed a time-dependent relationship.@*CONCLUSION@#2-ME2 shows obvious inhibitory effect on lymphoma Raji cells in a dose- and time-dependent manner. Its mechanism of treatment on lymphoma Raji cells may be related to up-regulation of Bax/BCL-2 ratio and activation of Caspase-3 to induce apoptosis in cancer cells. Down-regulation of C-myc protein expression also participates in the apoptotic process.


Subject(s)
2-Methoxyestradiol , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Lymphoma , Proto-Oncogene Proteins c-bcl-2/metabolism , Up-Regulation , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL