ABSTRACT
OBJECTIVE@#To investigate the regulatory effects of miR-30e-5p on biological behaviors of colorectal cancer cells and the role of PTEN/CXCL12 axis in mediating these effects.@*METHODS@#Bioinformatic analysis was performed to explore the differential expression of miR-30e-5p between colorectal cancer tissues and normal tissues. RT-qPCR was used to detect the differential expression of miR-30e-5p in intestinal epithelial cells and colorectal cancer cells. Bioinformatics and dual luciferase assay were used to predict and validate the targeting relationship between miR-30e-5p and PTEN. Human and murine colorectal cancer cell lines were transfected with miR-30e-5p mimics, miR-30e-5p inhibitor, miR-30e-5p mimics+LV-PTEN, or miR-30e-5p inhibitor + si-PTEN. The changes in biological behaviors of the cells were detected using plate clone formation assay, CCK-8 assay, flow cytometry, scratch healing and Transwell assays. PTEN and CXCL12 expressions in the cancer cells were detected by Western blotting. The effects of miR-30e-5p inhibitor on colorectal carcinogenesis and development were observed in nude mice.@*RESULTS@#Bioinformatic analysis showed that miR-30e-5p expression was significantly elevated in colorectal cancer tissues compared with the adjacent tissue (P < 0.01). Higher miR-30e-5p expression was detected in colorectal cancer cell lines than in intestinal epithelial cells (P < 0.01). Dual luciferase assay confirmed the targeting relationship between miR-30e-5p and PTEN (P < 0.05). Transfection with miR-30e-5p mimics significantly enhanced proliferation and metastasis and inhibited apoptosis of the colorectal cancer cells (P < 0.05), and co-transfection with LV-PTEN obviously reversed these changes (P < 0.05). MiR-30e-5p mimics significantly inhibited PTEN expression and enhanced CXCL12 expression in the cancer cells (P < 0.01), and miR-30e-5p inhibitor produced the opposite effect. Transfection with miR-30e-5p inhibitor caused cell cycle arrest in the cancer cells, which was reversed by co-transfection with si-PTEN (P < 0.05). In the in vivo experiments, the colorectal cancer cells transfected with miR-30e-5p inhibitor showed significantly lowered tumorigenesis.@*CONCLUSION@#Overexpression of miR-30e-5p promotes the malignant behaviors of colorectal cancer cells by downregulating PTEN to activate the CXCL12 axis.
Subject(s)
Humans , Animals , Mice , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Mice, Nude , Cell Movement/physiology , Colorectal Neoplasms/pathology , Luciferases/metabolism , Gene Expression Regulation, Neoplastic , PTEN Phosphohydrolase/metabolism , Chemokine CXCL12/metabolismABSTRACT
OBJECTIVE@#To investigate the mechanism by which conditioned medium of colorectal cancer cells promotes the formation of cancer-associated fibroblasts (CAFs).@*METHODS@#Normal human colorectal fibroblasts (CCD-18Co cells) in logarithmic growth phase were treated with the conditioned media of colorectal cancer HCT116 cells (HCT116-CM) or Caco-2 cells (Caco-2-CM) alone or in combination with 300 nmol/L ERK inhibitor SCH772984. The expression levels of CAFs-related molecular markers were detected in the treated cells with real-time quantitative PCR (RT- qPCR) and immunofluorescence assay, and the changes in cell proliferation, colony formation and migration were assessed with RTCA, colony formation and wound healing assays; Western blotting was performed to detect the activated signaling pathways in the fibroblasts and the changes in CAFs formation after blocking of the signaling pathway.@*RESULTS@#HCT116-CM and Caco-2-CM significantly upregulated mRNA expression levels of CAFs markers (including α-SMA, FAP, FN and TGF-β) in CCD-18Co cells, and strongly promoted fibroblast transformation into CAFs (P < 0.05). The two conditioned media also promoted the proliferation, colony formation and migration of CCD-18Co cells (P < 0.05) and significantly increased the levels of α-SMA protein and ERK phosphorylation in the cells (P < 0.05). The ERK inhibitor SCH772984 obviously inhibited the expression of α-SMA and the transformation of CCD-18Co cells into CAFs induced by the conditioned medium of colorectal cancer cells (P < 0.05).@*CONCLUSION@#Colorectal cancer cells may induce the formation of colorectal CAFs by activating the ERK pathway in the fibroblasts.
Subject(s)
Humans , Cancer-Associated Fibroblasts/metabolism , Culture Media, Conditioned/pharmacology , MAP Kinase Signaling System , Caco-2 Cells , Fibroblasts , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Colorectal Neoplasms/genetics , Cell MovementABSTRACT
BACKGROUND@#Radiotherapy is one of the most common treatments for lung cancer, and about 40%-50% of patients after radiotherapy will appear uncontrolled or recurrence in the case of local tumors. Radioresistance is the predominant cause of local therapeutic failure. Nevertheless, the lack of in vitro radioresistance models is an influential factor obstructing the study of its mechanism. Therefore, the establishment of radioresistant cell lines, H1975DR and H1299DR, was beneficial to explore the mechanism of radioresistance in lung adenocarcinoma.@*METHODS@#The radioresistant cell lines of H1975DR and H1299DR were obtained from H1975 and H1299 cells irradiated with equal doses of X-rays; Clonogenic assays were performed to compare the clone-forming ability of H1975 vs H1975DR cells, H1299 vs H1299DR cells, then fitting cell survival curve by linear quadratic model; The comet assay was employed to examine DNA damage repair and calculate the percentage of DNA tails; The optical microscopy, CCK-8, flow cytometry, Transwell invasion assays were used to compare biological characteristics such as cell morphology, cell proliferation, apoptosis level, cycle distribution, cell migration and invasion; Western blot was carried out to measure the protein expression of DNA damage repair factors, such as DNA-PKcs, 53BP1, RAD51, and p-ATM.@*RESULTS@#After five months of continuous irradiation and stable culture, radioresistant cell lines H1975DR and H1299DR were obtained. The cell proliferation activity, clone formation ability and DNA damage repair ability of the two radioresistant cell lines were significantly improved under X-ray irradiation. The proportion of the G2/M phase was markedly decreased and the proportion of the G0/G1 phase was increased. Cell migration and invasion ability were significantly enhanced. Relative expression levels of p-DNA-PKcs (Ser2056), 53BP1 in the nonhomologous end-joining (NHEJ) repair pathway and p-ATM (Ser1981), RAD51 in the homologous recombination (HR) repair pathway were higher than those in H1975 and H1299.@*CONCLUSIONS@#H1975 and H1299 cell lines can be able to differentiate into lung adenocarcinoma radioresistant cell lines H1975DR and H1299DR by equal dose fractional irradiation, which provided an in vitro cytological model for the study of radiotherapy resistance mechanism of lung cancer patients.
Subject(s)
Humans , Lung Neoplasms , Adenocarcinoma of Lung , Apoptosis , Cell Movement , Cell ProliferationABSTRACT
BACKGROUND@#There have been many significant advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC). However, the mechanism underlying the progression of NSCLC is still not clear. Plant homodomain finger-like domain-containing protein 5A (PHF5A) plays an important role in processes of chromatin remodeling, morphological development of tissues and organs and maintenance of stem cell pluripotency. This study aims to investigate the role of PHF5A in the proliferation and migration of NSCLC.@*METHODS@#A549 and PC-9 PHF5A overexpression cell lines were constructed. PHF5A expression was decreased in H292 and H1299 cells by using siRNA. Flow cytometry was used to detect the cell cycle. MTT assay and clone formation assay were used to examine the proliferative ability of NSCLC, while migration assay and wound healing assay were performed to evaluate the ability of migration. Western blot analysis was used to measure the expressions of PI3K, p-AKT and the associated downstream factors.@*RESULTS@#Up-regulation of PHF5A in A549 and PC-9 cells increased the proliferation rate, while down-regulation of PHF5A in H292 and H1299 cells inhibited the proliferation rate at 24 h, 48 h and 72 h (P<0.05). The metastatic ability was elevated in the PHF5A-overexpresion groups, while reduced in the PHF5A-down-regulation group (P<0.05). In addition, reduced expression of PHF5A induced cell cycle arrest at G1/S phase (P<0.05). Furthermore, decreased expression of PHF5A reduced the expression levels of PI3K, phosphorylation of AKT, c-Myc (P<0.05) and elevated the expression of p21 (P<0.05).@*CONCLUSIONS@#These results demonstrated that PHF5A may play an important role in progression of NSCLC by regulating the PI3K/AKT signaling pathway.
Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Trans-Activators/genetics , RNA-Binding Proteins/metabolismABSTRACT
Wound healing is a slow and complex biological process, including inflammatory reaction, cell proliferation, cell differentiation, cell migration, angiogenesis, extracellular matrix deposition, tissue remodeling, and so on. Wnt signaling pathway can be divided into classical pathway and non-classical pathway. Wnt classical pathway, also known as Wnt/β-catenin signaling pathway, plays an important role in cell differentiation, cell migration, and maintenance of tissue homeostasis. Many inflammatory factors and growth factors are involved in the upstream regulation of this pathway. The activation of Wnt/β-catenin signaling pathway plays an important role in the occurrence, development, regeneration, repair and related treatment of skin wounds. This article review the relationship between Wnt/β-catenin signaling pathway and wound healing, meanwhile summarizes its effects on important processes of wound healing, such as inflammation, cell proliferation, angiogenesis, hair follicle regeneration, and skin fibrosis, as well as the role of inhibitors of Wnt signaling pathway in wound healing.
Subject(s)
Humans , Wnt Signaling Pathway , Cell Differentiation , Cell Movement , Cell Proliferation , Inflammation , Wound HealingABSTRACT
OBJECTIVE@#To investigate the effects of lncRNA HOTAIR on the proliferation, invasion and migration of lymphoma cells through target gene miR-20a-5p and its molecular mechanism.@*METHODS@#After synthesizing HOTAIR siRNA and siRNA NC plasmids, they were transfected into lymphoma Raji cells, respectively. The expression of HOTAIR mRNA was detected by RT-qPCR. The proliferation, invasion and migration of lymphoma Raji cells were detected by CCK-8 assay, Transwell assay and cell scratch healing assay, respectively. The target gene of lncRNA HOTAIR was predicted by miRcode software, and the relationship between HOTAIR and target gene was analyzed by dual luciferase assay. After synthesis of miR-20a-5p inhibitor and inhibitor NC, Raji cells were transiently transfected. The expression of miR-20a-5p was detected by RT-qPCR, and the effects of down-regulation of miR-20a-5p on the proliferation, invasion and migration of Raji cells were analyzed. The overexpression plasmid of lncRNA HOTAIR and miR-20a-5p mimics were transfected into Raji cells simultaneously to analyze the proliferation, invasion and migration ability of Raji cells. After overexpression or down-regulation of miR-20a-5p, the expression of JAK/STAT3 signaling pathway related proteins was analyzed.@*RESULTS@#HOTAIR expression in Raji cells was decreased after transfection of HOTAIR siRNA (P<0.01), and miR-20a-5p expression was also decreased after transfection of miR-20a-5p inhibitor (P<0.01). HOTAIR had a targeting and negative regulation relationship with miR-20a-5p (r=-0.826). Silencing HOTAIR promoted the expression of miR-20a-5p and inhibited the proliferation, invasion and migration of Raji cells. Down-regulation of miR-20a-5p expression promoted the proliferation, invasion and migration of Raji cells. Effect of HOTAIR overexpression on the proliferation, invasion and migration of Raji cells could be reversed by up-regulation of miR-20a-5p. Down-regulation of miR-20a-5p expression activated the intracellular JAK/STAT3 signaling pathway.@*CONCLUSION@#HOTAIR affects the proliferation, invasion and migration of lymphoma cells by targeting miR-20a-5p, and its mechanism may be related to the activation of JAK/STAT3 signaling pathway.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lymphoma , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Small InterferingABSTRACT
The toxic pathogen theory, an important part of the theories of traditional Chinese medicine(TCM), began in the Qin and Han dynasties, formed in the Jin, Sui, Tang, and Song dynasties, developed rapidly in the Ming and Qing dynasties, and conti-nued to develop in contemporary times based on the achievements of its predecessors. The continuous exploration, practice, and inheri-tance of many medical practitioners over the generations have facilitated the enrichment of its connotation. The toxic pathogen is violent, fierce, dangerous, prolonged, rapid in transmission, easy to hurt the internal organs, hidden, and latent, with many changes, and it is closely related to the development of tumor diseases. TCM has a history of thousands of years in the prevention and treatment of tumor diseases. It is gradually realized that the etiology of tumor is mainly attributed to the deficiency of healthy Qi and excess of to-xic pathogen, and the struggle between healthy Qi and toxic pathogen runs through the whole course of tumor, with the deficiency of healthy Qi as the prerequisite and the invasion of toxic pathogen as the root of the occurrence. The toxic pathogen has a strong carcinogenic effect and is involved in the whole process of tumor development, which is closely related to the malignant behaviors of tumors, including proliferation, invasion, and metastasis. This study discussed the historical origin and modern interpretation of the toxic pathogen theory in the prevention and treatment of tumors, with aims of sorting out the theoretical system based on the toxic pathogen theory in the treatment of tumor diseases, and illustrating the importance of the toxic pathogen theory in the treatment of tumors in the context of modern research on pharmacological mechanisms and the development and marketing of relevant anti-tumor Chinese medicinal preparations.
Subject(s)
Medicine, Chinese Traditional , Cell Movement , ChinaABSTRACT
Objective: To explore the effect of lncRNA ADPGK-AS1 on the proliferation and apoptosis of retinoblastoma cells and its possible mechanism. Methods: The tumor tissues of 31 patients with retinoblastoma admitted to Henan Provincial Eye Hospital from February to June 2020 and their corresponding normal tissues adjacent to the cancer were collected. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p in retinoblastoma tissues and normal adjacent tissues were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Human retinal epithelial cell ARPE-19, human retinoblastoma cell Y-79 and WERI-Rb-1 were cultured in vitro. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p were detected by qRT-PCR. Y-79 cells were randomly divided into si-con group, si-lncRNA ADPGK-AS1 group, miR con group, miR-200b-5p group, si-lncRNA ADPGK-AS1+ anti-miR con group, and si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group. The proliferation, cloning and apoptosis of cells in each group were detected by tetramethylazol blue method, plate cloning test and flow cytometry, respectively. The targeting relationship between lncRNA ADPGK-AS1 and miR-200b-5p was detected by double luciferase report test, and the expression level of cleaved-caspase-3 protein was detected by western blot. Results: Compared with the adjacent tissues, the expression of lncRNA ADPGK-AS1 in retinoblastoma tissues was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with ARPE-19 cells, the expression of lncRNA ADPGK-AS1 in Y-79 and WERI-Rb-1 cells was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with the si-con group, the cell viability of the si-lncRNA ADPGK-AS1 group was reduced (1.06±0.09 vs 0.53±0.05, P<0.05), the number of cell clone formation was reduced (114.00±8.03 vs 57.00±4.13, P<0.05), while the apoptosis rate [(7.93±0.68)% vs (25.43±1.94)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). Compared with the miR-con group, the cell viability of the miR-200b-5p group was decreased (1.05±0.08 vs 0.57±0.05, P<0.05), the number of cell clone formation was decreased (118.00±10.02 vs 64.00±5.13, P<0.05), while the apoptosis rate [(7.89±0.71)% vs (23.15±1.62)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). lncRNA ADPGK-AS1 could target the expression of miR-200b-5p. Compared with the si-lncRNA ADPGK-AS1+ anti-miR-con group, cell viability of the si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group was increased (0.53±0.04 vs 1.25±0.10, P<0.05), and the number of cell clones was increased (54.00±4.39 vs 125.00±10.03, P<0.05), while the rate of apoptosis [(25.38±1.53)% vs (9.76±0.71)%] and the protein level of cleaved-caspase-3 were decreased (P<0.05). Conclusion: Interfering with the expression of lncRNA ADPGK-AS1 could inhibit the proliferation and clone formation and induce apoptosis of retinoblastoma cells by targeting the expression of miR-200b-5p.
Subject(s)
Humans , MicroRNAs/metabolism , Retinoblastoma/pathology , Caspase 3/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis/genetics , Retinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/geneticsABSTRACT
Objective: To investigate the effect of ubiquitin mutation at position 331 of tumor necrosis factor receptor related factor 6 (TRAF6) on the biological characteristics of colorectal cancer cells and its mechanism. Methods: lentivirus wild type (pCDH-3×FLAG-TRAF6) and mutation (pCDH-3×FLAG-TRAF6-331mut) of TRAF6 gene expression plasmid with green fluorescent protein tag were used to infect colorectal cancer cells SW480 and HCT116, respectively. The infection was observed by fluorescence microscope, and the expressions of TRAF6 and TRAF6-331mut in cells was detected by western blot. Cell counting kit-8 (CCK-8) and plate cloning test were used to detect the proliferation ability of colorectal cancer cells in TRAF6 group and TRAF6-331mut group, cell scratch test to detect cell migration, Transwell chamber test to detect cell migration and invasion, immunoprecipitation to detect the ubiquitination of TRAF6 and TRAF6-331mut with ubiquitinof lysine binding sites K48 and K63. Western blot was used to detect the effects of TRAF6 and TRAF6-331mut over expression on the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase mitogen-activated protein kinase (MAPK)/activating protein-1(AP-1) signal pathway. Results: The successful infection of colorectal cancer cells was observed under fluorescence microscope. Western blot detection showed that TRAF6 and TRAF6-331mut were successfully expressed in colorectal cancer cells. The results of CCK-8 assay showed that on the fourth day, the absorbance values of HCT116 and SW480 cells in TRAF6-331mut group were 1.89±0.39 and 1.88±0.24 respectively, which were lower than those in TRAF6 group (2.09±0.12 and 2.17±0.45, P=0.036 and P=0.011, respectively). The results of plate colony formation assay showed that the number of clones of HCT116 and SW480 cells in TRAF6-331mut group was 120±14 and 85±14 respectively, which was lower than those in TRAF6 group (190±21 and 125±13, P=0.001 and P=0.002, respectively). The results of cell scratch test showed that after 48 hours, the percentage of wound healing distance of HCT116 and SW480 cells in TRAF6-331mut group was (31±12)% and (33±14)%, respectively, which was lower than those in TRAF6 group [(43±13)% and (43±7)%, P=0.005 and 0.009, respectively]. The results of Transwell migration assay showed that the migration numbers of HCT116 and SW480 cells in TRAF6-331mut group were significantly lower than those in TRAF6 group (P<0.001 and P<0.002, respectively). The results of Transwell invasion assay showed that the number of membrane penetration of HCT116 and SW480 cells in TRAF6-331mut group was significantly lower than those in TRAF6 group (P=0.008 and P=0.009, respectively). The results of immunoprecipitation detection showed that the ubiquitin protein of K48 chain pulled by TRAF6-331mut was lower than that of wild type TRAF6 in 293T cells co-transfected with K48 (0.57±0.19), and the ubiquitin protein of K63 chain pulled down by TRAF6-331mut in 293T cells co-transfected with K63 was lower than that of wild type TRAF6 (0.89±0.08, P<0.001). Western blot assay showed that the protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-HCT116 cells were 0.63±0.08, 0.42±0.08 and 0.60±0.07 respectively, which were lower than those in TRAF6-HCT116 cells (P=0.002, P<0.001 and P<0.001, respectively). The expression level of AP-1 protein in TRAF6-HCT116 cells was 0.89±0.06, compared with that in TRAF6-HCT116 cells. The difference was not statistically significant (P>0.05). The protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-SW480 cells were 0.50±0.06, 0.51±0.04, 0.48±0.02, respectively, which were lower than those in TRAF6-SW480 cells (all P<0.001). There was no significant difference in AP-1 protein expression between TRAF6-331mut-SW480 cells and TRAF6-SW480 cells. Conclusion: The ubiquitin site mutation of TRAF6 gene at 331 may prevent the binding of TRAF6 and ubiquitin lysine sites K48 and K63, and then affect the expressions of proteins related to downstream NF-κB and MAPK/AP-1 signal pathways, and inhibit the proliferation, migration and invasion of colorectal cancer cells.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Lysine/metabolism , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Ubiquitin/metabolismABSTRACT
Objective: To investigate the effect of long non-coding RNA urothelial carcinoma-associated 1 (UCA1) gene on the proliferation, migration, apoptosis and immune escape of endometrial cancer cells and its molecular mechanism. Methods: Endometrial cancer tissues and adjacent normal tissues of patients with endometrioid adenocarcinoma who underwent total or partial hysterectomy in Henan Provincial People's Hospital from 2017 to 2019 were collected. The expressions of UCA1 and miR-204-5p were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and the cell proliferation, migration and apoptosis were detected by cell counting kit 8 (CCK8) method, Transwell method, flow cytometry, and dual-luciferase reporter assay was used to explore the target relationship between UCA1 and miR-204-5p. HEC-1A-sh-NC or HEC-1A-sh-UCA1 cells were co-cultured with peripheral blood mononuclear cells (PBMC) or cytokine-induced killer cells in vitro to explore the role of UCA1 in immune escape. Results: The expression level of UCA1 in endometrial cancer tissue (17.08±0.84) was higher than that in adjacent normal endometrial tissue (3.00±0.37), and the expression level of miR-204-5p (0.98±0.16) was lower than that in adjacent normal endometrial tissue (2.00±0.20, P<0.05). Pearson correlation analysis showed that the expression of miR-204-5p was negatively correlated with the expression of UCA1 (r=-0.330, P=0.030). The expressions of UCA1 and miR-204-5p were associated with the International Federation of Gynecology and Obstetrics stage of endometrial cancer, lymph node metastasis and vascular invasion (P<0.05). The relative ratio of absorbance (0.58±0.11) and the number of cell migration [(199.68±18.44)] in the sh-UCA1 group were lower than those in the sh-NC group (1.24±0.17 and 374.76±24.83), respectively. The apoptosis rate of sh-UCA1 group [(28.64±7.80)%] was higher than that of sh-NC group [(14.27±4.38)%, P<0.05]. After different ratios of effector cells and target cells were cultured, the cell survival rate of HEC-1A-sh-UCA1 group was lower than that of HEC-1A-sh-NC group, and the difference was statistically significant (P<0.05). UCA1 had a binding site for miR-204-5p. The relative ratio of absorbance (1.74±0.08) and the number of cell migration (426.00±18.00) cells in the UCA1+ anti-miR-204-5p group were higher than those in the control group [1.00±0.03 and (284.00±8.00) cells, respectively]. The apoptosis rate of UCA1+ anti-miR-204-5p group [(5.42±0.93)%] was lower than that of control group [(14.82±1.48)%, P<0.05]. HEC-1A-sh-UCA1 cells could induce higher interferon gamma (IFN-γ) expression when co-cultured with PBMC, and the levels of IFN-γ expression in PHA group and PHA+ pre-miR-204-5p group cells were 2.42±0.49 and 1.88±0.26, which were higher than that in the PHA+ pre-NC group (0.85±0.10, P<0.05). When co-cultured with cytokine-induced killer cells (different ratios) in vitro, the HEC-1A-sh-UCA1 group and the HEC-1A-pre-miR-204-5p group had lower survival rates than that in the HEC-1A-pre-miR-204-5p group. In the HEC-1A-pre-NC group, the differences were statistically significant (P<0.05). Conclusion: UCA1/miR-204-5p may play an important role in human endometrial cancer.
Subject(s)
Female , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Leukocytes, Mononuclear , Carcinoma, Transitional Cell , Antagomirs , Cell Line, Tumor , Urinary Bladder Neoplasms , Cell Proliferation , Endometrial Neoplasms/genetics , Apoptosis/genetics , Cell Movement/genetics , Gene Expression Regulation, NeoplasticABSTRACT
OBJECTIVE@#Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.@*METHODS@#Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.@*RESULTS@#JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.@*CONCLUSION@#JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.
Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Junctional Adhesion Molecules/metabolism , Kaempferols/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Adenocarcinoma of Lung/metabolism , TOR Serine-Threonine Kinases/metabolism , Lung Neoplasms/metabolism , Cell Proliferation , Gene Expression Regulation, NeoplasticABSTRACT
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Subject(s)
Mice , Animals , Ependymoglial Cells/physiology , Cadherins , Neurons/metabolism , Cerebral Cortex/metabolism , Cell Differentiation , Cell MovementABSTRACT
OBJECTIVE@#To explore the therapeutic effect of naringin on colorectal cancer (CRC) and the related mechanism.@*METHODS@#Cell counting kit-8 (CCK-8) assay and annexin V-FITC/PI assay were used to detect the effect of naringin (50-400 µg/mL) on cell proliferation and apoptosis of CRC cells, respectively. The scratch wound assay and transwell migration assay were used to assess the effect of naringin on CRC cell migration. Four-week-old male nude mice were injected with HCT116 cells subcutaneously to establish the tumor xenograft model. Naringin was injected intraperitoneally at 50 mg/(kg·d), with solvent and 5-fluorouracil treatment as control. The width and length of the tumors were measured and recorded every 6 days, and tumor tissues were photographed and weighed on the last day of the 24-d observation period. Immunohistochemical staining for caspase-3, proliferating cell nuclear antigen and TUNEL assay were used to evaluate the effect of naringin on cell proliferation and apoptosis in tumor tissues. The body weight, food and water intake of mice were recorded, and the major organs in different treatment groups were weighed on the last day and stained with hematoxylin and eosin for histological analysis. Meanwhile, the routine blood indicators were recorded.@*RESULTS@#CCK-8 and annexin V-FITC/PI results confirmed that naringin (100, 200, and 400 µg/mL) could inhibit proliferation and promote apoptosis. The scratch wound assay and transwell migration assay results confirmed the inhibitory activity of naringin against CRC cells migration. In vivo results demonstrated the inhibitory effect of naringin on tumor growth with good bio-compatibility.@*CONCLUSION@#Naringin inhibited colorectal carcinogenesis by inhibiting viability of CRC cells.
Subject(s)
Humans , Male , Animals , Mice , Mice, Nude , Sincalide/therapeutic use , Cell Line, Tumor , Cell Proliferation , Apoptosis , Cell Movement , Carcinogenesis , Colorectal Neoplasms/pathologyABSTRACT
OBJECTIVE@#To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis.@*METHODS@#The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells.@*RESULTS@#The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01).@*CONCLUSION@#GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.
Subject(s)
Humans , Cell Proliferation , MicroRNAs/metabolism , Arthritis, Rheumatoid/genetics , Gentisates/pharmacology , Cell Movement/geneticsABSTRACT
PURPOSE@#This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.@*METHODS@#AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis.@*RESULTS@#The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11.@*CONCLUSION@#EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
Subject(s)
Humans , Rats , Animals , Alveolar Epithelial Cells , Lung , Lung Injury , Cell Movement/physiologyABSTRACT
Objective To investigate the effects of microRNA497 (miR-497) on the metastasis of gastric cancer and its possible molecular mechanism. Methods SGC-7901 gastric cancer parent cells were cultured in an ultra-low adhesion environment, and the anoikis resistance model of SGC-7901 cells was created after re-adhesion. Clone formation assay, flow cytometry, TranswellTM test and scratch healing test were used to detect the differences of biological behavior compared with their parent cells. Fluorescence quantitative PCR was performed to detect the expression of miR-497. Western blot analysis was used to detect the changes of key proteins of Wnt/β-catenin signaling pathway and epithelial mesenchymal transformation (EMT) related proteins such as vimentin and E-cadherin. Parent cells and anoikis resistant SGC-7901 cells were transfected with miR-497 inhibitor or miR-497 mimic, and CCK-8 assay was used to detect the proliferation activity. TranswellTM invasion assay was performed to detect the invasion ability of cells. TranswellTM migration test and scratch healing assay was used to determine the migration ability. Western blot analysis was used to detect the expressions of Wnt1, β-catenin, vimentin and E-cadherin. By transfecting miR-497 mimic into the anoikis resistance SGC-7901 cells and inoculating them subcutaneously in nude mice, the changes in the volume and mass of tumor tissues were measured and recorded. Western blot analysis was used to determine the expressions of Wnt1, β-catenin, vimentin and E-cadherin of tumor tissues. Results Compared with the parent cells, the anoikis resistance SGC-7901 gastric cancer cells had faster proliferation rate, stronger colony formation, lower apoptosis rate, stronger invasion and migration ability. The expression of miR-497 was significantly decreased. After down-regulation of miR-497, the proliferation ability, invasion and migration ability were significantly enhanced. The expressions of Wnt1, β-catenin and vimentin increased significantly, while E-cadherin decreased notably. The results of up-regulation miR-497 were the opposite. The tumor growth rate, tumor volume and mass of miR-497 overexpression group were significantly lower than those of control group. The expressions of Wnt1, β-catenin and vimentin decreased significantly, while the expression of E-cadherin increased significantly. Conclusion The expression of miR-497 is low in the anoikis resistance SGC-7901 cells. miR-497 can inhibit the growth and metastasis of gastric cancer cells by blocking Wnt/β-catenin signaling pathway and EMT.
Subject(s)
Animals , Mice , Humans , beta Catenin/metabolism , MicroRNAs/metabolism , Vimentin/metabolism , Stomach Neoplasms/pathology , Anoikis/genetics , Wnt Signaling Pathway/genetics , Mice, Nude , Cell Proliferation/genetics , Cadherins/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/geneticsABSTRACT
Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
Subject(s)
Animals , Mice , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Extracellular Traps/metabolism , Cell Movement , Cell Proliferation , RNA, Small Interfering/genetics , Colorectal Neoplasms/genetics , Cell Line, TumorABSTRACT
Objective To investigate the effect of insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) on the proliferation, migration and tumor immune microenvironment of colorectal cancer cells and its possible molecular mechanism. Methods The Cancer Genome Atlas (TCGA) database was used to analyze the expression levels of IGF2BP2 and MYC in colorectal cancer and adjacent tissues. The expression of IGF2BP2 in HCT-116 and SW480 human colorectal cancer cells was silenced by RNA interference (RNAi), and the silencing effect was detected by quantitative real-time PCR. After knocking down IGF2BP2, colony formation assay, CCK-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were employed to detect cell colony formation and proliferation ability. TranswellTM assay was used to detect cell migration ability. Quantitative real-time PCR was used to detect the mRNA expression of IGF2BP2, MYC, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β) and interleukin-10 (IL-10). The protein expression of IGF2BP2 and MYC was detected by western blot. The binding ability of IGF2BP2 and MYC in HCT-116 cells was detected by quantitative real-time PCR after RNA immunoprecipitation. Results The results of TCGA database showed that the expression of IGF2BP2 and MYC in colorectal cancer tissues was significantly higher than that in adjacent tissues, and the survival time of colorectal cancer patients with high expression of IGF2BP2 was shorter. After silencing IGF2BP2, the viability, proliferation and migration of HCT-116 and SW480 cells were decreased. The mRNA expression of MYC, TGF-β and IL-10 in IGF2BP2 knockdown group was significantly decreased, while the expression of TNF-α mRNA was increased. The expression of MYC protein and the stability of MYC mRNA were significantly decreased. RIP-qPCR results showed that IGF2BP2 could bind to MYC mRNA. Conclusion Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Interleukin-10/metabolism , RNA, Messenger , RNA-Binding Proteins/metabolism , Transforming Growth Factor beta/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-myc/metabolismABSTRACT
Objective To investigate the effects of natural killer (NK)-cell-derived miR-30e-3p-containing exosomes (Exo) on esophageal squamous cell carcinoma (ESCC) cell proliferation, apoptosis and invasion. Methods NK cells were isolated and amplified from the peripheral blood of healthy donors, and NK cell-derived Exo was isolated and identified, which were further co-cultured with NEC cells and were randomly grouped into Exo1 and Exo2 groups. Transmission electron microscopy (TEM) was used to observe the morphology and size of exosomes. Western blot analysis was used to detect the expression levels of exosome markers apoptosis related gene 2- interacting protein X(ALIX), tumor susceptibility gene 101(TSG101), CD81 and calnexin. The NC plasmids, mimics and inhibitors of miR030e-3p were respectively delivered into the NK cells, and the corresponding NK cells-derived Exo were co-cultured with NEC cells, which were divided into NC, Exo, mimic and inhibitor groups. CCK-8 assay was used to evaluate cell proliferation, flow cytometry was conducted to determine cell cycle, annexin V-FITC/PI double staining was employed to detect cell apoptosis, and TranswellTM assay was performed to detect cell invasion abilities. Real-time quantitative PCR was used to detect the expression of miR-23b, miR-422a, miR-133b, miR-124, miR-30e-3p and miR-99a in NCE cells and exosomes. Results The percentages of CD56+CD3+ cells and CD56+CD16+ cells in NK cells were (0.071±0.008)% and (90.6±10.6)%, respectively. Exosome isolated from NK cells ranged from 30 nm to 150 nm, and was positive for ALIX, TSG101 and CD81, while negative for calnexin. NK cell-derived Exos inhibited the proliferation, reduced the proportion of S-phase cells and the number of invaded cells of NEC cells, and promoted the apoptosis and the proportion of G1 phase cells. Overexpression of miR-30E-3p in NK cell-derived exosome inhibited the proliferation and invasion of NEC cells, and blocked cell cycle and promoted apoptosis, while knockdown miR-30e-3p in NK cell-derived exosomes did the opposite. Conclusion miR-30e-3p in NK cell-derived exosomes can inhibit the proliferation and invasion of ESCC cells, block their cell cycle and induce their apoptosis.
Subject(s)
Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Exosomes/metabolism , Calnexin/metabolism , Cell Movement/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Killer Cells, Natural , Cell Line, Tumor , Apoptosis/geneticsABSTRACT
Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.