Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.213
Filter
1.
Braz. dent. j ; 32(4): 74-82, July-Aug. 2021. tab, graf
Article in English | LILACS, BBO | ID: biblio-1345513

ABSTRACT

Abstract The Inhibitor of Growth (ING) gene family is a group of tumor suppressor genes that play important roles in cell cycle control, senescence, DNA repair, cell proliferation, and apoptosis. However, inactivation and downregulation of these proteins have been related in some neoplasms. The present study aimed to evaluate the immunohistochemical profiles of ING3 and ING4 proteins in a series of benign epithelial odontogenic lesions. Methods: The sample comprised of 20 odontogenic keratocysts (OKC), 20 ameloblastomas (AM), and 15 adenomatoid odontogenic tumors (AOT) specimens. Nuclear and cytoplasmic immunolabeling of ING3 and ING4 were semi-quantitatively evaluated in epithelial cells of the odontogenic lesions, according to the percentage of immunolabelled cells in each case. Descriptive and statistics analysis were computed, and the p-value was set at 0.05. Results: No statistically significant differences were found in cytoplasmic and nuclear ING3 immunolabeling among the studied lesions. In contrast, AOTs presented higher cytoplasmic and nuclear ING4 labeling compared to AMs (cytoplasmic p-value = 0.01; nuclear p-value < 0.001) and OKCs (nuclear p-value = 0.007). Conclusion: ING3 and ING4 protein downregulation may play an important role in the initiation and progression of more aggressive odontogenic lesions, such as AMs and OKCs.


Resumo Objetivos: A família dos Genes Inibidores de Crescimento (ING) é um grupo de genes supressores tumorais que desempenham papéis importantes no controle do ciclo celular, na senescência, no reparo do DNA, na proliferação celular e na apoptose. No entanto, a inativação e a regulação negativa dessas proteínas têm sido relacionadas em algumas neoplasias. O objetivo do presente estudo foi avaliar o perfil imuno-histoquímico das proteínas ING3 e ING4 em uma série de lesões odontogênicas epiteliais benignas. Métodos: A amostra foi composta por espécimes de 20 ceratocistos odontogênicos (CO), 20 ameloblastomas (AM) e 15 tumores odontogênicos adenomatoides (TOA). A imunoexpressão nuclear e citoplasmática de ING3 e ING4 foram avaliadas semi-quantitativamente nas células epiteliais das lesões odontogênicas, de acordo com a porcentagem de células imunomarcadas em cada caso. As análises descritivas e estatísticas foram computadas, e o valor de p estabelecido foi de 0,05. Resultados: Não foram encontradas diferenças estatisticamente significativas na imunoexpressão citoplasmática e nuclear de ING3 entre as lesões estudadas. Em contrapartida, os TOAs apresentaram maior marcação citoplasmática e nuclear de ING4 em comparação aos AMs (valor de p citoplasmático=0,01; valor de p nuclear <0,001) e COs (valor nuclear de p=0,007). Conclusão: A regulação negativa das proteínas ING3 e ING4 pode desempenhar um papel importante na iniciação e na progressão de lesões odontogênicas mais agressivas, como AMs e COs.


Subject(s)
Humans , Ameloblastoma , Odontogenic Cysts , Odontogenic Tumors , Homeodomain Proteins , Cell Cycle Proteins , Tumor Suppressor Proteins , Cell Proliferation
2.
Electron. j. biotechnol ; 52: 67-75, July. 2021. tab, graf, ilus
Article in English | LILACS | ID: biblio-1283594

ABSTRACT

BACKGROUND: Adipogenesis and fibrogenesis can be considered as a competitive process in muscle, which may affect the intramuscular fat deposition. The CCAAT/enhancer-binding protein beta (C/EBPb) plays an important role in adipogenesis, which is well-characterized in mice, but little known in bovine so far. RESULTS: In this study, real-time qPCR revealed that the level of C/EBPb was increased during the developmental stages of bovine and adipogenesis process of preadipocytes. Overexpression of C/EBPb promoted bovine fibroblast proliferation through mitotic clonal expansion (MCE), a necessary process for initiating adipogenesis, by significantly downregulating levels of p21 and p27 (p < 0.01). Also, the PPARc expression was inhibited during the MCE stage (p < 0.01). 31.28% of transfected fibroblasts adopted lipid-laden adipocyte morphology after 8 d. Real-time qPCR showed that C/EBPb activated the transcription of early stage adipogenesis markers C/EBPa and PPARc. Expression of ACCa, FASN, FABP4 and LPL was also significantly upregulated, while the expression of LEPR was weakened. CONCLUSIONS: It was concluded C/EBPb can convert bovine fibroblasts into adipocytes without hormone induction by initiating the MCE process and promoting adipogenic genes expression, which may provide new insights into the potential functions of C/EBPb in regulating intramuscular fat deposition in beef cattle.


Subject(s)
Cattle/metabolism , Adipocytes/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Fibroblasts/metabolism , Adipose Tissue/metabolism , Clone Cells , Cell Proliferation , Adipogenesis , Real-Time Polymerase Chain Reaction , Mitosis , Muscles
3.
Rev. bras. med. esporte ; 27(spe2): 73-78, Apr.-June 2021. graf
Article in English | LILACS | ID: biblio-1280080

ABSTRACT

ABSTRACT Myoblasts fuse into multinucleated muscle fibers to form and promote the growth of skeletal muscle. In order to analyze the role of myostatin (MSTN) in body fat, skeletal muscle cell proliferation and differentiation and energy metabolism, this study will use the antisense RNA technology of gene chip technology to study it. The results showed that the MSTN gene regulated the growth and proliferation of myoblasts and affected the development of skeletal muscle by affecting the expression of Cdc42, bnip2, p38 and other genes; knockout or overexpression of the MSTN gene would lead to a trend of fat-related genes from fat synthesis to fat decomposition; after the MSTN gene was knocked down, the expression levels of cpti-b, PPARG and other genes in the cells were corresponding after MSTN overexpression, the relative expression of the PPARG gene decreased. It is suggested that the knockout or overexpression of MSTN may affect lipid accumulation, and cpti-b and PPARG may directly regulate lipid level. It is hoped that this experiment can provide a reference for the study of MSTN effect on fat deposition.


RESUMO Os mioblastos se fundem eM fibras musculares multinucleadas para formar e promover o crescimento do músculo esquelético. A fim de analisar o papel da miostatina (MSTN) na gordura corporal, proliferação de células musculares esqueléticas e diferenciação e metabolismo energético, este estudo utilizará a tecnologia anti-RNA de chips genéticos para estudá-la. Os resultados mostraram que o gene MSTN regulava o crescimento e a proliferação de mioblastos e afetava o desenvolvimento do músculo esquelético, afetando a expressão de Cdc42, bnip2, p38 e outros genes; a eliminação ou sobrexpressão do gene MSTN conduziria a uma tendência de os genes adiposos sintetizarem a gordura até sua decomposição; após a eliminação do gene MSTN, os níveis de expressão de cpti-b, PPARG e outros genes nas células mostraram-se correspondentes após a sobrexpressão do gene MSTN, e a expressão relativa do gene PPARG diminuiu. Sugere-se que a eliminação ou sobrexpressão da MSTN possa afetar a acumulação de lipídeos, e o cpti-b e o PPARG podem regular diretamente o nível lipídico. Espera-se que esta experiência possa fornecer uma referência para o estudo do efeito da MSTN sobre a deposição de gordura.


RESUMEN Los mioblastos se funden en fibras musculares multinucleadas para formar y promover el crecimiento del músculo esquelético. A fin de analizar el papel de la miostatina (MSTN) en la grasa corporal, proliferación de células musculares esqueléticas y diferenciación y metabolismo energético, este estudio utilizará la tecnología anti-RNA de chips genéticos para estudiarla. Los resultados mostraron que el gen MSTN regulaba el crecimiento y la proliferación de mioblastos y afectaba el desarrollo del músculo esquelético, afectando la expresión de Cdc42, bnip2, p38 y otros genes; la eliminación o sobreexpresión del gen MSTN conduciría a una tendencia de que los genes adiposos sinteticen la grasa hasta su descomposición; después de la eliminación del gen MSTN, los niveles de expresión de cpti-b, PPARG y otros genes en las células se mostraron correspondientes después de la sobreexpresión del gen MSTN, y la expresión relativa del gen PPARG disminuyó. Se sugiere que la eliminación o sobreexpresión de la MSTN pueda afectar la acumulación de lipídos, y el cpti-b y el PPARG pueden regular directamente el nivel lipídico. Se espera que esta experiencia pueda proveer una referencia para el estudio del efecto de la MSTN sobre el depósito de grasa.


Subject(s)
Animals , Cattle , Cell Differentiation/physiology , Adipocytes/metabolism , Myoblasts, Skeletal/metabolism , Cell Proliferation/physiology , Energy Metabolism , Myostatin/metabolism , Oligonucleotide Array Sequence Analysis
4.
Electron. j. biotechnol ; 50: 53-58, Mar. 2021. graf, tab, ilus
Article in English | LILACS | ID: biblio-1292393

ABSTRACT

BACKGROUND: Lycium barbarum (also called wolfberry), a famous Chinese traditional medicine and food ingredient, is well recognized for its significant role in preventing obesity; however, the molecular mechanisms underlying its preventive effects on fat accumulation are not well understood yet. The aim of this study was to determine the effects and mechanism of Lycium barbarum polysaccharides (LBP) on the proliferation and differentiation of 3T3-L1 preadipocytes. MTT was used to detect the proliferation of 3T3-Ll preadipocytes. Oil red O staining and colorimetric analysis were used to detect cytosolic lipid accumulation during 3T3-L1 preadipocyte differentiation. Real-time fluorescent quantitative PCR (qPCR) technology was used to detect peroxisome proliferator-activated receptor c (PPARc), CCAAT/enhancer-binding protein a (C/EBPa), adipocyte fatty-acid-binding protein (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL) expression. RESULTS: The concentration of LBP from 25 to 200 lg/mL showed a tendency to inhibit the growth of preadipocytes at 24 h, and it inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. In the preadipocytes treated with 200 lg/mL LBP, there were reduced lipid droplets in the cytoplasm, and its effect was opposite to that of rosiglitazone (ROS), which significantly reduced the PPARc, C/EBPa, aP2, FAS, and LPL mRNA expression of adipocytes. CONCLUSIONS: LBP exerts inhibitive effects on the proliferation and differentiation of 3T3-L1 preadipocytes and decreases the cytoplasm accumulation of lipid droplets during induced differentiation of preadipocytes toward mature cells. Above phenomenon might link to lowered expression of PPARc, C/EBPa, aP2, FAS, and LPL after LBP treatment. Thus, LBP could serve as a potential plant extract to treat human obesity or improve farm animal carcass quality via adjusting lipid metabolism.


Subject(s)
Polysaccharides , Plant Extracts , Adipocytes , Lycium/chemistry , Cell Differentiation , 3T3-L1 Cells , Cell Proliferation , Adipogenesis , Real-Time Polymerase Chain Reaction/methods
5.
Rev. bras. oftalmol ; 80(1): 8-11, jan.-fev. 2021. graf
Article in Portuguese | LILACS | ID: biblio-1251324

ABSTRACT

RESUMO Objetivo: Avaliar a inibição da proliferação de fibroblastos in vitro das conjuntivas obtidas através de exérese de pterígios de pacientes utilizando mitomicina C (MMC) e ciclofosfamida (CF). Métodos: Os pterígios foram retirados de 7 pacientes e submetidos a cultivo celular. Após o cultivo, 3 fragmentos de dimensões iguais deste material foram colhidos de áreas adjacentes do pterígio removido de cada paciente. Eles foram randomicamente selecionados de tal forma que: um fragmento de cada paciente foi exposto: ao meio de cultura (grupo controle), a MMC e a CF por igual período de tempo nas concentrações de 0,4 mg/ml e 10 mg/ml respectivamente. Após este período realizou-se a contagem celular de fibroblastos destes 3 grupos. Cada grupo continha 7 fragmentos. Resultados: Com a utilização da MMC tivemos uma taxa de 95% da inibição da proliferação dos fibroblastos, enquanto com a CF 100%. Conclusões: Ambas as drogas apresentaram elevada taxa da inibição da proliferação de fibroblastos, porém a CF apresentou inibição maior que a MMC.


Abstract Objective: To evaluate the inhibition of fibroblast proliferation in vitro of conjunctiva obtained by excision of pterygium from patients using mitomycin (MMC) and cyclophosphamide (CF). Methods: Pterygiums were removed from 7 patients and subjected to cell culture. After cell cultivation, 3 fragments of equal dimensions of these tissues were collected from adjacent areas of each patient removed pterygium. They were randomly selected in such a way that one fragment of each patient was exposed to: the culture medium (group control), to MMC and to CF for an equal period of time at concentrations of 0,4 mg/dl and 10 mg/dl respectively. After this period, the fibroblast cell count of these groups were performed. Each group had seven fragments. Results: With the use of MMC we had a 95% rate of inhibition of fibroblast proliferation, while with CF 100%. Conclusion: Both drugs showed a high rate of inhibition of fibroblast proliferation, but CF showed greater inhibition than MMC.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Wound Healing , Pterygium/surgery , Mitomycin/adverse effects , Cyclophosphamide/adverse effects , Cell Proliferation/physiology , Antimitotic Agents/adverse effects , Fibroblasts/physiology , In Vitro Techniques
6.
Braz. oral res. (Online) ; 35: e063, 2021. tab, graf
Article in English | LILACS, BBO | ID: biblio-1249369

ABSTRACT

Abstract: FITOPROT, which contains curcuminoids and Bidens pilosa L. extract, is an innovative mucoadhesive formulation indicated for the topical treatment of chemoradiotherapy-induced oral mucositis (OM) in patients with advanced and visible oral squamous cell carcinoma. The formulation is used as a mouthwash directly on tumor tissue of patients with advanced neoplasms, without triggering cancer cell proliferation or tumor invasiveness. Thus, the aim of this study was to evaluate the biological effects of FITOPROT on an oral squamous cell carcinoma cell line (SCC-4). The viability of SCC-4 cells was assessed after exposure to FITOPROT using MTT reduction assay. The effects of the mucoadhesive formulation on cell cycle progression and cell death parameters were evaluated using flow cytometry. In addition, the inflammatory profile of the tumor cells was evaluated using the cytometric bead array (CBA) assay. FITOPROT promoted a concentration-dependent decrease in cell viability and cell cycle arrest at the G2/M phase (p < 0.05). Mitochondrial membrane potential was also altered after exposure to the formulation (p < 0.05), in parallel with a reduction in VEGF and IL-8 production (p = 0.01 and p = 0.05, respectively). In summary, the results indicate that FITOPROT reduces SCC-4 cell viability, promotes cell cycle arrest, modulates mitochondrial membrane potential, and exhibits antiangiogenic and anti-inflammatory properties, thus indicating its potential for topical use in patients with OM and visible tumors in the mouth.


Subject(s)
Humans , Mouth Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Bidens , Cell Line , Apoptosis , Diarylheptanoids , Cell Proliferation
7.
Clinics ; 76: e2175, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249578

ABSTRACT

OBJECTIVE: The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS: KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS: KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION: KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.


Subject(s)
Humans , Esophageal Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Esophageal Squamous Cell Carcinoma/genetics , Phosphatidylinositol 3-Kinases , Cell Proliferation/genetics , KCNQ1 Potassium Channel/genetics
8.
Braz. j. med. biol. res ; 54(2): e9173, 2021. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142586

ABSTRACT

This study aimed to explore the correlation of kinesin family member 2A (KIF2A) expression with disease risk, clinical characteristics, and prognosis of acute myeloid leukemia (AML), and investigate the effect of KIF2A knockdown on AML cell activities in vitro. Bone marrow samples were collected from 176 AML patients and 40 healthy donors, and KIF2A expression was measured by real-time quantitative polymerase chain reaction. Treatment response, event-free survival (EFS), and overall survival (OS) were assessed in AML patients. In vitro, KIF2A expression in AML cell lines and CD34+ cells (from healthy donors) was measured, and the effect of KIF2A knockdown on AML cell proliferation and apoptosis in HL-60 and KG-1 cells was detected. KIF2A expression was greater in AML patients compared to healthy donors, and receiver operating characteristic curve indicated that KIF2A expression predicted increased AML risk (area under curve: 0.793 (95%CI: 0.724-0.826)). In AML patients, KIF2A expression positively correlated with white blood cells, monosomal karyotype, and high risk stratification. Furthermore, no correlation of KIF2A expression with complete remission or hematopoietic stem cell transplantation was found. Kaplan-Meier curves showed that KIF2A expression was negatively correlated with EFS and OS. In vitro experiments showed that KIF2A was overexpressed in AML cell lines (KG-1, HL-60, ME-1, and HT-93) compared to CD34+ cells, moreover, cell proliferation was reduced but apoptosis was increased by KIF2A knockdown in HL-60 and KG-1 cells. In conclusion, KIF2A showed potential to be a biomarker and treatment target in AML.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Kinesin/genetics , Biomarkers, Tumor/genetics , Survival Rate , Risk Factors , Apoptosis , HL-60 Cells , Cell Proliferation , Gene Knockdown Techniques
9.
Article in Chinese | WPRIM | ID: wpr-879535

ABSTRACT

OBJECTIVE@#To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).@*METHODS@#The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.@*RESULTS@#The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.@*CONCLUSION@#Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.


Subject(s)
Cell Differentiation , Cell Proliferation/genetics , Cells, Cultured , Dental Pulp/cytology , Female , Fibroblast Growth Factor 2/genetics , Humans , Mesenchymal Stem Cells/cytology , Nuclear Proteins/genetics , Placenta/cytology , Pregnancy , Sirtuin 1/genetics , Transforming Growth Factor beta3/genetics , Twist-Related Protein 1/genetics , Umbilical Cord/cytology
10.
Frontiers of Medicine ; (4): 178-207, 2021.
Article in English | WPRIM | ID: wpr-880961

ABSTRACT

Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.


Subject(s)
Breast Neoplasms , Cell Proliferation , Cell Transformation, Neoplastic , Energy Metabolism , Female , Humans , Lipid Metabolism , Signal Transduction
11.
Frontiers of Medicine ; (4): 91-100, 2021.
Article in English | WPRIM | ID: wpr-880951

ABSTRACT

Congenital heart disease (CHD) is the most common birth defect worldwide. Long non-coding RNAs (lncRNAs) have been implicated in many diseases. However, their involvement in CHD is not well understood. This study aimed to investigate the role of dysregulated lncRNAs in CHD. We used Gene Expression Omnibus data mining, bioinformatics analysis, and analysis of clinical tissue samples and observed that the novel lncRNA SAP30-2:1 with unknown function was significantly downregulated in damaged cardiac tissues from patients with CHD. Knockdown of lncRNA SAP30-2:1 inhibited the proliferation of human embryonic kidney and AC16 cells and decreased the expression of heart and neural crest derivatives expressed 2 (HAND2). Moreover, lncRNA SAP30-2:1 was associated with HAND2 by RNA immunoprecipitation. Overall, these results suggest that lncRNA SAP30-2:1 may be involved in heart development through affecting cell proliferation via targeting HAND2 and may thus represent a novel therapeutic target for CHD.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell Proliferation , Heart Defects, Congenital/genetics , Histone Deacetylases , Humans , RNA, Long Noncoding/genetics , Transcription Factors
12.
Article in English | WPRIM | ID: wpr-880866

ABSTRACT

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Head and Neck Neoplasms , Humans , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Phosphofructokinase-2/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Microenvironment
13.
Article in English | WPRIM | ID: wpr-880857

ABSTRACT

Oral squamous cell carcinoma (OSCC) become a heavy burden of public health, with approximately 300 000 newly diagnosed cases and 145 000 deaths worldwide per year. Nucleotide metabolism fuel DNA replication and RNA synthesis, which is indispensable for cell proliferation. But how tumor cells orchestrate nucleotide metabolic enzymes to support their rapid growth is largely unknown. Here we show that expression of pyrimidine metabolic enzyme dihydroorotate dehydrogenase (DHODH) is upregulated in OSCC tissues, compared to non-cancerous adjacent tissues. Enhanced expression of DHODH is correlated with a shortened patient survival time. Inhibition of DHODH by either shRNA or selective inhibitors impairs proliferation of OSCC cells and growth of tumor xenograft. Further, loss of functional DHODH imped de novo pyrimidine synthesis, and disrupt mitochondrial respiration probably through destabilizing the MICOS complex. Mechanistic study shows that transcriptional factor SOX2 plays an important role in the upregulation of DHODH in OSCC. Our findings add to the knowledge of how cancer cells co-opt nucleotide metabolism to support their rapid growth, and thereby highlight DHODH as a potential prognostic and therapeutic target for OSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Head and Neck Neoplasms , Humans , Mouth Neoplasms , Oxidoreductases Acting on CH-CH Group Donors , SOXB1 Transcription Factors , Squamous Cell Carcinoma of Head and Neck
14.
Article in Chinese | WPRIM | ID: wpr-880841

ABSTRACT

OBJECTIVE@#To investigate the effects of overexpression of long noncoding RNA (lncRNA) MEG3 on the proliferation and invasion of glioblastoma U251 cells by suppressing the expression of hypoxia inducible factor 1@*METHODS@#The expression of lncRNA MEG3 and HIF1@*RESULTS@#The expression of MEG3 was significantly lower and HIF1@*CONCLUSIONS@#MEG3 overexpression inhibits the proliferation and invasion of U251 cells through suppressing the expression of HIF1


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , MicroRNAs , RNA, Long Noncoding/genetics
15.
Article in Chinese | WPRIM | ID: wpr-880832

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms.@*METHODS@#BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3.@*RESULTS@#CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (@*CONCLUSIONS@#Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Flavonols , HMGB1 Protein/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor , Stomach Neoplasms
16.
Article in Chinese | WPRIM | ID: wpr-880831

ABSTRACT

OBJECTIVE@#To investigate the role of NOV/CCN3 in regulating the proliferation of mesenchymal stem cells (MSCs) and its regulatory mechanism and assess the value of CCN3 as a proliferative factor in bone tissue engineering.@*METHODS@#Mouse embryonic fibroblasts (MEFs) were used as the MSC model, in which CCN3 expression was up-regulated and downregulated by transfection with the recombinant adenovirus vectors Ad-CCN3 and Ad-siCCN3, respectively. Flow cytometry was used to analyze the changes in cell cycle and apoptosis of the transfected cells. Western blotting was used to detect the expression levels of the proliferation indicators (PCNA, cyclin E, and cyclin B1) and the apoptosis indicators (Bax and Bcl-2) to assess the effect of modulation of CCN3 expression on MEF proliferation and apoptosis. CCN3 protein secretion by the cells was detected using ELISA. RT-qPCR and Western blotting were employed to analyze the changes in the expressions of Notch1, ligand DLL1, the downstream key proteins or genes (Hey1, P300, H3K9) and MAPK pathway-related proteins ERK1+2 and p-ERK1+2.@*RESULTS@#Flow cytometry showed that compared with the control cells, MEFs transfected with Ad-CCN3 exhibited significantly increased cell proliferation index (@*CONCLUSIONS@#CCN3 over-expression promotes the proliferation and inhibits apoptosis of MEFs possibly by inhibiting the classical Notch signaling pathway and activating the MAPK pathway


Subject(s)
Animals , Apoptosis , Cell Cycle , Cell Proliferation , Fibroblasts , Mice , Nephroblastoma Overexpressed Protein
17.
Article in English | WPRIM | ID: wpr-880681

ABSTRACT

OBJECTIVES@#To establish mouse bone marrow transplantation by pretreatment with chemotherapy, and to explore the dynamic changes of immune cells in the early stage of allogeneic transplantation in the spleen of mice.@*METHODS@#Mice were divided into 4 groups (80 mg/kg group, 100 mg/kg group, 120 mg/kg group, and 150 mg/kg group) according to the difference in dose of busulfan. The mice were treated with busulfan and cyclophosphamide combined chemotherapy, and the appropriate dosage was determined by evaluating the myeloablative effect and drug toxicity. According to the type of the genetic transplantation, the mice were also divided into 4 groups: An allogeneic transplantation group, a homogenic transplantation group, a chemotherapy alone group, and a normal control group. The mice were pretreated with busulfan and cyclophosphamide before bone marrow transplantation. In the allogeneic transplantation group, the suspension of splenocytes was prepared at the first day, the 3rd day, the 5th day, and the 8th day after transplantation for flow cytometry detection, and the dynamic changes of splenic immune cells were analyzed. The homogeneic transplantation group served as the concurrent control, the normal control group served as the control of basic value of spleen immune cells, and the chemotherapy alone group was used to evaluate the myeloablative effect.@*RESULTS@#1) The optimal dose of busulfan was 100 mg/kg. The combination of busulfan and cyclophosphamide can restore the hematopoiesis of transplanted mice, and the toxicity associated with pretreatment is small. 2) In the allogeneic transplantation group: The hematopoietic reconstitution and high donor chimerism rate were achieved after transplantation. In the early phase of bone marrow transplantation, the T lymphocytes were the main cell group, while the recovery of B lymphocytes was relatively delayed. The dendritic cells and natural killer cells from donors were the earliest cells to recover and achieve high chimerism rate compared with T cells and B cells. Most T cells were in the initial T cell state within 5 days after allogeneic transplantation. However, in the 5th day after transplantation, these cells were mainly in the effective memory phenotype. The reconstruction of donor-derived naive T cells was slow, but the reconstruction of donor-derived effective memory T cells and regulatory T cells was relatively fast. 3) In the homogeneic transplantation group: The mice could recover hematopoiesis and the recovery of B lymphocytes was delayed. 4) In the chemotherapy alone group: All mice died in 12-15 days after chemotherapy, and the peripheral blood routine showed pancytopenia before death.@*CONCLUSIONS@#Pretreatment with chemotherapy can successfully establish the mouse model of bone marrow transplantation. There are difference in the proportion of T cells, B cells, natural killer cells, dendritic cells, effector memory T cells, initial T cells, and regulatory T cells after transplantation, and the relationship between donor and recipient is also changed.


Subject(s)
Animals , Bone Marrow Cells , Bone Marrow Transplantation , Busulfan , Cell Proliferation , Kinetics , Mice , Mice, Inbred C57BL , Transplantation, Homologous
18.
Article in English | WPRIM | ID: wpr-880634

ABSTRACT

OBJECTIVES@#Silence of SET domain containing lysine methyltransferase 7 (SET7) alleviates myocardial tissue injury caused by ischemia-reperfusion. But the effects of SET7 on angiotensin II (Ang II)-induced myocardial fibroblast proliferation and the collagen synthesis are not clear. The purpose of this study was to explore the effect of SET7 on the proliferation and collagen synthesis of myocardial fibroblasts and its mechanisms.@*METHODS@#Myocardial fibroblasts were isolated and identified by immunofluorescence. Myocardial fibroblasts were randomly divided into 4 groups: a control group (cells were normally cultured), an Ang II group (cells were treated with 100 nmol/L Ang II for 24 h), a siCtrl group (cells were transfected with siRNA control and were then treated with 100 nmol/L Ang II for 24 h), and a siSET7 group (cells were transfected with siRNA SET7 and were then treated with 100 nmol/L Ang II for 24 h). Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay were used to evaluate cell proliferation. Real-time PCR was used to detect the mRNA levels of SET7, collagen I, collagen III, and α-smooth muscle actin (α-SMA). Western blotting was used to detect the protein expression of SET7, collagen I, collagen III, α-SMA, sonic hedgehog (Shh), ptched1 (Ptch1), and glioma-associated oncogene homolog 1 (Gli1).@*RESULTS@#Fluorescence microscopy showed positive vimentin staining, and myocardial fibroblasts were in good condition. As compared to the control group, the mRNA and protein levels of SET7 in the Ang II group were significantly upregulated; cell proliferation rate and EdU fluorescence intensity in the Ang II group were significantly increased; the mRNA and protein levels of collagen I, collagen III, and α-SMA were significantly upregulated (all @*CONCLUSIONS@#Silence of SET7 gene inhibits Ang II-induced proliferation and collagen synthesis of myocardial fibroblasts. Shh signaling pathway may be involved in this process.


Subject(s)
Angiotensin II/pharmacology , Cell Proliferation , Cells, Cultured , Collagen/genetics , Fibroblasts , Hedgehog Proteins
19.
Article in English | WPRIM | ID: wpr-880617

ABSTRACT

OBJECTIVES@#To investigate the effects of propofol on the proliferation and invasion of glioma U87 cells and to explore the possible anti-tumor mechanisms.@*METHODS@#The glioma U87 cells was divided into a blank group, a positive control group, and the propofol groups (1.00, 2.00 or 5.00 mmol/L). Cell counting kit-8 (CCK-8) was used to detect cell proliferation; Transwell method was used to detect the effect of propofol on invasion and migration of U87 cells; real-time PCR was used to detect the expression of microRNA-134 (miR-134); Western blotting was used to detect the expression levels of reproduction-related protein Ki-67, invasion-related protein metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway-related protein.@*RESULTS@#Compared with the blank group, the proliferation, invasion and migration capacity of U87 cells were reduced in the positive control group and the propofol groups after 48 hours (all @*CONCLUSIONS@#Propofol can decrease the proliferation rate, and the invasion and migration abilities of U87 cells, which may be achieved by up-regulation of miR-134 and suppression of PI3K/Akt signaling pathway.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Glioma/genetics , Humans , Matrix Metalloproteinase 2/genetics , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/genetics , Propofol/pharmacology , Proto-Oncogene Proteins c-akt/genetics
20.
Article in Chinese | WPRIM | ID: wpr-880151

ABSTRACT

OBJECTIVE@#To investigate the effect of the tripartite motif containing 31 (TRIM31) gene silencing on the proliferation and apoptosis of multiple myeloma cells and its possible mechanism.@*METHODS@#The normal bone marrow plasma cells (nPCs) were selected as control, and the mRNA and protein expression levels of TRIM31 in human multiple myeloma cell lines (U266, RPMI-8226, NCI-H929 and KMS-11) were detected by RT-qPCR and Western blot. Recombinant lentivirol vector containing shRNA-TRIM31 and its negative control were used to infect U266 cells respectively, and the mRNA expression level of TRIM31 in infected cells was detected by RT-qPCR. Then cell proliferation, colony forming and apoptosis were analyzed by CCK-8, soft agar assay, and flow cytometry, respectively. The protein expression levels of TRIM31, cleaved-caspase-3, BCL-2, Bax, p-Akt (Ser473), Akt and PI3K (p110α) were evaluated by Western blot. In addition, the PI3K/Akt signaling pathway-specific inhibitor LY294002 and TRIM31-shRNA lentivirus were used to interfere with U266 cells, and the cell proliferation, apoptosis, and protein expression of p-Akt (Ser473) and Akt were detected by CCK-8, flow cytometry and Western blot, respectively.@*RESULTS@#Compared with nPCs, the expression levels of TRIM31 mRNA and protein in U266, RPMI-8226, NCI-H929 and KMS-11 cells were significantly increased (P<0.001), especially in U266 cells. After lentivirus infection, the levels of TRIM31 mRNA and protein in U266 cells were significantly decreased (P<0.001). TRIM31 silencing significantly inhibited the proliferation of U266 cells (P<0.05), attenuated the ability of cell cloning, improved cell apoptosis, up-regulated the protein expressions of cleaved-caspase-3 and Bas as well as down-regulated expressions of BCL-2, p-Akt (Ser473) and PI3K (p110α). There was no significant effect on Akt protein. Intervention of LY294002 significantly enhanced the inhibition on cell proliferation and the promotion on apoptosis mediated by TRIM31 gene silencing in U266 cells.@*CONCLUSION@#TRIM31 gene silencing can inhibit U266 cell proliferation and promote its apoptosis, which may be closely related to inhibition of PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Silencing , Humans , Multiple Myeloma , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL