Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Braz. oral res. (Online) ; 34: e001, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055529

ABSTRACT

Abstract This study analyzed the effect of prior application of copaiba oil (CO) emulsions as a dentin cleaning substance on microleakage and microtensile adhesive strength. Twenty-five premolars and sixty-four molars were used for microleakage and microtensile assays. For the microleakage assays, specimens with standard class V cavities were divided (n = 5), according to the tested CO emulsions: CO10%X, CO10%Y, and CO10%Z, as well as chlorhexidine 2% (CHX) and distilled water (DW), as positive and negative controls, respectively. Restorations were performed using the Adper Single Bond® and/or Clearfil SE Bond® systems. Cervical, occlusal, distal and mesial sections were assessed for tracer penetration degree at the composite/tooth interface. For the microtensile assay, healthy molars were divided into sixteen groups, in which artificial caries were induced in half of the groups. Dentin surfaces were treated with CO10%X and CO10%Y, CHX and DW. Microtensile bond strength was measured by fixing each sample to the plate of a universal testing machine operated at a speed of 0.5 mm/minute until failure. Dentin treated with CO10%X showed a lower infiltration rate than dentin treated with the other CO emulsions, CHX2% and DW. According to the microtensile assay, both healthy and affected dentin treated with CO10%X and Adper Single Bond® adhesive system presented higher adhesive strength. CO emulsion, used as a dentin biomodifier, interfered positively in microleakage and improved adhesive strength after acid etching in the Adper Single Bond® adhesive system, or before applying the Clearfil SE Bond® self-etching system.


Subject(s)
Humans , Plant Oils/chemistry , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Dentin/drug effects , Fabaceae/chemistry , Surface Properties , Tensile Strength , Materials Testing , Chlorhexidine/chemistry , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Composite Resins/chemistry , Resin Cements/chemistry , Dental Cements/chemistry , Dental Leakage , Dentin/chemistry , Emulsions/chemistry
2.
Braz. oral res. (Online) ; 34: e001, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089393

ABSTRACT

Abstract This study analyzed the effect of prior application of copaiba oil (CO) emulsions as a dentin cleaning substance on microleakage and microtensile adhesive strength. Twenty-five premolars and sixty-four molars were used for microleakage and microtensile assays. For the microleakage assays, specimens with standard class V cavities were divided (n = 5), according to the tested CO emulsions: CO10%X, CO10%Y, and CO10%Z, as well as chlorhexidine 2% (CHX) and distilled water (DW), as positive and negative controls, respectively. Restorations were performed using the Adper Single Bond® and/or Clearfil SE Bond® systems. Cervical, occlusal, distal and mesial sections were assessed for tracer penetration degree at the composite/tooth interface. For the microtensile assay, healthy molars were divided into sixteen groups, in which artificial caries were induced in half of the groups. Dentin surfaces were treated with CO10%X and CO10%Y, CHX and DW. Microtensile bond strength was measured by fixing each sample to the plate of a universal testing machine operated at a speed of 0.5 mm/minute until failure. Dentin treated with CO10%X showed a lower infiltration rate than dentin treated with the other CO emulsions, CHX2% and DW. According to the microtensile assay, both healthy and affected dentin treated with CO10%X and Adper Single Bond® adhesive system presented higher adhesive strength. CO emulsion, used as a dentin biomodifier, interfered positively in microleakage and improved adhesive strength after acid etching in the Adper Single Bond® adhesive system, or before applying the Clearfil SE Bond® self-etching system.


Subject(s)
Humans , Plant Oils/chemistry , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Dentin/drug effects , Fabaceae/chemistry , Surface Properties , Tensile Strength , Materials Testing , Chlorhexidine/chemistry , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Composite Resins/chemistry , Resin Cements/chemistry , Dental Cements/chemistry , Dental Leakage , Dentin/chemistry , Emulsions/chemistry
3.
Braz. oral res. (Online) ; 33: e005, 2019. tab
Article in English | LILACS | ID: biblio-989474

ABSTRACT

Abstract The objective of this study was to assess the influence of chlorhexidine (liquid and gel) and zinc oxide in calcium hydroxide (CH) pastes on root pH in simulated external resorption. One hundred human anterior teeth with a single root canal were selected. After decoronation and root canal instrumentation, the specimens were divided into 4 experimental groups and 1 control group (without intracanal paste): CH + saline (CH+S), CH + 2% chlorhexidine liquid (CH+ CHX), CH + 2% chlorhexidine gel (CH+ CHXg), and CH + 2% chlorhexidine gel + zinc oxide (CH+ CHXg+ZnO). pH was measured using a microelectrode at 3 and 24 h, and 1, 2, 3, and 4 weeks after inserting intracanal pastes. Data were analyzed statistically using an ANOVA and Tukey's test (p < 0.05). The CH+CHXg+ZnO group had the highest pH values throughout (p<0.05). The CH+S and CH+ CHX groups had the highest pH values after 1 week and the CH+ CHXg group after 2 weeks. CH+ CHXg maintained the highest pH until the fourth week compared with CH+ CHX (p < 0.05). The control group remained at a neutral pH at all evaluated times. It can be concluded that chlorhexidine solution or gel maintained the alkaline pH of CH, and chlorhexidine gel allowed a slower decrease in pH over time. CH+ CHXg+ZnO showed the highest pH values and was an effective intracanal medication for maintaining alkaline root pH in the area of resorption.


Subject(s)
Humans , Root Canal Irrigants/chemistry , Tooth Root/drug effects , Zinc Oxide/chemistry , Calcium Hydroxide/chemistry , Chlorhexidine/chemistry , Ointments , Reference Values , Root Resorption/drug therapy , Surface Properties/drug effects , Time Factors , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Gels , Hydrogen-Ion Concentration
4.
Braz. dent. j ; 29(5): 446-451, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-974176

ABSTRACT

Abstract The aim of this study was to evaluate the effect of post-space irrigation with NaOCl and CaOCl at different concentrations on the bond strength of posts cemented with a self-adhesive resin cement. Eighty premolars were sectioned 14 mm from the apex, and endodontically treated. The root canal filling was partially removed. Specimens were randomly assigned into 8 groups (n=10), according to the irrigant for post-space irrigation: SS - 0.9% saline solution (control group); CHX - 2% chlorhexidine; 1% NaOCl - 1% sodium hypochlorite; 2.5% NaOCl - 2.5% sodium hypochlorite; 5% NaOCl - 5% sodium hypochlorite; 1% CaOCl - 1% calcium hypochlorite; 2.5% CaOCl - 2.5% calcium hypochlorite; and 5% CaOCl - 5% calcium hypochlorite. For each group, irrigation was performed continuously with 2 ml of solution. The post-spaces were dried with paper points (#80), and glass fiber posts were cemented using a self-adhesive resin cement. The specimens were sectioned perpendicularly and the push-out test was performed. Optical microscopy was used to analyze the failure mode. ANOVA and Bonferroni tests analyzed the bond strength data. NaOCl and CaOCl presented similar bond strength regardless the concentration used to irrigate the post-space (p>0.05). SS showed the highest bond strength (11.47 MPa) (p<0.05). Adhesive failures at the cement/dentin interface were predominant (58.33%). Saline solution should be irrigant of choice to irrigate the post-space before fiber post cementation with self-adhesive resin cement. NaOCl and CaOCl negatively affect the bond strength values.


Resumo O objetivo deste estudo foi avaliar o efeito da irrigação do espaço preparado para o pino com NaOCl e CaOCl em diferentes concentrações na resistência adesiva de pinos cimentados com um cimento resinoso autoadesivo. Oitenta pré-molares foram seccionados 14 mm do ápice e endodonticamente tratado. As obturações foram parcialmente removidas. Os espécimes divididos randomicamente em 8 grupos (n=10) de acordo com o irrigante usado para irrigação do espaço preparado para pino: SF - soro fisiológico 0,9% (grupo controle); CHX - clorexidina 2%; NaOCl 1% - hipoclorito de sódio 1%; NaOCl 2,5% - hipoclorito de sódio 2,5%; NaOCl 5% - hipoclorito de sódio 5%; CaOCl 1% - hipoclorito de cálcio 1%; CaOCl 2,5% - hipoclorito de cálcio 2,5%; CaOCl 5% - hipoclorito de cálcio 5%. Para cada grupo, irrigação foi realizada com 2 mL de solução. O espaço preparado para pino foi seco com cone de papel absorvente (#80) e os pinos de fibra foram cimentados com cimento resinoso autoadesivo. Os espécimes foram seccionados perpendicularmente e o teste de push-out foi realizado. Microscopia óptica foi usada para analisar o padrão de falha. Os testes de ANOVA e Bonferroni analisaram os dados de resistência adesiva. NaOCl e CaOCl apresentaram similar resistência adesiva, independentemente da concentração usada para irrigar o espaço preparado para pino (p>0,05). SF apresentou os maiores valores de resistência adesiva (11,47 MPa) (p<0,05). Falhas adesivas na interface cimento/dentina foram predominantes (58,33%). Soro fisiológico deve ser o irrigante de escolha para irrigar o espaço preparado para pino antes da cimentação de pinos de fibra com cimentos resinosos autoadesivos. NaOCl e CaOCl afetam negativamente os valores de resistência adesiva.


Subject(s)
Humans , Root Canal Irrigants/chemistry , Chlorhexidine/chemistry , Post and Core Technique , Dental Bonding , Calcium Compounds/chemistry , Resin Cements/chemistry , Sodium Hypochlorite/chemistry , Bicuspid , In Vitro Techniques , Sodium Chloride/chemistry , Root Canal Preparation , Therapeutic Irrigation/methods
5.
J. appl. oral sci ; 26: e20170499, 2018. tab, graf
Article in English | LILACS, BBO | ID: biblio-954521

ABSTRACT

Abstract Habitual toothbrushing with fluoridated toothpaste followed by rinsing with antibacterial mouthwashes is a method to maintain good oral hygiene and to diminish the occurrence and severity of dental caries and periodontal disease. However, our understanding of how antimicrobial agents in mouthwashes affect fluoride-mediated caries lesion remineralization is still poor. Objective: The objectives of this in vitro study were a) to determine the effects of the waiting period of chlorhexidine (CHX) rinsing after fluoride toothpaste use and b) to further determine the effect of the type of toothpaste surfactant [sodium dodecyl sulfate (SDS) or cocamidopropyl betaine (CAPB)] on caries lesion remineralization associated with CHX rinsing. Material and Methods: Caries lesions were formed in bovine enamel specimens and assigned to 10 treatment groups (n=18) based on Vickers surface microhardness (VHN). Lesions were then pH-cycled for 10 days with daily regimen comprised of twice daily toothpaste slurry treatments (1150 ppm fluoride, with SDS or CAPB), followed by CHX solution treatments [0, 15, 30 or 60 minutes following slurry treatment or no CHX treatment (negative control)]. VHN was measured again and the extent of lesion remineralization calculated (∆VHN). Results: ∆VHN with SDS-toothpaste was significantly lower than with CAPB-toothpaste, indicating more remineralization for the CAPB-toothpaste. ∆VHN with 0-minute waiting time was significantly lower than with 30-minute waiting time and with negative control. Conclusions: The absence of CHX as an adjunct to fluoride toothpastes led to greater remineralization of enamel lesions compared with the immediate use of CHX treatment for both SDS- and CAPB-toothpastes. CAPB-toothpastes indicated significantly greater remineralization than SDS-toothpastes, and can be suggested for patients at high risk of caries. A 30-minute waiting time for CHX treatment is recommended after brushing.


Subject(s)
Animals , Cattle , Tooth Remineralization/methods , Toothpastes/chemistry , Cariostatic Agents/chemistry , Chlorhexidine/chemistry , Dental Caries/prevention & control , Fluorides/chemistry , Mouthwashes/chemistry , Sodium Dodecyl Sulfate , Surface Properties , Time Factors , Betaine/analogs & derivatives , Reproducibility of Results , Dental Enamel/drug effects , Dental Enamel/chemistry , Hardness Tests , Hydrogen-Ion Concentration
6.
Rev. clín. periodoncia implantol. rehabil. oral (Impr.) ; 10(3): 145-148, dic. 2017. tab, graf
Article in English | LILACS | ID: biblio-900296

ABSTRACT

ABSTRACT: Aim: The objective of this work was to determine the concentrations of irrigating solutions and the residual content of parachloroaniline (PCA) formed after endodontic irrigation, using 5% NaOCl, 0.9% NaCl, 10% EDTA and 2% CHX 2%. Methodology Twenty premolars were used and 13 samples were collected per tooth from each of the treatment phases. Samples of: NaOCl, EDTA, CHX and PCA were quantified by UV and visible spectrophotometry. Results: Sodium hypochlorite decreased its concentration from 3.8% to 3.4% in phases 1 to 4. In phases 5, 6 and 7, residual NaOCl was measured with concentrations of 0.007%, 0.003% and 0.001% %. The concentration of EDTA decreased to 8.85% in phase 8. In phases 9, 10 and 11, irrigated with serum, EDTA was quantified with concentrations of 0.013% to 0.002% and NaOCl values of 0.0011% to 0, 0006%. In phases 12 and 13, CHX concentrations were 1.850% and 1.812% and PCA values were 0.0005% and 0.0007%. PCA formation occurred in presence of 2% CHX and residual NaClO and was detected colorimetrically in phases 12 and 13. Conclusions. During endodontic irrigation the concentration of 5% NaOCl decreases significantly in the first four phases and the concentrations of EDTA and CHX also decrease. There is PCA training in the last stages of the procedure.


Subject(s)
Humans , Root Canal Irrigants/chemistry , Sodium Hypochlorite/chemistry , Chlorhexidine/chemistry , Aniline Compounds/analysis , Root Canal Irrigants/administration & dosage , Sodium Hypochlorite/administration & dosage , Spectrophotometry , Chlorhexidine/administration & dosage , Edetic Acid/chemistry , Drug Interactions , Endodontics
7.
J. appl. oral sci ; 25(5): 541-550, Sept.-Oct. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893660

ABSTRACT

Abstract Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Results: Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. Conclusions: The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short-term microbiological effect without affecting clinical performance of ART restorations.


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Dental Atraumatic Restorative Treatment/methods , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Anti-Infective Agents, Local/pharmacology , Reference Values , Saliva/microbiology , Streptococcus mutans/growth & development , Streptococcus mutans/drug effects , Tensile Strength , Time Factors , In Vitro Techniques , Materials Testing , Candida albicans/growth & development , Candida albicans/drug effects , Colony Count, Microbial , Reproducibility of Results , Analysis of Variance , Treatment Outcome , Statistics, Nonparametric , Biofilms/growth & development , Biofilms/drug effects , Compressive Strength , Fluorides/chemistry , Hardness Tests , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/drug effects , Odontoblasts/drug effects
8.
Braz. oral res. (Online) ; 31(supl.1): e57, Aug. 2017.
Article in English | LILACS | ID: biblio-889455

ABSTRACT

Abstract Bonding plays a major role in dentistry nowadays. Dental adhesives are used in association with composites to solve many restorative issues. However, the wide variety of bonding agents currently available makes it difficult for clinicians to choose the best alternative in terms of material and technique, especially when different clinical situations are considered. Moreover, although bonding agents allow for a more conservative restorative approach, achieving a durable adhesive interface remains a matter of concern, and this mainly due to degradation of the bonding complex in the challenging oral environment. This review aims to present strategies that are being used or those still in development which may help to prevent degradation. It is fundamental that professionals are aware of these strategies to counteract degradation as much as possible. None of them are efficient to completely solve this problem, but they certainly represent reasonable alternatives to increase the lifetime of adhesive restorations.


Subject(s)
Humans , Dental Bonding/methods , Dental Bonding/trends , Dental Cements/chemistry , Chlorhexidine/chemistry , Collagen/drug effects , Dental Restoration, Permanent/methods , Dental Restoration, Permanent/trends , Dentin/chemistry , Dentin/drug effects
9.
Bauru; s.n; 2017. 159 p. ilus, tab, graf.
Thesis in English | LILACS, BBO | ID: biblio-883792

ABSTRACT

Besides of the desired effects, the chemical solutions used to assist the endodontic instruments in the cleanliness and disinfection of the root canal system can also cause changes in the physicochemical properties of dentin, and consequently affect the adhesion of endodontic sealers and microorganisms to the root canal walls. However, the effects of new irrigators and irrigation protocols remain unknown. The objectives of this thesis were to verify the alterations in the properties of some irrigants when used combined in mixtures, to define the time necessary for the smear layer removal by a new irrigant, to determine the organic matter dissolution capacity and the effects in the physicochemical properties of dentin of some irrigation solutions and protocols, and to evaluate the adhesion of microorganisms and AH Plus sealer to dentin after its submission to different irrigation sequences. In all experiments with dentin, the samples used were obtained from bovine teeth. In the analysis performed in this thesis, the following solutions were tested isolated and combined in different irrigation protocols: saline solution (control), sodium hypochlorite (NaOCl), trisodium (EDTAHNa3), alkaline ethylenediaminetetraacetic acid tetrasodium (EDTANa4), chlorhexidine (CHX), peracetic acid (PAA), and etidronic acid (HEDP). The EDTAHNa3 and EDTANa4 were tested in relation to their effects on the free chlorine content of NaOCl. The solutions were mixed in a 1:1 ratio and the iodometric titration of the mixtures performed in different time intervals. The time necessary for smear layer removal from dentin samples by solutions of EDTAHNa3 and different concentrations of EDTANa4 isolated and mixed with NaOCl was determined with the aid of the scanning electron microscope (SEM). The capacity of NaOCl to dissolve organic matter was determined by weighting fragments of bovine muscle before and after immersion in solutions of 1%, 2.5%, and 5% of NaOCl in different periods of time. Also, the effects of EDTAHNa3, EDTANa4 and HEDP on the organic matter dissolution by NaOCl were evaluated. The alterations produced by all solutions isolated and some irrigation protocols in the organic and inorganic components of the dentin surface were analysed by the attenuated total reflectance of Fourier transform infrared spectroscopy (ATR-FTIR) technique. Absorbance spectra were collected from the dentin surface before and after immersion of samples in the irrigants and the ratios of the amide III/phosphate and carbonate/phosphate bands were calculated. To quantify the adhesion of CHX to mineralized dentin and to dentin demineralized by different irrigation protocols, the areas of the band associated with CHX with the peak in 1492 cm−1 were determined in spectra obtained by ATR-FTIR. The effects of different irrigation protocols in the roughness and wettability of dentin surface were measured with a benchtop roughness tester and the sessile drop technique, respectively. For the assays of microorganisms' adhesion, samples were prepared and treated the same way and with the same irrigation protocols used in the roughness and wettability tests. Following, Candida albicans and Enterococcus faecalis were maintained in contact with the dentin for 2 hours and the samples were analyzed on the confocal laser scanning microscope (CLSM). Tests of push-out were performed to determine the impact of different irrigation protocols on the dentin bonding strength of AH Plus sealer over time. Canals of bovine incisors teeth were instrumented, irrigated and following obturated using only the sealer AH Plus. Half of the samples were submitted to pushout assessment 7 days after the obturation and the other half 20 months later. The results of the experiments showed that the EDTAHNa3 caused an almost complete and immediate loss of free available chlorine from NaOCl, whilst EDTANa4 promoted a slow and concentration-dependent decline. The smear layer was removed only by decalcifying solutions and in about 1 min by the 17% EDTAHNa3 and 5 min by the EDTANa4, both isolated or mixed with NaOCl. The increase in NaOCl concentration and contact time with the samples intensified the dissolution of organic matter. The mixtures of NaOCl with EDTANa4 and HEDP were able to dissolve the fragments of bovine muscle over-time, however, the EDTAHNa3 strongly affected the NaOCl dissolution capacity when they were mixed. The results of ATR-FTIR experiments showed that the increase in the NaOCl concentration intensified the deproteination of the dentin collagen with a reduction in the amide III/phosphate ratio. For the same decalcifying agent, the higher the concentration and immersion time the greater the removal of phosphate, exposure of the collagen matrix and consequently the increases in amide III/phosphate ratio. The PAA caused greater increases in amide III/phosphate ratio, followed by EDTAHNa3, EDTANa4 and HEDP and this order was maintained in the protocols in which NaOCl was used before the decalcifying agents. NaOCl required approximately 0.5 min to deproteinate the collagen matrix exposed after phosphate removal by EDTAHNa3 and PAA. The carbonate/phosphate ratio decreased after 30 s of samples immersion in solutions of NaOCl at 1%, 2.5% and 5% with no more alterations over time. The carbonate of the dentine was removed faster than phosphate by all decalcifying agents employed alone and in the irrigation protocols in which the use of the NaOCl was followed by the use of the EDTAHNa3, PAA and HEDP. For irrigation protocols that associate NaOCl with chelating solutions, the last irrigant used defined the final dentine amide III/phosphate and carbonate/phosphate ratios. For the ATR-FTIR analysis of CHX adhesion, the results showed that the adsorption of this irrigant to the dentin was potentiated when chelating agents were used prior to the CHX. In relation to the experiments of surface roughness, the saline solution, NaOCl, HEDP and CHX did not alter the roughness of the dentin, but EDTAHNa3 and PAA increased it. The wettability of the surface increased after the use of all irrigants, being the HEDP to cause the greater increases. In the assays of microorganisms' adhesion, the smear layer and collagen exposed by the chelating agents favored the adhesion of E. faecalis. The C. albicans adhesion was major in surfaces with smear layer and more mineral. The use of CHX as the final irrigant reduced the adhesion of both microorganisms. The wettability did not influence the microorganisms' adhesion, while increases in roughness seems to potentiate the adherence of E. faecalis. The experiments of bond strength of AH Plus to the dentin showed that the irrigation with NaOCl and mixture of NaOCl + EDTANa4 produced the lowest push-out bond strength values in 7 days compared to NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX and the mixture of NaOCl + HEDP. After 20 months the lowest values were obtained in the groups irrigated with NaOCl and NaOCl + EDTAHNa3. The groups of NaOCl + EDTAHNa3 + NaOCl, mixture NaOCl + HEDP, and mixture NaOCl + EDTANa4 presented values of push-out bond strength in 20 months similar to the values in 7 days. It was possible to conclude that the irrigation solutions tested in this study have different effects in the organic and inorganic matter and some of them can affect the action of each other when mixed. Independent of being used isolated or combined in irrigation protocols, these irrigants cause modifications in the dentin physicochemical properties that influence the adhesion of AH Plus sealer in short and long term and the microorganisms' adherence to the surface in cases of recontaminations.(AU)


Além dos efeitos desejados, as soluções químicas utilizadas para auxiliar os instrumentos endodônticos na limpeza e desinfecção do sistema radiculares podem causar alterações nas propriedades físico-químicas da dentina e consequentemente afetar a adesão de cimentos endodônticos e microrganismos às paredes do canal radicular. Contudo, os efeitos de novos irrigantes e protocolos de irrigação ainda são desconhecidos. Os objetivos desta tese foram verificar as alterações nas propriedades de alguns irrigantes quando utilizados combinados em misturas, definir o tempo necessário para a remoção da camada de smear layer por um novo irrigante, determinar a capacidade de dissolução de matéria orgânica e os efeitos de algumas soluções e protocolos de irrigação nas propriedades físico-químicas de dentina e avaliar a adesão de microrganismos e cimento AH Plus à dentina após a submissão desta a diferentes sequências de irrigação. Em todos os experimentos com dentina as amostras utilizadas foram obtidas a partir de dentes bovinos. Nas análise realizadas nesta tese as seguintes soluções foram testadas isoladas e combinadas em diferentes protocolos de irrigação: solução salina (controle), hipoclorito de sódio (NaOCl), ácido etilenodiaminotetraacético trisódico (EDTAHNa3), ácido etilenodiaminotetracético tetrassódico alcalino (EDTANa4), clorexidina (CHX), ácido peracético (PAA) e ácido etidrônico (HEDP). O EDTAHNa3 e o EDTANa4 foram testados em relação aos seus efeitos sobre o teor de cloro livre do NaOCl. As soluções foram misturadas em uma proporção de 1:1 e a titulação iodométrica das misturas realizada em diferentes intervalos de tempo. O tempo necessário para a remoção da smear layer de amostras de dentina pela solução de EDTAHNa3 a 17% e diferentes concentrações de EDTANa4 isoladas e misturadas com NaOCl foi determinado com o auxílio do microscópio eletrônico de varredura (SEM). A capacidade de dissolução de matéria orgânica pelo NaOCl foi determinada pesando fragmentos de músculo bovino antes e depois da imersão em soluções de 1%, 2,5% e 5% de NaOCl em diferentes períodos de tempo. Além disso, os efeitos do EDTAHNa3, EDTANa4 e HEDP na dissolução de matéria orgânica pelo NaOCl foram avaliados. As alterações produzidas por todas as soluções isoladas e alguns protocolos de irrigação nos componentes orgânicos e inorgânicos da superfície da dentina foram analisadas pela técnica de reflexão total atenuada em espectroscopia no infravermelho por transformação de Fourier (ATRFTIR). Espectros de absorbância foram coletados da superfície da dentina antes e após a imersão das amostras nos irrigantes, e foram calculadas as razões das bandas de amida III/fosfato e carbonato/fosfato. Para quantificar a adesão da CHX à dentina mineralizada e à dentina desmineralizada por diferentes protocolos de irrigação, foram determinadas as áreas da banda associada a CHX com pico em 1492 cm−1 em espectros obtidos por ATR-FTIR. Os efeitos de diferentes protocolos de irrigação na rugosidade e molhabilidade da superfície da dentina foram medidos com um rugosímetro de bancada e a técnica de gota séssil, respectivamente. Para os ensaios de adesão de microrganismos, amostras foram preparadas e tratadas da mesma maneira e com os mesmos protocolos de irrigação utilizados nos testes de rugosidade e molhabilidade. Em seguida, Candida albicans e Enterococcus faecalis foram mantidos em contato com a dentina por 2 horas e as amostras foram analisadas no microscópio confocal de varredura laser (CLSM). Testes de push-out foram realizados para determinar o impacto de diferentes protocolos de irrigação na resistência de união à dentina do cimento AH Plus ao longo do tempo. Canais de dentes incisivos de bovinos foram instrumentados, irrigados e em seguida obturados utilizando apenas o cimento AH Plus. Metade das amostras foi submetida a avaliação de push-out 7 dias após a obturação e a outra metade após 20 meses. Os resultados dos experimentos mostraram que o EDTAHNa3 causou uma perda quase completa e imediata do cloro livre do NaOCl, enquanto o EDTANa4 promoveu um declínio lento e concentração dependente. A smear layer foi removida apenas por soluções descalcificantes e em cerca de 1 min pelo EDTAHNa3 a 17% e em 5 min pelo EDTANa4, tanto isolados ou misturados com o NaOCl. O aumento da concentração de NaOCl e do tempo de contato com os fragmentos de músculo bovino intensificou a dissolução da matéria orgânica. As misturas de NaOCl com EDTANa4 e HEDP foram capazes de dissolver as amostras de músculo ao longo do tempo, no entanto, o EDTAHNa3 afetou fortemente a capacidade de dissolução do NaOCl quando eles foram misturados. Os resultados dos experimentos com ATR-FTIR mostraram que o aumento da concentração do NaOCl intensificou a desproteinização do colágeno da dentina com redução da relação amida III/fosfato. Para o mesmo agente de descalcificação, quanto maior a concentração e o tempo de imersão, maior a remoção de fosfato, exposição da matriz de colágeno e consequentemente o aumento da proporção amida III/fosfato. O PAA causou os maiores aumentos na relação amida III/fosfato, seguido de EDTAHNa3, EDTANa4 e HEDP e esta ordem foi mantida nos protocolos em que o NaOCl foi usado antes dos agentes descalcificantes. O NaOCl necessitou aproximadamente 0,5 min para desproteinizar a matriz de colágeno exposta após a remoção de fosfato pelo EDTAHNa3 e o PAA. A relação carbonato/fosfato diminuiu após 30 s de imersão das amostras em soluções de NaOCl a 1%, 2,5% e 5%, sem mais alterações ao longo do tempo. O carbonato da dentina foi removido mais rápido do que o fosfato por todos os agentes descalcificantes empregados sozinhos e nos protocolos de irrigação em que o uso do NaOCl foi seguido pelo uso do EDTAHNa3, PAA e HEDP. Para os protocolos de irrigação que associam o NaOCl com soluções quelantes, o último irrigante utilizado definiu as proporções finais de amida II/fosfato e carbonato/fosfato da dentina. Para as análises da adesão da CHX em ATR-FTIR, os resultados mostraram que a adsorção deste irrigante à dentina foi potencializada quando agentes quelantes foram utilizados antes da CHX. Em relação aos experimentos de rugosidade da superfície, a solução salina, o NaOCl, o HEDP e a CHX não alteraram a rugosidade da dentina, mas o EDTAHNa3 e o PAA a aumentaram. A molhabilidade da superfície aumentou após o uso de todos os irrigantes, sendo que o HEDP causou os maiores aumentos. Nos ensaios de adesão dos microrganismos, a smear layer e o colágeno exposto pelos agentes quelantes favoreceram a adesão de E. faecalis. A adesão da C. albicans foi maior em superfícies com smear layer ou mais mineral. O uso de CHX como irrigante final reduziu a adesão de ambos os microrganismos. A molhabilidade não influenciou a adesão dos microrganismos, enquanto o aumento da rugosidade parece potencializar a adesão do E. faecalis. Os experimentos de resistência de união do AH Plus à dentina mostraram que a irrigação com NaOCl e a mistura de NaOCl + EDTANa4 produziram valores de resistência de união em 7 dias mais baixos em comparação com NaOCl + EDTAHNa3, NaOCl + EDTAHNa3 + NaOCl, NaOCl + EDTAHNa3 + CHX e a mistura de NaOCl + HEDP. Após 20 meses, os valores mais baixos foram obtidos nos grupos irrigados com NaOCl e NaOCl + EDTAHNa3. Os grupos de NaOCl + EDTAHNa3 + NaOCl, mistura de NaOCl + HEDP e mistura de NaOCl + EDTANa4 apresentaram valores de força de união por push-out em 20 meses semelhante aos valores em 7 dias. Foi possível concluir que as soluções de irrigação testadas neste estudo têm diferentes efeitos na matéria orgânica e inorgânica e elas podem afetar as ações umas das outras quando misturadas. Independentemente de serem utilizadas isoladas ou combinadas em protocolos de irrigação, os irrigantes causam modificações nas propriedades físico-químicas dentinárias que influenciam na adesão do cimento AH Plus a curto e longo prazo e na adesão de microrganismos à superfície em casos de recontaminação.(AU)


Subject(s)
Animals , Cattle , Dentin/drug effects , Dentin/microbiology , Epoxy Resins/chemistry , Root Canal Filling Materials/chemistry , Root Canal Irrigants/chemistry , Candida albicans/drug effects , Chlorhexidine/chemistry , Edetic Acid/chemistry , Etidronic Acid/chemistry , Peracetic Acid/chemistry , Reproducibility of Results , Smear Layer/drug therapy , Sodium Hypochlorite/chemistry , Time Factors
10.
Acta odontol. latinoam ; 30(1): 13-18, 2017. tab
Article in English | LILACS | ID: biblio-907402

ABSTRACT

This study compared the surface detail reproduction anddimensional accuracy of molds after disinfection using 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to those of molds that were not disinfected, forfour elastomeric impression materials: polysulfide (Light Bodied Permlastic), polyether (Impregum Soft), polydimethylsiloxane(Oranwash L) and polyvinylsiloxane (Aquasil Ultra LV). Themolds were prepared on a matrix by applying pressure, using aperforated metal tray. The molds were removed followingpolymerization and either disinfected (by soaking in one of thesolutions for 15 minutes) or not disinfected. The samples werethus divided into 16 groups (n=5). Surface detail reproductionand dimensional accuracy were evaluated using opticalmicroscopy to assess the 20 ­µm line over its entire 25 mm length. The dimensional accuracy results (%) were subjectedto analysis of variance (ANOVA) and the means were comparedby Tukey’s test (α=5%). The 20 ­µm line was completelyreproduced by all elastomeric impression materials, regardlessof disinfection procedure. There was no significant difference between the control group and molds disinfected with peraceticacid for the elastomeric materials Impregum Soft (polyether)and Aquasil Ultra LV (polyvinylsiloxane). The high­leveldisinfectant peracetic acid would be the choice material for disinfection.


Este estudo comparou a reprodução de detalhes da superfície e estabilidade dimensional de moldes obtidos após desinfecção utilizando hipoclorito de sódio 2%, digluconato de clorexidina 2%, ou ácido peracético 0,2% a moldes que não foram desinfetados com quatro elastômeros: polissulfeto (Light Bodied Permlastic), polieter (Impregum Soft), silicona reação porcondensação (Oranwash L) e silicona reação por adição (Aquasil Ultra LV). Os moldes foram preparados sobre matriz conten dolinhas de 20, 50 e 75 µm realizado sob pressão com moldeirade metal perfurada. Os moldes foram removidos após a polimerização e desinfetados (utilizando uma das soluções porimersão, armazenados em frascos fechados durante 15 minutos)ou não desinfetados. Assim, as amostras foram divididas em 16grupos (n=5). A reprodução detalhes da superfície e a precisão dimensional foram avaliadas usando microscopia óptica na linha 20 µm com 25 mm de comprimento, de acordo com a norma ISO 4823. Os resultados de precisão dimensional (%) foram submetidos à análise de variância (A NOVA) e as médias comparadas pelo teste de Tukey com 5% de nível de significância. A linha de 20 µm foi completamente reproduzida por todos os elastômeros, independentemente do processo de desinfecção. Não houve diferença estatisticamente significativa entre o grupo controle e moldes desinfetados com acido peracético para os elastômeros Impregum Soft (polieter) e Aquasil Ultra LV (siliconareação por adição). O desinfetante de alto nível ácido peracético seria o material de escolha para a desinfecção.


Subject(s)
Humans , Dental Impression Materials , Dental Models , Dental Disinfectants/chemistry , Surface Properties , Analysis of Variance , Chlorhexidine/chemistry , Dimensional Measurement Accuracy , Edetic Acid/chemistry , Elastomers/classification , Microscopy/methods , Data Interpretation, Statistical , Siloxanes/classification , Sodium Hypochlorite/chemistry , Sulfides/classification
11.
Acta odontol. latinoam ; 30(1): 26-32, 2017. ilus, tab, graf
Article in English | LILACS | ID: biblio-907404

ABSTRACT

The aim of this ex vivo study was to evaluate changes in pH andcalcium ion diffusion through root dentin from calcium hydroxide(Ca (OH)2) and mineral trioxide aggregate (MTA) pastes at 7,30 and 60 days; and the relationship between pH and iondiffusion. Thirty­two human premolars were used. Crowns weresectioned and root canals instrumented and filled in with thefollowing preparations: 1) Ca(OH)2 + distilled water (n=7); 2)Ca(OH)2 + 0.1% chlorhexidine gluconate (n=7); 3) MTA +distilled water (n=7); 4) MTA + 0.1% chlorhexidine gluconate(CHX) (n=7); 5) distilled water (n=2) (control); 6) 0.1%chlorhexidine gluconate (n=2) (control). The apex and coronaryopening were sealed with IRM. Roots were placed in Eppendorftubes with 1 ml distilled water at 37°C and 100% humidity. Atbaseline, 7, 30 and 60 days, pH was measured with pH meter,and calcium ion content in the solution was analyzed by atomicabsorption spectrophotometry. The data were statisticallyanalyzed using ANOVA, simple linear regression analysis andPearson’s correlation test. The highest pH values were achievedwith calcium hydroxide pastes at 60 days (p ≤ 0.05). Calciumions were released in all groups. The calcium hydroxide pastewith distilled water at 60 days had the highest calcium ion value(p ≤ 0.01). There was a positive correlation between calcium andpH values.


El objetivo de este estudio ex vivo fue evaluar los cambios en elpH y la difusión a través de la dentina radicular de iones calcioa partir de pastas de hidróxido de calcio (Ca (OH)2) y trióxidomineral agregado (MTA), durante 7, 30 y 60 días; y la relaciónentre el pH y la difusión de iones. Se utilizaron 32 premolareshumanos. Las coronas fueron seccionadas, los conductos radicu ­lares fueron instrumentados y obturados con las siguientespreparaciones: 1) Ca (OH)2 + agua destilada (n = 7); 2)Ca (OH)2 + gluconato de clorhexidina (CHX) al 0,1% (n = 7);3) MTA + agua destilada (n = 7); 4) MTA + gluconato declorhexidina al 0,1% (n = 7); 5) agua destilada (n = 2) (control);6) gluconato de clorhexidina al 0,1% (n = 2) (control). El ápicey la apertura coronaria se sellaron con IRM. Las raíces secolocaron en tubos Eppendorf con 1 ml de agua destilada a37 °C y 100% de humedad. Se midió el pH inicial y a los 7, 30 y60 días, con pHmetro, y se analizó el contenido de iones calcioen la solución por espectrofotometría de absorción atómica. Losdatos fueron analizados estadísticamente con ANOVA, análisisde regresión lineal y correlación de Pearson. Los valores de pHmás altos se obtuvieron con las pastas de hidróxido de calcio alos 60 días (p ≤ 0,05). Todos los grupos mostraron liberación deiones calcio. La pasta de hidróxido de calcio con agua destiladamostró el valor más alto de iones calcio a los 60 días (p ≤ 0,01).Hubo una correlación positiva entre los valores de pH y calcio.


Subject(s)
Humans , Calcium Hydroxide/chemistry , Hydrogen-Ion Concentration , Oxides/chemistry , Root Canal Filling Materials/classification , Analysis of Variance , Chlorhexidine/chemistry , Dentin Permeability , Distilled Water , Data Interpretation, Statistical , Spectrophotometry, Atomic/methods
12.
Braz. oral res. (Online) ; 31: e32, 2017. tab, graf
Article in English | LILACS | ID: biblio-839525

ABSTRACT

Abstract In recent years, different chlorhexidine formulations have been tested, including an alcohol-free alternative, but the effect of this solution on early biofilm formation is not clear. A crossover, randomized, double-blind clinical trial was conducted to evaluate the effect of two chlorhexidine solutions against supra- and subgingival biofilm formation (NCT#02656251). Thirty-five participants were randomized and asked to rinse twice daily with 15 ml of an alcohol-containing 0.12% chlorhexidine solution, an alcohol-free 0.12% chlorhexidine solution, or placebo. The study was conducted in three experimental periods of 4 days each, with a 10-day washout between the periods. All the experimental periods followed the same protocol, except that the solutions were switched. Biofilm distribution was evaluated every 24 hours by the Plaque-Free Zone Index, during 96 hours. Adverse events were self-reported and sensory evaluation was performed using a hedonic scale. Compared to the placebo, the chlorhexidine solutions resulted in a significantly higher number of surfaces free of plaque over 96 hours (p < 0.01), and were able to prevent subgingival biofilm formation (p < 0.01). The alcohol-free chlorhexidine solution was associated with a lower incidence of adverse events, compared with alcohol-containing chlorhexidine (p < 0.05); it also received better sensory evaluation and acceptance by trial participants, compared with the alcohol-containing chlorhexidine (p = 0.007), and had a similar inhibitory effect on the formation of supra- and subgingival biofilms.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Young Adult , Biofilms/drug effects , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Ethanol/chemistry , Ethanol/pharmacology , Mouthwashes/chemistry , Mouthwashes/pharmacology , Anti-Infective Agents, Local/chemistry , Anti-Infective Agents, Local/pharmacology , Cross-Over Studies , Dental Plaque Index , Dental Plaque/prevention & control , Double-Blind Method , Drug Combinations , Gingiva/drug effects , Gingiva/microbiology , Taste , Time Factors , Treatment Outcome
13.
J. appl. oral sci ; 24(5): 453-461, Sept.-Oct. 2016. tab
Article in English | LILACS, BBO | ID: lil-797976

ABSTRACT

ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion.


Subject(s)
Polymethacrylic Acids/chemistry , Acrylic Resins/chemistry , Denture Liners , Denture, Partial, Temporary , Antifungal Agents/chemistry , Surface Properties , Time Factors , Materials Testing , Calcium Chloride/chemistry , Water/chemistry , Microbial Sensitivity Tests , Chlorhexidine/chemistry , Nystatin/chemistry , Reproducibility of Results , Analysis of Variance , Porosity , Biofilms/drug effects , Immersion , Ketoconazole/chemistry
14.
Braz. dent. j ; 27(3): 325-331, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-782829

ABSTRACT

Abstract This study evaluated pH and release of calcium, sodium and phosphate ions from different medications in human dentin. Fifty premolars were prepared and randomly divided into groups: (CHX) - 2% chlorhexidine gel; (CHX + CH) - CHX + calcium hydroxide PA; (CH) - CH + propylene glycol 600; (NPBG) - experimental niobium phosphate bioactive glass + distilled water; (BG) - bioactive glass (Bio-Gran) + distilled water. The specimens were immersed in deionized water and the pH variations were measured. The quantification of ions in the solutions was made by inductively coupled plasma - atomic emission spectroscopy (ICP/AES) at 10 min, 24 h, 7, 14, 21 and 30 days. The results were analyzed by ANOVA and Tukey`s test, with a significance level of 5%. CH had the highest level of calcium ions release at 30 days, while CHX and BG released more sodium ions. BG, NPBG and CHX released a higher amount of phosphate ions. The pH of CH was significantly higher compared with the other groups. CH favored the greatest increase of pH and calcium ions release. The bioactive glasses released more sodium and phosphate ions and presented an alkaline pH immediately and after 30 days.


Resumo Este estudo avaliou o pH e a liberação de íons cálcio, sódio e fosfato de diferentes medicamentos em dentina humana. Cinquenta pré-molares foram preparados e divididos aleatoriamente em grupos: (CHX) - clorexidina gel 2%; (CHX + CH) - CHX + hidróxido de cálcio PA; (CH) - CH + propilenoglicol 600; (NPBG) - vidro experimental nióbio fosfato bioativo + água destilada; (BG) - vidro bioativo (Bio-Gran) + água destilada. Os espécimes foram submersos em água deionizada e as variações de pH foram mensuradas. A quantificação dos íons nas soluções foi feita por espectrometria de emissão atômica com plasma indutivamente acoplado (ICP - AES) nos tempos de 10 min, 24 h, 7, 14, 21 e 30 dias. Os resultados foram analisados por ANOVA e teste Tukey, com um nível de significância de 5%. Verificou-se que CH a teve a maior liberação íons de cálcio ao final de 30 dias, enquanto CHX e BG liberaram mais íons de sódio. BG, NPBG e CHX apresentaram a maior liberação de íons fosfato. O pH de CH foi significativamente maior em comparação com os outros grupos testados. O grupo CH aumentou o pH e a liberação de íons cálcio. Os vidros bioativos obtiveram uma maior liberação de íons sódio e fosfato e apresentaram pH alcalino imediato e ao final de 30 dias.


Subject(s)
Humans , Calcium Hydroxide/chemistry , Calcium/metabolism , Chlorhexidine/chemistry , Glass , Hydrogen-Ion Concentration , Root Canal Therapy , Microscopy, Electron, Scanning
15.
J. appl. oral sci ; 24(3): 211-217, tab, graf
Article in English | LILACS, BBO | ID: lil-787537

ABSTRACT

ABSTRACT Objective Green tea extract has been advocated as a matrix metalloproteinase (MMP) inhibitor; however, its effect on bond durability to caries-affected dentin has never been reported. Thus, the aim of this in vitro study was to evaluate the effect of two MMP inhibitors (2% chlorhexidine and 2% green tea extract), applied after acid etching, on bond durability of an etch-and-rinse adhesive system to caries-affected dentin. Material and Methods Occlusal enamel was removed from third molars to expose the dentin surface, and the molars were submitted to a caries induction protocol for 15 days. After removal of infected dentin, specimens were conditioned with 37% phosphoric acid (15 seconds) and randomly divided into three groups, according to the type of dentin pretreatment (n=10): NT: no treatment; GT: 2% green tea extract; CLX: 2% chlorhexidine. The etch-and-rinse adhesive system (Adper™ Single Bond 2, 3M ESPE, St. Paul, MN, USA) was applied according to the manufacturer's instructions, and composite resin restorations were built on the dentin. After 24 hours, at 37°C, the resin-tooth blocks were sectioned perpendicularly to the adhesive interface in the form of sticks (0.8 mm2 of adhesive area) and randomly subdivided into two groups according to when they were to be submitted to microtensile bond strength (μTBS) testing: immediately or 6 months after storage in distilled water. Data were reported in MPa and submitted to two-way ANOVA for completely randomized blocks, followed by Tukey’s test (α=0.05). Results After 24 hours, there was no significant difference in the μTBS of the groups. After 6 months, the GT group had significantly higher μTBS values. Conclusion It was concluded that the application of 2% green tea extract was able to increase bond durability of the etch-and-rinse system to dentin. Neither the application of chlorhexidine nor non-treatment (NT - control) had any effect on bond strength after water storage.


Subject(s)
Humans , Phosphoric Acids/chemistry , Tea/chemistry , Chlorhexidine/chemistry , Dental Caries/drug therapy , Dental Cements/chemistry , Dentin/drug effects , Anti-Infective Agents, Local/chemistry , Surface Properties , Tensile Strength , Time Factors , Acid Etching, Dental/methods , Materials Testing , Random Allocation , Reproducibility of Results , Analysis of Variance , Dental Bonding/methods , Dentin-Bonding Agents/chemistry
16.
Rev. ADM ; 73(1): 11-16, ene.-feb.2016. ilus, tab
Article in Spanish | LILACS | ID: lil-781836

ABSTRACT

El mineral trióxido agregado sigue siendo el material deelección para la reparación de perforación de furcas y formación radicular de dientes inmaduros. Su mejor comportamiento biomecánico se obtiene cuando es mezclado con agua destilada, no obstante, diversas investigaciones muestran la posibilidad de ser combinado con sustancias comoclorhexidina o incluso hipoclorito. Objetivo: Comparar la resistenciacompresiva (RC) del mineral trióxido agregado (MTA) combinado con agua destilada, lidocaína al 2 por ciento más epinefrina 1:80,000 y clorhexidina al 2 por ciento. Material y métodos: Estudio experimental de laboratorio in vitro. Se fabricaron 30 discos de MTA mezclados con las tres sustancias a comparar (n = 10), con un tamaño de 4 mm de diámetro x 6 mm de alto, envueltos con gasa húmeda y dejando fraguar por 72 horas a 37 oC al 100 por ciento de humedad. Posteriormente se midió la resistencia compresiva de las unidades muestrales en una máquina de ensayo universal (Shimadzu Scientific Instruments, INC. Columbia, NY, USA). Las muestras fueron comprimidas a una velocidad de 1 mm/min y la RC se registró en megapascales (MPa). El análisis estadístico se realizó a través de análisis de varianzas (ANOVA) de una vía en el paquete estadístico Stata™v.13.1 para Windows. Resultados: El grupo que tuvo mayor resistenciacompresiva fue al combinar con agua destilada (8.32 ± 3.62 MPa) seguido del grupo de lidocaína al 2 por ciento y epinefrina 1:80,000 (6.60 ± 3.42MPa), y por último el grupo de clorhexidina al 2% (5.15 ± 2.25 MPa).Conclusiones: Teniendo en cuenta los resultados arrojados del presente estudio es posible inferir que el MTA al combinarse con agua destilada sigue ofreciendo las mejores propiedades físicas, lo que sugiere mejor comportamiento clínico endodóncico. Sin embargo, al no detectar diferencias estadísticamente signifi cativas, es posible que otros materiales puedan ser considerados como agentes de mezcla...


Subject(s)
Humans , Chlorhexidine/chemistry , Root Canal Filling Materials/chemistry , Lidocaine/chemistry , Analysis of Variance , Biocompatible Materials , Materials Testing , Data Interpretation, Statistical
17.
J. appl. oral sci ; 24(1): 61-66, Jan.-Feb. 2016. graf
Article in English | LILACS, BBO | ID: lil-777356

ABSTRACT

ABSTRACT The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). Results The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion.


Subject(s)
Humans , Tooth Abrasion/prevention & control , Tooth Erosion/prevention & control , Toothpastes/chemistry , Dentin/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Saliva, Artificial/chemistry , Surface Properties/drug effects , Time Factors , Toothbrushing , Materials Testing , Carbonated Beverages , Random Allocation , Chlorhexidine/chemistry , Analysis of Variance
18.
Braz. oral res. (Online) ; 30(1): e6, 2016. tab
Article in English | LILACS | ID: lil-768257

ABSTRACT

The aim of this study was to compare the efficacy of using a dishwasher or different chemical agents, including 0.12% chlorhexidine gluconate, 2% sodium hypochlorite (NaOCl), a mouthrinse containing essential oils and alcohol, and 50% white vinegar, for toothbrush disinfection. Sixty volunteers were divided into five experimental groups and one control group (n = 10). Participants brushed their teeth using toothbrushes with standard bristles, and they disinfected the toothbrushes according to instructed methods. Bacterial contamination of the toothbrushes was compared between the experimental groups and the control group. Data were analyzed by Kruskal–Wallis and Duncan's multiple range tests, with 95% confidence intervals for multiple comparisons. Bacterial contamination of toothbrushes from individuals in the experimental groups differed from those in the control group (p < 0.05). The most effective method for elimination of all tested bacterial species was 50% white vinegar, followed in order by 2% NaOCl, mouthrinse containing essential oils and alcohol, 0.12% chlorhexidine gluconate, dishwasher use, and tap water (control). The results of this study show that the most effective method for disinfecting toothbrushes was submersion in 50% white vinegar, which is cost-effective, easy to access, and appropriate for household use.


Subject(s)
Humans , Dental Devices, Home Care/microbiology , Disinfection/methods , Toothbrushing/instrumentation , Acetic Acid/chemistry , Anti-Bacterial Agents/chemistry , Colony Count, Microbial , Chlorhexidine/chemistry , Dental Disinfectants/chemistry , Escherichia coli/drug effects , Immersion , Lactobacillus rhamnosus/drug effects , Statistics, Nonparametric , Staphylococcus aureus/drug effects , Streptococcus mutans/drug effects , Time Factors
19.
Braz. oral res. (Online) ; 30(1): e13, 2016. tab, graf
Article in English | LILACS | ID: lil-768259

ABSTRACT

Abstract The aim of this study was to evaluate the effect of green tea as a protective measure on eroded dentin. Disks of human coronary dentin were selected based on surface hardness and randomly assigned to 3 groups (n = 10): DW - distilled water, CHX - 0.2% chlorhexidine digluconate, and GT - green tea. The disks were allowed to acquire pellicle for 2 hours and were then subjected to 3 cycles per day of demineralization (C6H8O7 0.05 M, pH 3.75, 60 s), treatment (DW or CHX or GT, 5 min) and remineralization (artificial saliva, 60 min) over a period of 3 days. Changes in the dentin were determined by loss of surface hardness (%SHL) and mechanical profilometry analysis at the end of each day. Data were analyzed by two-way ANOVA followed by Tukey’s test for %SHL and profilometry (p < 0.05). Significant reductions in dentin hardness loss were observed only for the CHX group when compared to the DW group (p < 0.05). However, there was no significant difference between the CHX and GT groups (p > 0.05). A significant difference was observed between DW and GT treatments for wear and roughness measurements (p < 0.05). The green tea extract solution was able to reduce the wear and roughness caused by dentin erosion under the conditions of this study.


Subject(s)
Humans , Dentin/drug effects , Protective Agents/chemistry , Tea/chemistry , Tooth Erosion/prevention & control , Analysis of Variance , Chlorhexidine/analogs & derivatives , Chlorhexidine/chemistry , Hardness , Matrix Metalloproteinases/chemistry , Plant Extracts/chemistry , Random Allocation , Reproducibility of Results , Saliva, Artificial/chemistry , Statistics, Nonparametric , Surface Properties/drug effects , Time Factors , Water/chemistry
20.
Bauru; s.n; 2016. 157 p. ilus, graf, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-880939

ABSTRACT

Este estudo investigou a resistência à tração (ou limite de resistência à tração- LRT) e a porosidade de reembasadores resilientes temporários modificados por concentrações inibitórias mínimas (CIMs) de agentes antifúngicos para o biofilme Candida albicans (SC5314). Para os testes de LRT, corpos de prova em forma de halteres (n=7) com uma área transversal de 33 mm x 6 mm x 3 mm foram produzidos para os materiais resilientes (Trusoft e Softone) sem (controle) ou com incorporação de cinco fármacos em suas CIMs: nistatina- 0,032 g; diacetato de clorexidina- 0,064; cetoconazol- 0,128 g; miconazol- 0,256 g; itraconazol-0,256 g (grama de fármaco por grama de pó de material resiliente). Após a plastificação, as amostras foram imersas em água destilada a 37°C durante 24 h, 7 e 14 dias e, então, testadas em tensão em uma máquina universal de ensaios (EMIC DL-500 MF) a 40 mm/min. A porosidade foi mensurada por absorção de água, com base na exclusão do efeito plastificante. Inicialmente, determinou-se por isotermas de sorção, que a solução de armazenagem adequada para os corpos de prova (65 mm x 10 mm x 3,3 mm) de ambos os materiais foi o cloreto de cálcio anidro a 50% (S50). Assim, o fator de porosidade (FP) foi calculado para os grupos de estudo (n=10) formados por espécimes sem (controle) ou com incorporação de fármaco em suas CIMs (nistatina, clorexidina ou cetoconazol) após a armazenagem em água destilada ou S50 por 24 h, 7 e 14 dias. Os dados de resistência à tração (MPa) e percentagem de alongamento (%) foram submetidos à ANOVA de 3 fatores seguida pelo teste de Tukey (=0,05). Os dados de porosidade foram analisados estatisticamente por ANOVA de medidas repetidas para 4 fatores e teste de Tukey (=0,05). Ao final de 14 dias, a resistência à tração para ambos os materiais foi significativamente menor nos grupos modificados pelo miconazol e itraconazol em relação aos outros grupos (P<0,0001), que não mostraram diferenças significativas entre si (P>0,05). Após 7 e 14 dias em água, o miconazol e itraconazol adicionados a ambos os materiais resultaram em percentagens significativamente menores de alongamento em comparação com os outros fármacos e ao controle (P<0,0001), que foram semelhantes entre si (P>0,05). O cetoconazol não resultou em alterações significativas no FP para ambos os materiais resilientes em água ao longo de 14 dias (P>0,05). Em comparação aos controles, houve aumento dos FPs do Softone e Trusoft aos 14 dias de imersão em água somente após a adição de nistatina e clorexidina e de clorexidina, respectivamente (P<0,05). Ambos os materiais não apresentaram alterações significativas no FP em até 14 dias de imersão na S50, em comparação aos controles (P>0,05). Em todas as condições experimentais, os FPs do Softone e Trusoft foram significativamente menores quando imersos em S50 em comparação com a água destilada (P<0,05). Concluiu-se que a adição de nistatina, clorexidina e cetoconazol nas CIMs para o biofilme de C. albicans não resultou em efeitos deletérios na resistência à tração e na percentagem de alongamento dos materiais resilientes temporários para base de prótese até o período de 14 dias. A adição de antifúngicos nas CIMs não resultou em efeitos adversos à porosidade de ambos os materiais resilientes temporários em diferentes períodos de imersão em água, com exceção da clorexidina e nistatina no Softone e clorexidina no Trusoft aos 14 dias. Não foram observados efeitos deletérios para a porosidade de ambos os materiais resilientes modificados com as CIMs dos fármacos durante os 14 dias de imersão na S50.(AU)


This study investigated the tensile strength (ultimate tensile strength- UTS) and porosity of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314). For UTS tests, dumbbell-shaped specimens (n=7) with a central cross-sectional area of 33 mm x 6 mm x 3 mm were produced by resilient materials (Trusoft and Softone) without (control) or with incorporation of five drugs at MICs: nystatin- 0.032 g; chlorhexidine diacetate-0.064 g; ketoconazole- 0.128 g; miconazole- 0.256 g; itraconazole- 0.256 g (each per gram of soft liner powder). After plasticization, specimens were immersed in distilled water at 37°C for 24 h, 7 and 14 days, and then tested in tension in a universal testing machine (EMIC DL-500 MF) at 40 mm/min. The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65 mm x 10 mm x 3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin, chlorhexidine or ketoconazole) after storage in distilled water or S50 for 24 h, 7 and 14 days. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA followed by Tukey's test (=0.05). Data of porosity were statistically analyzed by 4-way repeated measures ANOVA and Tukeys test (=0.05). At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (P<0.0001), which showed no significant difference between them (P>0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials result in significant lower elongation percentages compared to the other drugs and control (P<.0001), which were similar to each other (P>0.05). Ketoconazole resulted in no significant changes in PF for both liners in water over 14 days (P>0.05). Compared to the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of nystatin and chlorhexidine, and chlorhexidine, respectively (P<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared to the controls (P>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared to distilled water (P<0.05). It was concluded that the addition of the nystatin, chlorhexidine and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the ultimate tensile strength and elongation percentage of the temporary soft denture liners up to 14-day period. The addition of antifungals at MICs resulted in no detrimental effects for the porosity of both temporary soft liners in different periods of water immersion, except for chlorhexidine and nystatin in Softone and chlorhexidine in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion.(AU)


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Denture Liners , Polymethacrylic Acids/pharmacology , Analysis of Variance , Chlorhexidine/chemistry , Chlorhexidine/pharmacology , Itraconazole/chemistry , Itraconazole/pharmacology , Ketoconazole/chemistry , Ketoconazole/pharmacology , Materials Testing , Miconazole/chemistry , Miconazole/pharmacology , Microbial Sensitivity Tests , Nystatin/chemistry , Nystatin/pharmacology , Porosity , Reproducibility of Results , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL