Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.712
Filter
1.
J. coloproctol. (Rio J., Impr.) ; 43(4): 286-291, Oct.-Dec. 2023. tab
Article in English | LILACS | ID: biblio-1528937

ABSTRACT

Objective: To evaluate the application of proactive pro-drug therapy (TDM) at week six in users of infliximab therapy in ulcerative colitis patients and to analyze the need for further disease optimization. Method: This is a retrospective analysis that will be carried out simultaneously at the Hospital de Clínicas de Passo Fundo and at the Endoclin Diagnostic Center in the city of Passo Fundo, with secondary data collection between January 2020 and May 2022. The sample included patients from both sexes, regardless of age, who are being followed up in the services mentioned above, by signing the informed Free and Clarified Consent Term. Results: 63.2% of patients required optimization of their treatment based on the serum level assessment at week six. Conclusion: Proactive TDM performed at week six benefits patients in order to complete indications for treatment to avoid lack of drug response and complications from the disease. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Colitis, Ulcerative/therapy , Drug Monitoring , Health Profile , Retrospective Studies , Infliximab/therapeutic use
2.
Biomédica (Bogotá) ; 43(2): 282-295, jun. 2023. graf
Article in English | LILACS | ID: biblio-1533937

ABSTRACT

Introduction. Anti-inflammatories, immunosuppressants, and immunobiological are commonly used in the treatment of inflammatory bowel disease. However, some patients do not present an adequate response or lose effective response during the treatment. A recent study found a potential anti-inflammatory effect of the hydroalcoholic extract of Mimosa caesalpiniifolia on trinitrobenzene sulfonic acid-induced colitis in Wistar rats. Objective. To evaluate the effects of M. caesalpiniifolia pre-formulation on the intestinal barrier using dextran sulfate sodium-induced colitis model. Materials and methods. Leaf extracts were prepared in 70% ethanol and dried with a Buchi B19 Mini-spray dryer using 20% Aerosil® solution. Thirty-two male Wistar rats were randomized into four groups: basal control, untreated colitis, pre-formulation control (125 mg/kg/day), and colitis treated with pre-formulation (125 mg/kg/day). Clinical activity index was recorded daily and all rats were euthanized on the ninth day. Colon fragments were fixed and processed for histological and ultrastructural analyses. Stool samples were collected and processed for analysis of the short-chain fatty acid. Results. Treatment with the pre-formulation decreased the clinical activity (bloody diarrhea), inflammatory infiltrate, and the ulcers. Pre-formulation did not repair the epithelial barrier and there were no significant differences in the goblet cells index. There was a significant difference in butyrate levels in the rats treated with the pre-formulation. Conclusions. The pre-formulation minimized the clinical symptoms of colitis and intestinal inflammation, but did not minimize damage to the intestinal barrier.


Introducción. Los antiinflamatorios, inmunosupresores e inmunobiológicos se utilizan comúnmente para tratar la enfermedad intestinal inflamatoria. Sin embargo, algunos pacientes no presentan una respuesta adecuada o pierden respuesta efectiva durante el tratamiento. En un estudio reciente, se encontró un potencial efecto antiinflamatorio del extracto hidroalcohólico de Mimosa caesalpiniifolia en la colitis inducida por el ácido trinitrobenceno sulfónico utilizando ratas Wistar. Objetivo. Evaluar los efectos de la preformulación de M. caesalpiniifolia sobre la barrera intestinal durante la colitis inducida por sulfato de dextrano sódico. Materiales y métodos. Los extractos de hojas se prepararon con una solución que contenía 70 % de etanol y se secaron con un secador por aspersión Mini B19 de Buchi usando una solución con 20 % de Aerosil®. Treinta y dos ratas Wistar macho se aleatorizaron en cuatro grupos: control basal, colitis sin tratar, control con preformulación (125 mg/kg/ día) y colitis tratada con preformulación (125 mg/kg/día). El índice de actividad clínica se registró diariamente y todas las ratas se sacrificaron el noveno día. Los fragmentos de colon se fijaron y se procesaron para análisis histológicos y ultraestructurales. Se recolectaron muestras de heces y se procesaron para el análisis de ácidos grasos de cadena corta. Resultados. El tratamiento con la preformulación disminuyó la actividad clínica (diarrea sanguinolenta), el infiltrado inflamatorio y las úlceras. La preformulación no reparó la barrera epitelial y no hubo diferencias significativas en el índice de células caliciformes. Se obtuvo una diferencia significativa en los niveles de butirato en las ratas tratadas con la preformulación. Conclusiones: La preformulación minimizó los síntomas clínicos de colitis e inflamación intestinal pero no minimizó el daño a la barrera intestinal.


Subject(s)
Inflammatory Bowel Diseases , Mimosa , Colitis, Ulcerative , Herbal Medicine
3.
Journal of Central South University(Medical Sciences) ; (12): 182-190, 2023.
Article in English | WPRIM | ID: wpr-971384

ABSTRACT

OBJECTIVES@#Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly characterized by inflammation, ulceration and erosion of colonic mucosa and submucosa. Transient receptor potential vanilloid 1 (TRPV1) is an important mediator of visceral pain and inflammatory bowel disease. This study aims to investigate the protective effect of water soluble propolis (WSP) on UC colon inflammatory tissue and the role of TRPV1.@*METHODS@#Male SD rats were randomly divided into 6 groups (n=8): a normal control (NC) group, an ulcerative colitis model (UC) group, a low-WSP (L-WSP) group, a medium-WSP (M-WSP) group, a high-WSP (H-WSP) group, and a salazosulfapyridine (SASP) group. The rats in the NC group drank water freely, and the other groups drank 4% dextran sulfate sodium (DSS) solution freely for 7 d to replicate the ulcerative colitis model. Based on the successful replication of the UC, the L-WSP, M-WSP, and H-WSP groups were given 50, 100, and 200 mg/kg of water-soluble propolis by gavage for 7 d, and the SASP group was given 100 mg/kg of sulfasalazine by gavage for 7 d. The body weight of rats in each group was measured at the same time every day, the fecal traits and occult blood were observed to record the disease activity index (DAI). After intragastric administration, the animals were sacrificed after fasted 24 h. Serum and colonic tissue were collected, and the changes of MDA, IL-6 and TNF-α were detected. The pathological changes of colon tissues were observed by HE staining, and the expression of TRPV1 in colon tissues was observed by Western blotting, immunohistochemistry, and immunofluorescence.@*RESULTS@#The animals in each group that drank DSS freely showed symptoms such as weight loss, decreased appetite, depressed state, and hematochezia, indicating that the model was successfully established. Compared with the NC group, DAI scores of other groups were increased (all P<0.05). MDA, IL-6, TNF-α in serum and colon tissues of the UC group were increased compared with the NC group (all P<0.01), and they were decreased after WSP and SASP treatment (all P<0.01). The results of showed that the colon tissue structure was obviously broken and inflammatory infiltration in the UC group, while the H-WSP group and the SASP group significantly improved the colon tissue and alleviated inflammatory infiltration. The expression of TRPV1 in colon tissues in the UC group was increased compared with the NC group (all P<0.01), and it was decreased after WSP and SASP treatment.@*CONCLUSIONS@#WSP can alleviate the inflammatory state of ulcerative colitis induced by DSS, which might be related to the inhibition of inflammatory factors release, and down-regulation or desensitization of TRPV1.


Subject(s)
Animals , Male , Rats , Antineoplastic Agents/therapeutic use , Colitis, Ulcerative/chemically induced , Colon/pathology , Disease Models, Animal , Interleukin-6/pharmacology , Propolis/therapeutic use , Rats, Sprague-Dawley , Sulfasalazine/therapeutic use , TRPV Cation Channels , Tumor Necrosis Factor-alpha/pharmacology
4.
China Journal of Chinese Materia Medica ; (24): 2739-2748, 2023.
Article in Chinese | WPRIM | ID: wpr-981377

ABSTRACT

Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.


Subject(s)
Animals , Mice , Colitis, Ulcerative/drug therapy , Ursodeoxycholic Acid/adverse effects , Berberine/pharmacology , Interleukin-6 , Tumor Necrosis Factor-alpha/pharmacology , Drugs, Chinese Herbal/pharmacology , Colon , Nanoparticles , Dextran Sulfate/adverse effects , Disease Models, Animal , Colitis/chemically induced
5.
China Journal of Chinese Materia Medica ; (24): 2193-2202, 2023.
Article in Chinese | WPRIM | ID: wpr-981350

ABSTRACT

This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.


Subject(s)
Mice , Animals , Colitis, Ulcerative/drug therapy , Tryptophan , Arachidonic Acid/metabolism , Mice, Inbred C57BL , Colon , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Metabolomics , Purines/therapeutic use , Dextran Sulfate/metabolism , Disease Models, Animal , Colitis/chemically induced
6.
China Journal of Chinese Materia Medica ; (24): 2500-2511, 2023.
Article in Chinese | WPRIM | ID: wpr-981326

ABSTRACT

This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.


Subject(s)
Mice , Animals , Colitis, Ulcerative/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-17/pharmacology , TNF Receptor-Associated Factor 2/pharmacology , TNF Receptor-Associated Factor 5/metabolism , Mice, Inbred C57BL , Signal Transduction , Colon , p38 Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Dextran Sulfate/metabolism , Disease Models, Animal
7.
China Journal of Chinese Materia Medica ; (24): 2490-2499, 2023.
Article in Chinese | WPRIM | ID: wpr-981325

ABSTRACT

The effect of Tujia medicine Berberidis Radix on endogenous metabolites in the serum and feces of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) was analyzed by metabolomics technology to explore the metabolic pathway and underlying mechanism of Berberidis Radix in the intervention of UC. The UC model was induced in mice by DSS. Body weight, disease activity index(DAI), and colon length were recorded. The levels of tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10) in colon tissues were determined by ELISA. The levels of endogenous metabolites in the serum and feces were detected by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites. The potential metabolic pathways were analyzed by MetaboAnalyst 5.0. The results showed that Berberidis Radix could significantly improve the symptoms of UC mice and increase the level of the anti-inflammatory factor IL-10. A total of 56 and 43 differential metabolites were identified in the serum and feces, respectively, belonging to lipids, amino acids, fatty acids, etc. After the intervention by Berberidis Radix, the metabolic disorder gradually recovered. The involved metabolic pathways included biosynthesis of phenylalanine, tyrosine, and tryptophan, linoleic acid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. Berberidis Radix can alleviate the symptoms of mice with DSS-induced UC, and the mechanism may be closely related to the re-gulation of lipid metabolism, amino acid metabolism, and energy metabolism.


Subject(s)
Mice , Animals , Colitis, Ulcerative/drug therapy , Interleukin-10 , Metabolomics/methods , Chromatography, High Pressure Liquid
8.
Journal of Southern Medical University ; (12): 1204-1213, 2023.
Article in Chinese | WPRIM | ID: wpr-987037

ABSTRACT

OBJECTIVE@#To assess the value of Improved Mayo Endoscopic Score (IMES) for evaluation of treatment efficacy for active ulcerative colitis (UC).@*METHODS@#We retrospectively analyzed the clinical and endoscopic data of 103 patients diagnosed with active UC in Beijing Tsinghua Changgung Hospital from January, 2015 to December, 2020. The severity of endoscopic lesions was determined by Mayo Endoscopic Score and the Ulcerative Colitis Endoscopic Index of Severity (UCEIS), and the area of the endoscopic lesions was evaluated based on the Montreal classification system. The IMES was established by combining the MES with the Montreal classification.@*RESULTS@#Univariate analysis suggested that young patients (<40 years old), patients with extensive disease type (E3), patients with high endoscopic scores (MES=3, UCEIS>4, and IMES>4), and patients receiving advanced drug therapy (with systemic hormones, immunosuppressants, immunomodulators, and biological agents, etc.) had lower clinical and endoscopic remission rates. COX survival analysis showed that IMES≤4 was an independent risk factor for clinical and endoscopic remission. ROC curve indicated that the predictive value of IMSE≤4 for clinical and endoscopic remission (AUC=0.7793 and 0.7095, respectively; P<0.01) was better than that of Montreal (AUC=0.7357 and 0.6847, respectively; P<0.01), MES=2 (AUC=0.6671 and 0.5929, respectively; P<0.01), and UCEIS≤4 (AUC=0.6823 and 0.6459, respectively; P<0.01); IMES=5 had a better predictive value for patients with active UC undergoing colectomy tham E3 and MES=3.@*CONCLUSION@#IMES has good value in evaluating treatment efficacy for active UC.


Subject(s)
Humans , Adult , Colitis, Ulcerative , Retrospective Studies , Endoscopy , Immunosuppressive Agents , Treatment Outcome
9.
Chinese Journal of Internal Medicine ; (12): 532-538, 2023.
Article in Chinese | WPRIM | ID: wpr-985957

ABSTRACT

Objective: To explore disease characteristics of primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) and compare the differences between PSC with and without IBD. Methods: Study design was cross sectional. Forty-two patients with PSC who were admitted from January 2000 to January 2021 were included. We analyzed their demographic characteristics, clinical manifestations, concomitant diseases, auxiliary examination, and treatment. Results: The 42 patients were 11-74(43±18) years of age at diagnosis. The concordance rate of PSC with IBD was 33.3%, and the age at PSC with IBD diagnosis was 12-63(42±17) years. PSC patients with IBD had higher incidences of diarrhea and lower incidences of jaundice and fatigue than in those without IBD (all P<0.05). Alanine aminotransferase, total bilirubin, direct bilirubin, total bile acid and carbohydrate antigen 19-9 levels were higher in PSC patients without IBD than in those with IBD (all P<0.05). The positive rates for antinuclear antibodies and fecal occult blood were higher in PSC patients with IBD than in those without IBD (all P<0.05). Patients with PSC complicated with ulcerative colitis mainly experienced extensive colonic involvement. The proportion of 5-aminosalicylic acid and glucocorticoid application in PSC patients with IBD was significantly increased compared with that of PSC patients without IBD (P=0.025). Conclusions: The concordance rate of PSC with IBD is lower at Peking Union Medical College Hospital than in Western countries. Colonoscopy screening may benefit PSC patients with diarrhea or fecal occult blood-positive for early detection and diagnosis of IBD.


Subject(s)
Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Cholangitis, Sclerosing/therapy , Cross-Sectional Studies , Inflammatory Bowel Diseases/diagnosis , Colitis, Ulcerative/complications , Diarrhea
10.
Chinese journal of integrative medicine ; (12): 847-856, 2023.
Article in English | WPRIM | ID: wpr-1010267

ABSTRACT

The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.


Subject(s)
Rats , Animals , Colitis, Ulcerative/metabolism , Moxibustion , Rats, Sprague-Dawley , Acupuncture Therapy , Acupuncture
11.
Chinese Journal of Cellular and Molecular Immunology ; (12): 1057-1062, 2023.
Article in Chinese | WPRIM | ID: wpr-1009454

ABSTRACT

Objective To investigate the immunomodulatory effect of mare's milk on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Methods Kunming mice were randomly divided into a blank group(0.8 mL/day saline by gavage) and a DSS modeling group. After modeling, the DSS modeling group was further divided into a control group (0.8 mL/day saline), a salazosulfapyridine (SASP) treated group(430 mg/(kg.d)) and a mare's milk group(0.8 mL/day), with 16 mice in each group. After 10 days of gavage administration, HE staining was performed to observe colonic inflammation, and the disease activity index (DAI) and colonic mucosal damage index (CMDI) were scored. ELISA was used to determine the levels of interleukin 1β (IL-1β), IL-6, and IL-10 in mouse colonic tissues, and flow cytometry was used to detect the percentages of CD4+ and CD8+ T lymphocytes in peripheral blood. Results Compared to the blank group, all indexes in mice of the control group indicated that DSS successfully induced UC. Compared to the control group, colon shortening in UC mice was attenuated in the mare's milk group; inflammation and ulcer formation in colonic tissues were inhibited; DAI and CMDI scores were lowere; IL-1β and IL-6 levels in mouse colonic tissues were significantly reduced; IL-10 levels were increased and the CD4+/CD8+ T cell ratio was reduced. Conclusion Mare's milk can inhibit the inflammation of DSS-induced UC mice through immune regulation.


Subject(s)
Mice , Animals , Female , Horses , Colitis, Ulcerative/drug therapy , Interleukin-10 , Dextran Sulfate , Interleukin-6 , Milk , Signal Transduction , Disease Models, Animal , Inflammation , Colon
12.
Chinese Journal of Cellular and Molecular Immunology ; (12): 787-792, 2023.
Article in Chinese | WPRIM | ID: wpr-1009431

ABSTRACT

Objective To investigate the anti-inflammatory effect of artemisinin (ART) encapsulated by β-lactoglobulin (BLG) nanoparticles on Winnie spontaneous ulcerative colitis mouse model. Methods BLG-ART nanoparticles were prepared and their effects on the solubility and stability of ART were evaluated. A mouse model of colitis induced by dextran sulfate sodium (DSS) was used to compare the therapeutic effects of artemisinin (ART) administered by direct gavage and artemisinin encapsulated by β-lactoglobulin nanoparticles (BLG-ART) administered by gavage. Winnie mice were randomly divided into blank group, ART group and BLG-ART group. Mice in the ART group were given 50 mg/kg ART by gavage; mice in the BLG-ART group were given the same dose of BLG-ART nanoparticle PBS dispersion by gavage; mice in the blank group were given the same amount of PBS by gavage, for 16 days. The body mass and disease activity index (DAI) of each group of mice were measured. HE staining was used to observe the pathological changes of mouse intestinal tissue, and real-time quantitative PCR was used to detect the mRNA expression levels of TNF-α, interleukin 1β (IL-1β), IL-10 and IL-17 in mouse colon tissue. Results Compared with the ART group and the blank group, the body mass of the BLG-ART group increased and the DAI decreased after 16-day treatment; the crypt structure of the proximal and distal colon regions of the mice recovered; goblet cell loss decreased; neutrophil infiltration decreased and the mRNA expression levels of pro-inflammatory and anti-inflammatory cytokines were significantly down-regulated. Conclusion ART-BLG can alleviate intestinal inflammation in spontaneous ulcerative colitis mice.


Subject(s)
Animals , Mice , Colitis, Ulcerative/drug therapy , Nanospheres , Inflammation , Administration, Oral , Artemisinins , Disease Models, Animal , RNA, Messenger
13.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 263-278, 2023.
Article in English | WPRIM | ID: wpr-982698

ABSTRACT

Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.


Subject(s)
Animals , Mice , Colitis, Ulcerative/drug therapy , Platycodon , Colon/pathology , Cytokines , Anti-Inflammatory Agents/therapeutic use , Polysaccharides/therapeutic use , Dextran Sulfate , Disease Models, Animal , Colitis/chemically induced , Mice, Inbred C57BL
14.
Chinese journal of integrative medicine ; (12): 750-760, 2023.
Article in English | WPRIM | ID: wpr-982305

ABSTRACT

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.


Subject(s)
Humans , Inflammasomes/metabolism , Colitis, Ulcerative/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Medicine, Chinese Traditional , Quality of Life , Colitis
15.
Chinese journal of integrative medicine ; (12): 424-433, 2023.
Article in English | WPRIM | ID: wpr-982275

ABSTRACT

OBJECTIVE@#To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model.@*METHODS@#The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3-, CCR6+ Nkp46- (Lti) ILC3-, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively.@*RESULTS@#The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function.@*CONCLUSION@#CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.


Subject(s)
Male , Animals , Mice , Colitis, Ulcerative/pathology , Immunity, Innate , Butyric Acid/therapeutic use , Sophora , Gastrointestinal Microbiome , Lymphocytes , Colon , Colitis/pathology , Disease Models, Animal , Mice, Inbred C57BL
16.
Chinese Journal of Contemporary Pediatrics ; (12): 745-750, 2023.
Article in Chinese | WPRIM | ID: wpr-982022

ABSTRACT

OBJECTIVES@#To investigate the nutritional status and its influencing factors in children with newly diagnosed inflammatory bowel disease (IBD).@*METHODS@#A retrospective analysis was conducted on the clinical data of children who were diagnosed with IBD for the first time in Hunan Children's Hospital from January 2015 to December 2021. Diagnostic delay was defined as the time from the symptom onset to IBD diagnosis being in the upper quartile (P76-P100) of all IBD children in the study. Multivariate logistic regression analysis was used to explore the risk factors for emaciation and growth retardation.@*RESULTS@#A total of 125 children with newly diagnosed IBD were included, with Crohn's disease being the main type (91.2%). The rates of emaciation and growth retardation were 42.4% (53 cases) and 7.2% (9 cases), respectively, and the rate of anemia was 77.6% (97 cases). Diagnostic delay was noted in 31 children (24.8%), with the time from the symptom onset to IBD diagnosis of 366 to 7 211 days. Multivariate logistic regression analysis showed that diagnostic delay was a risk factor for emaciation and growth retardation (OR=2.73 and OR=4.42, respectively; P<0.05) and that age was positively associated with emaciation (OR=1.30, P<0.05).@*CONCLUSIONS@#Children with newly diagnosed IBD have poor nutritional status, and the rates of anemia, emaciation, and growth retardation are high. Diagnostic delay is associated with malnutrition in children with IBD.


Subject(s)
Humans , Child , Colitis, Ulcerative/diagnosis , Nutritional Status , Retrospective Studies , Emaciation/complications , Delayed Diagnosis , Inflammatory Bowel Diseases/complications , Malnutrition/complications , Growth Disorders/complications
17.
China Journal of Chinese Materia Medica ; (24): 1300-1309, 2023.
Article in Chinese | WPRIM | ID: wpr-970601

ABSTRACT

Ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was employed in this study to observe the effect of Huaihua Powder on the serum metabolites of mice with ulcerative colitis and reveal the mechanism of Huaihua Powder in the treatment of ulcerative colitis. The mouse model of ulcerative colitis was established by dextran sodium sulfate salt(DSS). The therapeutic effect of Huaihua Powder on ulcerative colitis was preliminarily evaluated based on the disease activity index(DAI), colon appearance, colon tissue morphology, and the content of inflammatory cytokines such as tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β). UHPLC-Q-TOF-MS was employed to profile the endogenous metabolites of serum samples in blank control group, model group, and low-, medium-, and high-dose Huaihua Powder groups. Multivariate analyses such as principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed for pattern recognition. Potential biomarkers were screened by Mass Profiler Professional(MPP) B.14.00 with the thresholds of fold change≥2 and P<0.05. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that Huaihua Powder significantly improved the general state and colon tissue morphology of mice with ulcerative colitis, reduced DAI, and lowered the levels of TNF-α, IL-6, and IL-1β in serum. A total of 38 potential biomarkers were predicted to be related to the regulatory effect of Huaihua Powder, which were mainly involved in glycerophospholipid metabolism, glycine, serine, and threonine metabolism, mutual transformation of glucuronic acid, and glutathione metabolism. This study employed metabolomics to analyze the mechanism of Huaihua Powder in the treatment of ulcerative colitis, laying a foundation for the further research.


Subject(s)
Mice , Animals , Colitis, Ulcerative/metabolism , Powders , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Metabolomics , Colon , Disease Models, Animal , Biomarkers , Dextran Sulfate/therapeutic use
18.
China Journal of Chinese Materia Medica ; (24): 226-233, 2023.
Article in Chinese | WPRIM | ID: wpr-970518

ABSTRACT

The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.


Subject(s)
Animals , Mice , Caspase 1/genetics , Colitis, Ulcerative/genetics , Colon , Dextran Sulfate/adverse effects , Disease Models, Animal , Interleukin-10/genetics , Interleukin-6/genetics , Mesalamine/pharmacology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Scutellaria baicalensis/chemistry , Tumor Necrosis Factor-alpha/metabolism , Drugs, Chinese Herbal/pharmacology
20.
J. coloproctol. (Rio J., Impr.) ; 43(1): 49-51, Jan.-Mar. 2023. ilus
Article in English | LILACS | ID: biblio-1430689

ABSTRACT

Silent or subclinical inflammatory bowel diseases (IBD) is a relatively new term that has been used to describe individuals with asymptomatic active mucosal bowel inflammation, often unaware of their disease due to either the lack of or mild inflammatory symptoms. These patients are at risk for gastrointestinal and extra-gastrointestinal manifestations, with more advanced complications. In this article we intend to describe a case report of a patient with chronic history of many organ involvements including ocular, skin, and musculoskeletal, which was later placed under the umbrella of silent ulcerative colitis. (AU)


Subject(s)
Humans , Female , Adult , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Arthritis/etiology , Uveitis/etiology , Erythema/etiology
SELECTION OF CITATIONS
SEARCH DETAIL