ABSTRACT
OBJECTIVE@#To detect the relationship between CTGF in the bone marrow of MM patients and osteolytic lesion of myeloma, moreover, to investigate the clinical significance of CTGF in MM.@*METHODS@#Fifity-four MM patients treated in our hospital from March 2019 to April 2020 were enrolled, and 28 healthy volunteers were selected as the control group. The plasma in bone marrow of the patients was collected, and the ELISA was used to detect the level of CTGF in bone marrow plasma and the relationship between its and clinical characteristics were statistically analyzed.@*RESULTS@#The CTGF level of MM patients was significantly higher than those in the healthy control group (P<0.001); the CTGF level in male patients was higher than that in female patients (P=0.007); the CTGF level in MM patients with osteolytic lesions was significantly higher than patients without osteolytic lesions and controls (P=0.007, P=0.001). The CTGF level in MM patients was positively correlated with the number of bone lesions (P<0.001, r=0.52). CTGF levels in patients with ≥3 bone lesions were significantly higher than those with <3 bone lesions and without bone lesions (P=0.014, P=0.002). ROC curve result showed that CTGF expression level shows a significant diagnostic value for MM bone disease (P<0.001).@*CONCLUSION@#The abnormally high expression of CTGF level in MM patients is related to the degree of myelomas osteolytic lesions and can reflect the progress of MM.
Subject(s)
Female , Humans , Male , Bone Marrow , Connective Tissue Growth Factor , Multiple Myeloma , Osteolysis , Patients , ROC CurveABSTRACT
The etiology of polycystic ovary syndrome (PCOS) is complex and the pathogenesis is not fully understood. Some studies have shown that dysregulation of ovarian granulosa cells may be related to abnormal follicles and excessive androgen in women with PCOS. Our team has also confirmed the high expression status of H19 in PCOS patients in the early stage. However, the relationship between H19 and miR-19b in the development of PCOS is still unknown. Therefore, we used bioinformatics to predict the binding sites of human H19 and miR-19b, and of miR-19b and CTGF genes. After the silencing and overexpression of H19, real-time polymerase chain reaction (PCR) was used to detect the expressions of H19, miR-19b, and CTGF. Western blotting was used to detect CTGF protein. Proliferation of KGN cells after H19 silencing was detected by CCK8. Flow cytometry was used to detect the apoptosis of KGN cells after H19 silencing. After the overexpression of H19, it was found that the expression of miR-19b gene decreased and the expression of CTGF increased, whereas silencing of H19 did the opposite. In addition, H19 could promote cell proliferation and decrease cell apoptosis. Finally, luciferase reporter assays showed that the 3′-end sequences of lncRNA H19 and CTGF contained the binding site of miR-19b. In conclusion, our study indicated that lncRNA H19 acted as a ceRNA to bind to miR-19b via a "sponge" to regulate the effect of CTGF on KGN cells, which may play a vital role in PCOS.
Subject(s)
Humans , Female , Polycystic Ovary Syndrome/genetics , Apoptosis , MicroRNAs/genetics , Cell Proliferation , Connective Tissue Growth Factor , RNA, Long Noncoding/geneticsABSTRACT
Objective To investigate the effect of microRNA-133b(miR-133b)on cardiac fibrosis and its mechanism.Methods Human cardiac fibroblasts(CFs)were harvested.The proliferation of CFs was detected by CCK8 during the overexpression and knock-down of miR-133b.The expressions of connective tissue growth factor(CTGF),α-smooth muscle actin(α-SMA),collagen Ⅰ,and collagen Ⅲ were detected with qRT-PCR and Western blot analysis after miR-133b overexpression or downexpression.Target genes of miR-133b were predicted by bioinformatics software.Dual-luciferase activity assay were used to verify a target gene of miR-133b.Results qRT-PCR showed that the expression level of miR-133b in the miR-133b mimic group was significantly higher than that in the negative control group(=26.219,=0.000).The expression level of miR-133b in the miR-133b inhibitor group was significantly lower than that in the negative control group(=6.738,=0.003).After 21,45,69,93,and 117 hours of transfection,the proliferation ability of CFs significantly decreased in the miR-133b mimic group but significantly increased in the miR-133b group(all <0.05,compared with the negative control group).After overexpression of miR-133b,the mRNA and protein levels of CTGF(=9.213,=0.001;=8.195,=0.001),α-SMA(=6.511, =0.003;=4.434,=0.011),collagenⅠ(=3.172,=0.034;=4.053,=0.015)and collagen Ⅲ(=6.404,=0.003;=5.319,=0.006)were significantly down-regulated.After the expression of miR-133b was knocked down,the mRNA and protein levels of CTGF(=9.439,=0.001;=14.100,=0.000),α-SMA(=4.519,=0.011;=4.377,=0.012),collagen Ⅰ(=5.966,=0.004;=5.514,=0.005)and collagen Ⅲ(=4.622,=0.010;=4.996,=0.008)were significantly increased.The relative luciferase activity of the cells co-transfected with miR-133b mimic and WT 3'UTR expression vector was significantly lower than that of the cells co-transfected with mimic control and WT 3'UTR expression vectors(=5.654,=0.005);however,there was no significant difference in relative luciferase activity between cells co-transfected with miR-133b mimic and MUT 3'UTR expression vectors and cells co-transfected with mimic control and MUT 3'UTR expression vectors(=0.380,=0.724).Conclusion miR-133b may affect the activation and proliferation of CFs by targeting CTGF and thus improve cardiac fibrosis.
Subject(s)
Humans , Actins , Metabolism , Cell Proliferation , Cells, Cultured , Collagen , Metabolism , Connective Tissue Growth Factor , Metabolism , Fibroblasts , Cell Biology , Fibrosis , MicroRNAs , Genetics , Myocardium , PathologyABSTRACT
PURPOSE: Previous studies have confirmed that microRNAs play important roles in the pathogenesis of acute aortic dissection (AAD). Here, we aimed to explore the role of miR-145 and its regulatory mechanism in the pathogenesis of AAD. MATERIALS AND METHODS: AAD tissue samples were harvested from patients with aortic dissection and normal donors. Rat aortic vascular smooth muscle cells (VSMCs) were transfected with miR-145 mimic/inhibitor or negative control mimic/inhibitor. Gene and protein expression was measured in human aortic dissection tissue specimens and VSMCs by qRT-PCR and Western blot. Luciferase reporter assay was applied to verify whether connective tissue growth factor (CTGF) was a direct target of miR-145 in VSMCs. Methyl thiazolyl tetrazolium assay was used to detect VSMC viability. RESULTS: miR-145 expression was downregulated in aortic dissection tissues and was associated with the survival of patients with AAD. Overexpression of miR-145 promoted VSMC proliferation and inhibited cell apoptosis. Moreover, CTGF, which was increased in aortic dissection tissues, was decreased by miR-145 mimic and increased by miR-145 inhibitor. Furthermore, CTGF was confirmed as a target of miR-145 and could reverse the promotion effect of miR-145 on the progression of AAD. CONCLUSION: miR-145 suppressed the progression of AAD by targeting CTGF, suggesting that a miR-145/CTGF axis may provide a potential therapeutic target for AAD.
Subject(s)
Animals , Humans , Rats , Apoptosis , Blotting, Western , Connective Tissue Growth Factor , Luciferases , MicroRNAs , Muscle, Smooth, Vascular , Tissue DonorsABSTRACT
OBJECTIVE@#To study the preventive and therapeutic effects of safflower water extract on systemic scleroderma (SSc) in mice and its mechanism.@*METHODS@#Sixty BALB/C mice were randomly divided into the control group, model group, prednisone group and safflower low, middle, high dose groups, 10 mice in each group.The control group was injected with normal saline, and the other five groups were subcutaneously injected with bleomycin hydrochloride with 100 μl at the concentration of 200 μg /ml on the back, once a day for 28 days to establish the SSc models.At the same time, the control group and model group were treated with normal saline (10 ml/kg), the prednisone group was treated with prednisone 4.5 mg/kg (10 ml/kg), and the low, middle, and high dose safflower groups were treated with safflower at the doses of 1.5, 3, 6 g/kg (10 ml/kg), and all groups were treated for 28 days.After 28 days, all mice were decapitated. The blood samples and back skin of the BLM injection part were collected.After that, all the tissue slices were taken to measure the dermal thickness, and the content of hydroxyproline (HYP) in the skin tissues was detected by hydrolysis method.The contents of tissue growth factor (CTGF) and transforming growth factor-β (TGF-β ) in the skin tissues and the levels of interleukin-6 (IL-6) and interleukin-17 (IL-17) in serum were determined by ELISA.@*RESULTS@#Compared with the control group, the dermal thickness of the model group was increased(P<0.05), the contents of CTGF, TGF-β and HYP in the skin tissues and the levels of IL-6 and IL-17 in the serum of the model group were increased(P<0.05); compared with the model group, the dermal thickness in the prednisone group and safflower groups was decreased (P<0.05), the levels of CTGF, TGF-β and HYP in the skin tissues and the serum levels of IL-6 and IL-17 in the prednisone group and safflower groups were decreased (P<0.05).@*CONCLUSION@#Safflower water extract can improve skin condition (or dermal thickness) in SSc mice, and its mechanism may be related to reducing immune inflammatory response.
Subject(s)
Animals , Mice , Bleomycin , Carthamus tinctorius , Chemistry , Connective Tissue Growth Factor , Metabolism , Disease Models, Animal , Hydroxyproline , Interleukin-17 , Metabolism , Interleukin-6 , Metabolism , Mice, Inbred BALB C , Plant Extracts , Pharmacology , Random Allocation , Scleroderma, Systemic , Drug Therapy , Skin , Pathology , Transforming Growth Factor beta1 , MetabolismABSTRACT
Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.
Subject(s)
Cell Cycle , Cell Cycle Checkpoints , Cell Proliferation , Connective Tissue Growth Factor , Connective Tissue , Cyclin D1 , Extracellular Matrix , Fibrosis , Genes, Regulator , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscle, Smooth, Vascular , Phosphotransferases , RNA, Messenger , Vascular System InjuriesABSTRACT
BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and MPGΔNLS) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. RESULTS: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p < 0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF siRNA/MPGΔNLS complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of 128 ± 22 nm (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean 90 ± 20 nm, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.
Subject(s)
Biopsy , Cell-Penetrating Peptides , Cicatrix , Collagen , Connective Tissue Growth Factor , Connective Tissue , Down-Regulation , Ear , Microscopy, Electron, Transmission , Preventive Medicine , Regeneration , RNA, Small Interfering , Wounds and InjuriesABSTRACT
Abstract Purpose: To investigate the mechanisms by which PD98059 and LY294002 interfere with the abnormal deposition of extracellular matrix regulated by connective tissue growth factor (CTGF) of rat pulmonary artery smooth muscle cells (PASMCs). Methods: Rat PASMCs were cultured and separated into a control group. Real-time fluorescence quantitative PCR was performed to detect the expression of collagen III and fibronectin mRNA. Immunohistochemistry and western blot analyses were performed to detect the expression of collagen III protein. Results: The expression of collagen III and fibronectin mRNA was greater in PASMCs stimulated with CTGF for 48 h, than in the control group. After 72h of stimulation, the expression of collagen III protein in the PASMCs was greater than in the control. The equivalent gene and protein expression of the CPL group were much more significant. Conclusions: CTGF can stimulate the gene expression of collagen III and fibronectin in PASMCs, which may be one of the factors that promote pulmonary vascular remodeling (PVR) under the conditions of pulmonary arterial hypertension (PAH). PD98059 and LY294002 can inhibit the ERK1/2 and PI3K/PKB signaling pathways, respectively, thus interfering with the biological effects of CTGF. This may be a new way to reduce PAH-PVR.
Subject(s)
Animals , Male , Flavonoids/pharmacology , Chromones/pharmacology , Fibronectins/metabolism , MAP Kinase Signaling System/drug effects , Collagen Type III/metabolism , Connective Tissue Growth Factor/pharmacology , Pulmonary Artery/cytology , Gene Expression/drug effects , Cells, Cultured , Gene Expression Regulation , Fibronectins/genetics , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Models, Animal , Collagen Type III/genetics , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Connective Tissue Growth Factor/metabolismABSTRACT
Dermal fibroblasts play essential roles in wound healing and their dysfunction has been shown to be associated with impaired wound healing in diabetes. In the present study, we aimed at investigating whether Yes-associated protein (YAP), a mediator of mechanotransduction in dermal fibroblasts, is associated with impaired wound healing in diabetic mice. Compared with that in the control, the rate of wound contraction was decreased twofold in db/db type 2 diabetic mice (db/db mice). To mimic diabetic pathological condition, dermal fibroblasts were cultured under high glucose conditions (25.5 mM glucose). Further, dermal fibroblast-mediated contraction of wound was evaluated by in vitro collagen gel contraction assay. Dermal fibroblasts cultured under hyperglycemic condition showed impaired gel contraction and mitochondrial dysfunction, compared to the cells cultured under normoglycemic conditions (5.5 mM glucose). Importantly, compared with the normal dermal fibroblasts, diabetic db/db dermal fibroblasts expressed lower levels of growth factors and cytokines that enhance wound healing, such as insulin-like growth factor-1, stromal cell-derived factor-1, connective tissue growth factor, and transforming growth factor-β (TGF-β). The quantity of YAP mRNA was also lower in diabetic db/db dermal fibroblasts, compared with that in the control fibroblasts. These results indicate that impaired wound healing in diabetics is associated with the dysfunction of dermal fibroblasts, including downregulation of YAP, which plays essential roles in extracellular matrix remodeling and TGF-β-mediated wound healing.
Subject(s)
Animals , Mice , Collagen , Connective Tissue Growth Factor , Cytokines , Down-Regulation , Extracellular Matrix , Fibroblasts , Glucose , In Vitro Techniques , Intercellular Signaling Peptides and Proteins , RNA, Messenger , Wound Healing , Wounds and InjuriesABSTRACT
To evaluate whether Palmitoyl-pentapeptide (Pal-KTTKS), a lipidated subfragment of type 1 pro-collagen (residues 212–216), plays a role in fibroblast contractility, the effect of Pal-KTTKS on the expression of pro-fibrotic mediators in hypertropic scarring were investigated in relation with trans-differentiation of fibroblast to myofibroblast, an icon of scar formation. α-SMA was visualized by immunofluorescence confocal microscopy with a Cy-3-conjugated monoclonal antibody. The extent of α-SMA-positive fibroblasts was determined in collagen lattices and in cell culture study. Pal-KTTKS (0–0.5 µM) induced CTGF and α-SMA protein levels were determined by western blot analysis and fibroblast contractility was assessed in three-dimensional collagen lattice contraction assay. In confocal analysis, fibroblasts were observed as elongated and spindle shapes while myofibroblast observed as squamous, enlarged cells with pronounced stress fibers. Without Pal-KTTKS treatment, three quarters of the fibroblasts differentiates into the myofibroblast; α-SMA-positive stress fibers per field decreased twofold with 0.1 µM Pal-KTTKS treatment (75 ± 7.1 vs 38.6 ± 16.1%, n = 3, p<0.05). The inhibitory effect was not significant in 0.5 µM Pal-KTTKS treatment. Stress fiber level and collagen contractility correlates with α-SMA expression level. In conclusion, Pal-KTTKS (0.1 µM) reduces α-SMA expression and trans-differentiation of fibroblasts to myofibroblast. The degree of reduction is dose-dependent. An abundance of myofibroblast and fibrotic scarring is correlated with excessive levels of α-SMA and collagen contractility. Delicate balance between the wound healing properties and pro-fibrotic abilities of pentapeptide KTTKS should be considered for selecting therapeutic dose for scar prevention.
Subject(s)
Actins , Blotting, Western , Cell Culture Techniques , Cicatrix , Collagen , Connective Tissue Growth Factor , Connective Tissue , Fibroblasts , Fluorescent Antibody Technique , Microscopy, Confocal , Myofibroblasts , Stress Fibers , Wound Healing , Wounds and InjuriesABSTRACT
Healing process in scarring inevitably produces a considerable amount of non-organized dense collagen-rich matrix called scar thus impairing the native structure of skin. Connective tissue growth factor (CTGF) overexpression within healing tissues is known to play an imperative role in collagen production stimulated by transforming growth factor-beta in cutaneous wound healing. Undoubtedly, the knockdown of CTGF expression through siRNA-mediated gene silencing could simply impede the scarring process. However, the less stability and low transfection of siRNAs themselves urge a safe carrier to protect and transfect them into cells at a high rate avoiding toxicities. Here, we developed a degradable poly(sorbitol-co-PEI) (PSPEI), prepared by polymerization of sorbitol diacrylate with low molecular weight polyethylenimine, which has high transfection efficiency but low cytotoxicity, and utilized it in siCTGF delivery to silence the expression of CTGF in an animal model of cutaneous wound healing. Unlike contracted scar in normal healing, there was no or less contraction in the healed skin of mice treated with siCTGF using PSPEI. Histologically, the healed tissues also had distinct papillary structures and dense irregular connective tissues that were lacking in the control scar tissues. This study exemplifies a successful treatment of cutaneous wound healing using a polymer system coupled with RNA interference. Hence, the approach holds a great promise for developing new treatments with novel targets in regenerative medicines.
Subject(s)
Animals , Mice , Cicatrix , Collagen , Connective Tissue , Connective Tissue Growth Factor , Gene Silencing , Models, Animal , Molecular Weight , Polyethyleneimine , Polymerization , Polymers , Regenerative Medicine , RNA Interference , RNA, Small Interfering , Skin , Sorbitol , Transfection , Wound Healing , Wounds and InjuriesABSTRACT
Capsular fibrosis and contracture occurs in most breast reconstruction patients who undergo radiotherapy, and there is no definitive solution for its prevention. Simvastatin was effective at reducing fibrosis in various models. Peri-implant capsular formation is the result of tissue fibrosis development in irradiated breasts. The purpose of this study was to examine the effect of simvastatin on peri-implant fibrosis in rats. Eighteen male Sprague-Dawley rats were allocated to an experimental group (9 rats, 18 implants) or a control group (9 rats, 18 implants). Two hemispherical silicone implants, 10 mm in diameter, were inserted in subpanniculus pockets in each rat. The next day, 10-Gy of radiation from a clinical accelerator was targeted at the implants. Simvastatin (15 mg/kg/day) was administered by oral gavage in the experimental group, while animals in the control group received water. At 12 weeks post-implantation, peri-implant capsules were harvested and examined histologically and by real-time polymerase chain reaction. The average capsular thickness was 371.2 μm in the simvastatin group and 491.2 μm in the control group. The fibrosis ratio was significantly different, with 32.33% in the simvastatin group and 58.44% in the control group (P < 0.001). Connective tissue growth factor (CTGF) and transforming growth factor (TGF)-β1 gene expression decreased significantly in the simvastatin group compared to the control group (P < 0.001). This study shows that simvastatin reduces radiation-induced capsular fibrosis around silicone implants in rats. This finding offers an alternative therapeutic strategy for reducing capsular fibrosis and contracture after implant-based breast reconstruction.
Subject(s)
Animals , Male , Rats , Administration, Oral , Breast/drug effects , Breast Implants , Connective Tissue Growth Factor/genetics , Fibrosis , Gamma Rays , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Silicone Gels/chemistry , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolismABSTRACT
Capsular fibrosis and contracture occurs in most breast reconstruction patients who undergo radiotherapy, and there is no definitive solution for its prevention. Simvastatin was effective at reducing fibrosis in various models. Peri-implant capsular formation is the result of tissue fibrosis development in irradiated breasts. The purpose of this study was to examine the effect of simvastatin on peri-implant fibrosis in rats. Eighteen male Sprague-Dawley rats were allocated to an experimental group (9 rats, 18 implants) or a control group (9 rats, 18 implants). Two hemispherical silicone implants, 10 mm in diameter, were inserted in subpanniculus pockets in each rat. The next day, 10-Gy of radiation from a clinical accelerator was targeted at the implants. Simvastatin (15 mg/kg/day) was administered by oral gavage in the experimental group, while animals in the control group received water. At 12 weeks post-implantation, peri-implant capsules were harvested and examined histologically and by real-time polymerase chain reaction. The average capsular thickness was 371.2 μm in the simvastatin group and 491.2 μm in the control group. The fibrosis ratio was significantly different, with 32.33% in the simvastatin group and 58.44% in the control group (P < 0.001). Connective tissue growth factor (CTGF) and transforming growth factor (TGF)-β1 gene expression decreased significantly in the simvastatin group compared to the control group (P < 0.001). This study shows that simvastatin reduces radiation-induced capsular fibrosis around silicone implants in rats. This finding offers an alternative therapeutic strategy for reducing capsular fibrosis and contracture after implant-based breast reconstruction.
Subject(s)
Animals , Male , Rats , Administration, Oral , Breast/drug effects , Breast Implants , Connective Tissue Growth Factor/genetics , Fibrosis , Gamma Rays , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Silicone Gels/chemistry , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolismABSTRACT
To investigate the role of glucose transporter 1 (GLUT1) and sodium-glucose cotransporter 1 (SGLT1) in high glucose dialysate-induced peritoneal fibrosis.Thirty six male SD rats were randomly divided into 6 groups (6 in each):normal control group, sham operation group, peritoneal dialysis group (PD group), PD+phloretin group (PD+T group), PD+phlorizin group (PD+Z group), PD+phloretin+phlorizin group (PD+T+Z group). Rat model of uraemia was established using 5/6 nephrotomy, and 2.5% dextrose peritoneal dialysis solution was used in peritoneal dialysis. Peritoneal equilibration test was performed 24 h after dialysis to evaluate transport function of peritoneum in rats; HE staining was used to observe the morphology of peritoneal tissue; and immunohistochemistry was used to detect the expression of GLUT1, SGLT1, TGF-β1 and connective tissue growth factor (CTGF) in peritoneum. Human peritoneal microvascular endothelial cells (HPECs) were divided into 5 groups:normal control group, peritoneal dialysis group (PD group), PD+phloretin group (PD+T group), PD+phlorezin group (PD+Z group), and PD+phloretin+phlorezin group (PD+T+Z group). Real time PCR and Western blotting were used to detect mRNA and protein expressions of GLUT1, SGLT1, TGF-β1, CTGF in peritoneal membrane and HPECs., compared with sham operation group, rats in PD group had thickened peritoneum, higher ultrafiltration volume, and the mRNA and protein expressions of GLUT1, SGLT1, CTGF, TGF-β1 were significantly increased (all<0.05); compared with PD group, thickened peritoneum was attenuated, and the mRNA and protein expressions of GLUT1, SGLT1, CTGF, TGF-β1 were significantly decreased in PD+T, PD+Z and PD+T+Z groups (all<0.05). Pearson's correlation analysis showed that the expressions of GLUT1, SGLT1 in peritoneum were positively correlated with the expressions of TGF-β1 and CTGF (all<0.05)., the mRNA and protein expressions of GLUT1, SGLT1, TGF-β1, CTGF were significantly increased in HPECs of peritoneal dialysis group (all<0.05), and those in PD+T, PD+Z, and PD+T+Z groups were decreased (all<0.05). Pearson's correlation analysis showed that the expressions of GLUT1, SGLT1 in HPECs were positively correlated with the expressions of TGF-β1 and CTGF (all<0.05).High glucose peritoneal dialysis fluid may promote peritoneal fibrosis by upregulating the expressions of GLUT1 and SGLT1.
Subject(s)
Animals , Humans , Male , Rats , Cells, Cultured , Connective Tissue Growth Factor , Dialysis Solutions , Chemistry , Pharmacology , Gene Expression Regulation , Glucose , Pharmacology , Glucose Transporter Type 1 , Physiology , Hemodiafiltration , Methods , Peritoneal Dialysis , Methods , Peritoneal Fibrosis , Genetics , Peritoneum , Chemistry , Pathology , Phloretin , Phlorhizin , RNA, Messenger , Rats, Sprague-Dawley , Sodium-Glucose Transporter 1 , Physiology , Transforming Growth Factor beta1 , UremiaABSTRACT
CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.
Subject(s)
Animals , Rats , Blood Pressure , Body Weight , Cardiomegaly , Chemistry , Cholesterol , Connective Tissue Growth Factor , Desoxycorticosterone , Desoxycorticosterone Acetate , Drinking Water , Eosine Yellowish-(YS) , Fibronectins , Fibrosis , Glucose , Heart , Hematoxylin , Histone Deacetylase Inhibitors , Histone Deacetylases , Histones , Hypertension , Methods , Potassium , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Relaxation , Sodium , TriglyceridesABSTRACT
OBJECTIVE@#To study the safety and efficiency of the transfection of antisense oligonucletide into kidney mediated by lipid microbubbles, and to evaluate its potential clinical application.@*METHODS@#The potential and conditions regarding the transfection self-made lipid microbubbles (CY5)-labeled-oligonucleotide (ODN) or CY5-labeled-ODN connective tissue growth factor (CTGF) into the rat kidney were evaluated. Th e safety was evaluated by HE staining, liver and renal function tests. The transfection efficiency was evaluated by fluorescence microscopy. Th e expression of CTGF was detected by RT-PCR and Western blot.@*RESULTS@#Self-made lipid microbubble and/or ultrasound significantly enhanced the efficiency of gene transfer and expression in the kidney. Especially, 85%-90% of total glomerular could be transfected. CY5-labeled-ODN expression could be observed in glomerular, tubular and interstitial area. Th ere was no significant change in blood tests aft er gene transfer. Levels of LDH in 7 days were decreased compared with that at the fi rst day aft er the transfection (P<0.05). CTGF expression was successfully suppressed by transfection of CTGF-antisense-ODN into kidney.@*CONCLUSION@#The ultrasound-mediated gene transfer by self-made lipid microbubble could enhance the efficiency of ODN and expression in the rat kidney. Th is self-made lipid microbubbles supplement may be use for transfection of target genes.
Subject(s)
Animals , Rats , Connective Tissue Growth Factor , Genetics , Metabolism , Kidney , Metabolism , Lipids , Chemistry , Microbubbles , Oligonucleotides, Antisense , Genetics , RNA, Messenger , Transfection , UltrasonicsABSTRACT
<p><b>OBJECTIVE</b>To investigate the effect of tranilast on myocardial fibrosis in mice with viral myocarditis (VMC).</p><p><b>METHODS</b>Male balb/c mice (n=72) were randomly divided into control, VMC and tranilast groups (n=24 each). In the VMC and tranilast groups, the mice were infected with Coxsackie virus B3 (CVB3) to prepare VMC model, while the control group was treated with Eagle's medium. After modeling, the tranilast group was administrated with tranilast [200 mg/(kg.d)] until the day before sampling. On days 7, 14 and 28 after CVB3 or Eagle's medium infection, heart specimens (n=8) were taken and examined after Toluidine blue staining and Nissl staining for counts of mast cells (MC), hematoxylin-eosin staining for myocardial pathological changes, and Masson staining for myocardial fibrosis. The expression of CTGF and type I collagen (Col I) in the myocardial tissue was measured by RT-PCR and Western blot. The correlations of CTGF mRNA expression with MC counts and Col I expression were analyzed.</p><p><b>RESULTS</b>The myocardial pathological changes and collagen volume fraction in the VMC group were significantly higher than in the control group at all three time points (P<0.05). Tranilast treatment significantly decreased the myocardial pathological changes and collagen volume fraction compared with the VMC group (P<0.05). The mRNA and protein expression of CTGF and Col I increased in the VMC group compared with the control group, and the increases were reduced with tranilast treatment (P<0.05). The number of MC was positively correlated to CTGF mRNA expression on the 7th day and 14th day (r=0.439, P=0.049) in the VMC group. There were positive correlations between the mRNA expression of Col I and CTGF on the 7th day and 14th day (r=0.646, P=0.007) and the 28th day (r=0.326, P=0.031).</p><p><b>CONCLUSIONS</b>Tranilast may inhibit the aggregation of MC and down-regulate the expression of CTGF, relieving myocardial fibrosis of mice with VMC.</p>
Subject(s)
Animals , Male , Mice , Collagen Type I , Genetics , Connective Tissue Growth Factor , Genetics , Coxsackievirus Infections , Drug Therapy , Enterovirus B, Human , Fibrosis , Mice, Inbred BALB C , Myocarditis , Drug Therapy , Myocardium , Pathology , RNA, Messenger , ortho-Aminobenzoates , PharmacologyABSTRACT
The effects of C-phycocyanin (C-pc), a phycobiliprotein, on the expression of pro-fibrotic mediators in hyper-tropic scarring such as connective tissue growth factor (CTGF) and α-smooth muscle actins (α-SMA) were investigated in relation to trans-differentiation of fibroblast to myo-fibroblast, an icon of scar formation. C-pc was isolated from Spirulina Platensis extract using sonication method and C-pc concentration was determined by Bennet and Bogorad equation. α-SMA and CTGF levels in wounded primary human dermal fibroblasts were determined by western blot analysis and immuno-fluorescence confocal microscope was employed. Fibroblast contractility was examined by three-dimensional collagen lattice contraction assay. There was an elevation of α-SMA (121%) and CTGF (143%) levels in wound cells as compared with non-wound cells. The does-response profiles of down regulation demonstrated that the maximum inhibitions of α-SMA by 63% (p<0.05) and CTGF by 50% (p<0.1) were achieved by C-pc (6 nM) treated cells. In confocal assay, non-wound fibroblasts exhibited basal level of α-SMA staining, while wounded cells without C-pc treatment showed strong up-regulation of α-SMA by 147% (p<0.05). C-pc (6 nM) inhibited α-SMA expression by 70% (p<0.05) and reduced collagen contraction by 29% (p<0.05). C-pc seemed to lessen the over expression of CTGF, α-SMA, subsequently alleviating the fibrotic contracture. This study suggests the potential application of C-pc to regulation of the expression of pro-fibrotic mediators in scarring process and its potential usage as an efficient means for anti-fibrosis therapy.
Subject(s)
Humans , Actins , Blotting, Western , Cicatrix , Collagen , Connective Tissue Growth Factor , Connective Tissue , Contracture , Down-Regulation , Fibroblasts , Methods , Myofibroblasts , Phycocyanin , Sonication , Spirulina , Up-Regulation , Wound Healing , Wounds and InjuriesABSTRACT
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Subject(s)
Animals , Humans , Mice , Rats , Actins , Metabolism , Adaptor Proteins, Signal Transducing , Genetics , Metabolism , Apoptosis , Physiology , Bridged Bicyclo Compounds, Heterocyclic , Pharmacology , Cell Line, Tumor , Connective Tissue Growth Factor , Genetics , Metabolism , Pharmacology , Cytochalasin D , Pharmacology , Fatty Acids, Nonesterified , Pharmacology , HEK293 Cells , Immunohistochemistry , Insulin-Secreting Cells , Cell Biology , Metabolism , Microscopy, Fluorescence , Palmitic Acid , Pharmacology , Phosphoproteins , Genetics , Metabolism , RNA Interference , RNA, Small Interfering , Metabolism , Recombinant Proteins , Genetics , Metabolism , Pharmacology , Thiazolidines , PharmacologyABSTRACT
Liver fibrosis is a common pathological process for chronic liver injury caused by multiple etiological factors and an inevitable phase leading to liver cirrhosis. According to the previous studies, hesperidin (HDN) shows a very good protective effect on CCl4-induced chemical hepatic fibrosis in rats. In this experiment, based on the findings of the previous studies, a platelet-derived growth factor (PDGF)-induced HSC-T6 model was established to observe the inhibitory effect of HDN on HSC-T6 proliferation. The ELISA method was adopted to detect the content of collagen I in HSC-T6 supernatant. Transforming growth factor (TGF)-beta1, Smad2, Smad3, Smad7 and connective tissue growth factor (CTGF) mRNA expressions were measured by RT-PCR; TGF-beta1 and CT-GF protein expressions in HSC-T6 were determined by Western blot, in order to study HDN's effect on TGF-beta1 signaling pathway in HSC and its potential action mechanism. The results demonstrated that HDN could notably improve HSC-T6 proliferation, Collagen I growth and TGF-beta1, Smad2, Smad3 and CTGF mRNA.expressions. After being intervened with HDN, it could notably inhibit HSC-T6 proliferation and Collagen I growth, reduce TGF-beta1, Smad2, Smad3 and CTGF mRNA and TGF-beta1, CTGF protein expressions and increase Smad7 mRNA expression. HDN's antihepatic fibrosis effect may be related to the inhibition of HSC proliferation and activation by modulating TGF-beta/Smad signaling pathway.