Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Article in Korean | WPRIM | ID: wpr-766554

ABSTRACT

Over the last 5 years, the Korean Ministry of Food and Drug Safety has approved four anti-obesity drugs for long-term weight management. In this review, the mechanisms of action and clinical applications of lorcaserin, naltrexone/bupropion, liraglutide, and phentermine/topiramate have been clarified. Lorcaserin stimulates proopiomelanocortin/cocaine- and amphetamine-regulated transcript neurons in the arcuate nucleus. Naltrexone/bupropion reduces body weight by controlling the hedonic reward system of food intake. The hypophagic effect of liraglutide depends on the direct activation of the proopiomelanocortin/cocaine- and amphetamine-regulated transcript neurons and indirect suppression of neuropeptide Y/agouti-related peptide neurons through gammaaminobutyric acid-dependent signaling, with an additional thermogenic effect. Phentermine/topiramate induces weight loss by elevating the norepinephrine levels in the hypothalamus, reducing energy deposition in the adipose tissue and skeletal muscle, and elevating the corticotropin-releasing hormone in the hypothalamus. In patients with high cardiovascular risks or type 2 diabetes mellitus, lorcaserin and liraglutide are appropriate. In patients with mood disorders, naltrexone/bupropion could be considered as the first choice of therapy. Notably, lorcaserin and liraglutide are neutral in the aspect of sleep disorder. In case of obese individuals with obstructive sleep apnea, liraglutide or phentermine/topiramate would be selected as the treatment option. These four drugs should be used after considering the patients' co-morbidities of obesity.


Subject(s)
Adipose Tissue , Anti-Obesity Agents , Arcuate Nucleus of Hypothalamus , Body Weight , Corticotropin-Releasing Hormone , Diabetes Mellitus, Type 2 , Eating , Humans , Hypothalamus , Korea , Liraglutide , Mood Disorders , Muscle, Skeletal , Neurons , Neuropeptides , Norepinephrine , Obesity , Pharmacology , Reward , Sleep Apnea, Obstructive , Sleep Wake Disorders , Weight Loss
2.
Article in English | WPRIM | ID: wpr-765963

ABSTRACT

BACKGROUND/AIMS: Gastrointestinal (GI) symptoms may develop when we fail to adapt to various stressors of our daily life. Central oxytocin (OXT) can counteract the biological actions of corticotropin-releasing factor (CRF), and in turn attenuates stress responses. Administration (intracerebroventricular) of OXT significantly antagonized the inhibitory effects of chronic complicated stress (CCS) on GI dysmotility in rats. However, intracerebroventricular administration is an invasive pathway. Intranasal administration can rapidly deliver peptides to the brain avoiding stress response. The effects of intranasal OXT on hypothalamus-pituitary-adrenal axis and GI motility in CCS conditions have not been investigated. METHODS: A CCS rat model was set up, OXT 5, 10, or 20 μg were intranasal administered, 30 minutes prior to stress loading. Central CRF and OXT expression levels were analyzed, serum corticosterone and OXT concentrations were measured, and gastric and colonic motor functions were evaluated by gastric emptying, fecal pellet output, and motility recording system. RESULTS: Rats in CCS condition showed significantly increased CRF expression and corticosterone concentration, which resulted in delayed gastric emptying and increased fecal pellet output, attenuated gastric motility and enhanced colonic motility were also recorded. OXT 10 μg or 20 μg significantly reduced CRF mRNA expression and the corticosterone concentration, OXT 20 μg also helped to restore GI motor dysfunction induced by CCS. CONCLUSION: Intranasal administration of OXT has an anxiolytic effect and attenuates the hypothalamus-pituitary-adrenal axis in response to CCS, and gave effects which helped to restore GI dysmotility, and might be a new approach for the treatment of stress-induced GI motility disorders.


Subject(s)
Administration, Intranasal , Animals , Anti-Anxiety Agents , Brain , Colon , Corticosterone , Corticotropin-Releasing Hormone , Gastric Emptying , Gastrointestinal Motility , Models, Animal , Oxytocin , Peptides , Rats , RNA, Messenger
3.
Acta Physiologica Sinica ; (6): 824-832, 2019.
Article in Chinese | WPRIM | ID: wpr-781393

ABSTRACT

Drugs of abuse leads to adaptive changes in the brain stress system, and produces negative affective states including aversion and anxiety after drug use is terminated. Corticotrophin-releasing hormone (CRH) is the main transmitter in control of response to stressors and is neuronal enriched in the central amygdala (CeA), a sub-region of the extended amygdala playing an important role in integrating emotional information and modulating stress response. The effect of CRH neurons in CeA on the negative emotions on morphine naïve and withdrawal mice is unclear. Thus, we utilized CRH-Cre transgenic mice injected with AAV-mediated Designer Receptors Exclusively Activated By Designer Drugs (DREADDs) to chemogenetically manipulate CRH neurons in CeA. And methods of behavior analysis, including conditioned place aversion (CPA), elevated plus maze and locomotor activity tests, were used to investigate morphine withdrawal-induced negative emotions in mice. The results showed that, inhibiting CRH neurons of CeA decreased the formation of morphine withdrawal-induced CPA, as well as the anxiety level of CRH-Cre mice. Furthermore, specifically activating CRH neurons in CeA evoked CPA and anxiety of morphine naïve mice. Neither inhibiting nor activating CRH neurons had effects on their locomotor activity. These results suggest that CRH neurons in CeA are involved in the mediation of morphine withdrawal-induced negative emotion in mice, providing a theoretical basis for drug addiction and relapse mechanism.


Subject(s)
Adrenocorticotropic Hormone , Animals , Central Amygdaloid Nucleus , Corticotropin-Releasing Hormone , Metabolism , Emotions , Physiology , Mice , Morphine , Metabolism , Neurons , Metabolism
4.
Neuroscience Bulletin ; (6): 1067-1076, 2018.
Article in English | WPRIM | ID: wpr-775483

ABSTRACT

Restraint water-immersion stress (RWIS), a compound stress model, has been widely used to induce acute gastric ulceration in rats. A wealth of evidence suggests that the central nucleus of the amygdala (CEA) is a focal region for mediating the biological response to stress. Different stressors induce distinct alterations of neuronal activity in the CEA; however, few studies have reported the characteristics of CEA neuronal activity induced by RWIS. Therefore, we explored this issue using immunohistochemistry and in vivo extracellular single-unit recording. Our results showed that RWIS and restraint stress (RS) differentially changed the c-Fos expression and firing properties of neurons in the medial CEA. In addition, RWIS, but not RS, induced the activation of corticotropin-releasing hormone neurons in the CEA. These findings suggested that specific neuronal activation in the CEA is involved in the formation of RWIS-induced gastric ulcers. This study also provides a possible theoretical explanation for the different gastric dysfunctions induced by different stressors.


Subject(s)
Action Potentials , Physiology , Analysis of Variance , Animals , Central Amygdaloid Nucleus , Pathology , Corticotropin-Releasing Hormone , Metabolism , Disease Models, Animal , Gastric Mucosa , Pathology , Gene Expression Regulation , Physiology , Neurons , Physiology , Patch-Clamp Techniques , Proto-Oncogene Proteins c-fos , Metabolism , Rats , Rats, Wistar , Stress, Physiological , Physiology , Stress, Psychological
5.
Article in English | WPRIM | ID: wpr-740754

ABSTRACT

BACKGROUND/AIMS: Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are common gastrointestinal (GI) disorders and these patients frequently overlap. Trimebutine has been known to be effective in controlling FD co-existing diarrhea-dominant IBS, however its effect on overlap syndrome (OS) patients has not been reported. Therefore, we investigated the effect of trimebutine on the model of OS in guinea pigs. METHODS: Male guinea pigs were used to evaluate the effects of trimebutine in corticotropin-releasing factor (CRF) induced OS model. Different doses (3, 10, and 30 mg/kg) of trimebutine were administered orally and incubated for 1 hour. The next treatment of 10 μg/kg of CRF was intraperitoneally injected and stabilized for 30 minutes. Subsequently, intragastric 3 mL charcoal mix was administered, incubated for 10 minutes and the upper GI transit analyzed. Colonic transits were assessed after the same order and concentrations of trimebutine and CRF treatment by fecal pellet output assay. RESULTS: Different concentrations (1, 3, and 10 μg/kg) of rat/human CRF peptides was tested to establish the OS model in guinea pigs. CRF 10 μg/kg was the most effective dose in the experimental OS model of guinea pigs. Trimebutine (3, 10, and 30 mg/kg) treatment significantly reversed the upper and lower GI transit of CRF induced OS model. Trimebutine significantly increased upper GI transit while it reduced fecal pellet output in the CRF induced OS model. CONCLUSIONS: Trimebutine has been demonstrated to be effective on both upper and lower GI motor function in peripheral CRF induced OS model. Therefore, trimebutine might be an effective drug for the treatment of OS between FD and IBS patients.


Subject(s)
Animals , Charcoal , Colon , Corticotropin-Releasing Hormone , Dyspepsia , Guinea Pigs , Guinea , Humans , Irritable Bowel Syndrome , Male , Peptides , Trimebutine
6.
Article in English | WPRIM | ID: wpr-741734

ABSTRACT

OBJECTIVE: Corticotropin-releasing hormone (CRH) is a crucial regulator of human pregnancy and parturition. Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels are important for regulating myometrial quiescence during pregnancy. We investigated regulatory effects of different concentrations of CRH on KATP channel expression in human myometrial smooth muscle cells (HSMCs) in in vitro conditions. METHODS: After treating HSMCs with different concentrations of CRH (1, 10, 102, 103, 104 pmol/L), mRNA and protein expression of KATP channel subunits (Kir6.1 and SUR2B) was analyzed by reverse transcription-polymerase chain reaction and western blot. We investigated which CRH receptor was involved in the reaction and measured the effects of CRH on intracellular Ca2+ concentration when oxytocin was administered in HSMCs using Fluo-8 AM ester. RESULTS: When HSMCs were treated with low (1 pmol/L) and high (103, 104 pmol/L) CRH concentrations, KATP channel expression significantly increased and decreased, respectively. SUR2B mRNA expression at low and high CRH concentrations was significantly antagonized by antalarmin (CRH receptor-1 antagonist) and astressin 2b (CRH receptor-2 antagonist), respectively; however, Kir6.1 mRNA expression was not affected. After oxytocin treatment, the intracellular Ca2+ concentration in CRH-treated HSMCs was significantly lowered in low concentration of CRH (1 pmol/L), but not in high concentration of CRH (103 pmol/L), compared to control. CONCLUSION: Our data demonstrated the regulatory effect was different when HSMCs were treated with low (early pregnancy-like) and high (labor-like) CRH concentrations and the KATP channel expression showed significant increase and decrease. This could cause inhibition and activation, respectively, of uterine muscle contraction, demonstrating opposite dual actions of CRH.


Subject(s)
Adenosine Triphosphate , Adenosine , Animals , Blotting, Western , Corticotropin-Releasing Hormone , Female , Humans , In Vitro Techniques , KATP Channels , Mice , Myocytes, Smooth Muscle , Myometrium , Oxytocin , Parturition , Potassium Channels , Potassium , Pregnancy , Receptors, Corticotropin-Releasing Hormone , RNA, Messenger
7.
Braz. j. med. biol. res ; 51(11): e7541, 2018. tab, graf
Article in English | LILACS | ID: biblio-951721

ABSTRACT

We previously found that acute exercise inhibited the gastric emptying of liquid in awake rats by causing an acid-base imbalance. In the present study, we investigated the involvement of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, vasoactive intestinal peptide (VIP), and corticotropin-releasing factor (CRF) peptide in this phenomenon. Male rats were divided into exercise or sedentary group and were subjected to a 15-min swim session against a load (2.5 or 5% b.w.). The rate of gastric emptying was evaluated after 5, 10, or 20 min postprandially. Separate groups of rats were treated with vehicle (0.9% NaCl, 0.1 mL/100 g, ip) or one of the following agents: atropine (1.0 mg/kg, ip), the NO non-selective inhibitor Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10.0 mg/kg, ip), or the selective cGMP inhibitor 1H-(1,2,4)oxadiazole[4,3-a]quinoxalin-1-one (ODQ; 5.0 mg/kg, ip), the i-NOS non-specific inhibitor (aminoguanidine; 10.0 mg/kg, ip), the corticotropin-releasing factor receptor antagonist (astressin; 100 µg/kg, ip), or the vasoactive intestinal peptide (VIP) receptor antagonist Lys1, Pro2,5, Arg3,4, Tyr6 (100 µg/kg, ip). Compared to sedentary rats, both the 2.5 and 5% exercise groups exhibited higher (P<0.05) values of blood lactate and fractional gastric dye recovery. Corticosterone and NO levels increased (P<0.05) in the 5% exercised rats. Pretreatment with astressin, VIP antagonist, atropine, L-NAME, and ODQ prevented the increase in gastric retention caused by exercise in rats. Acute exercise increased gastric retention, a phenomenon that appears to be mediated by the NO-cGMP pathway, CRF, and VIP receptors.


Subject(s)
Animals , Male , Corticotropin-Releasing Hormone/metabolism , Guanosine Monophosphate/metabolism , Gastric Emptying/physiology , Nitric Oxide/metabolism , Reference Values , Atropine/pharmacology , Time Factors , Corticosterone/blood , Corticotropin-Releasing Hormone/antagonists & inhibitors , Corticotropin-Releasing Hormone/pharmacology , Random Allocation , Rats, Wistar , Enzyme Inhibitors/pharmacology , Gastric Emptying/drug effects
8.
Trends psychiatry psychother. (Impr.) ; 39(2): 98-105, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-904574

ABSTRACT

Abstract Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.


Resumo Introdução: Comportamentos agonísticos ajudam a garantir a sobrevivência, oferecem vantagem na competição e comunicam status social. O paradigma residente-intruso, modelo animal baseado em confrontos intraespecíficos entre machos, pode ser uma ferramenta etológica relevante para investigar a neurobiologia do comportamento agressivo. Objetivos: Analisar os mecanismos comportamentais e neurobiológicos do comportamento agressivo em camundongos Swiss machos expostos a confrontos repetidos no paradigma residente-intruso. Métodos: A análise comportamental foi realizada em associação com medidas de corticosterona plasmática em camundongos expostos repetidamente a um rival em potencial próximo, porém inacessível (instigação social), ou a 10 sessões de instigação social seguidas de encontros agressivos diretos. Além disso, o fator de liberação de corticotrofina (CRF) e o fator neurotrófico derivado do cérebro (BNDF) foram medidos no encéfalo desses animais. Camundongos controles não foram expostos à instigação social ou confrontos agressivos. Resultados: Os camundongos expostos a confrontos agressivos exibiram um padrão semelhante de comportamentos agressivos e não agressivos típicos da espécie na primeira e na última sessão. Em contraste com instigação social apenas, confrontos agressivos repetidos promoveram aumento na corticosterona plasmática. Após 10 sessões de confrontos agressivos, os camundongos apresentaram uma tendência não significativa de redução dos níveis de CRF no hipocampo, que se correlacionaram inversamente com os níveis plasmáticos de corticosterona. Por outro lado, sessões repetidas de instigação social ou confronto agressivo não alteraram as concentrações de BDNF no córtex pré-frontal e hipocampo. Conclusão: A exposição a episódios repetidos de encontros agressivos não promoveu habituação ao longo do tempo. Adicionalmente, o CRF parece estar envolvido nas respostas fisiológicas aos estressores sociais.


Subject(s)
Animals , Male , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Prefrontal Cortex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Aggression/physiology , Limbic System/metabolism , Behavior, Animal/physiology , Enzyme-Linked Immunosorbent Assay , Analysis of Variance , Habituation, Psychophysiologic/physiology , Housing, Animal , Mice
9.
Yonsei Medical Journal ; : 872-877, 2017.
Article in English | WPRIM | ID: wpr-81882

ABSTRACT

Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are common gastrointestinal (GI) diseases; however, there is frequent overlap between FD and IBS patients. Emerging evidence links the activation of corticotropin releasing factor (CRF) receptors with stress-related alterations of gastric and colonic motor function. Therefore, we investigated the effect of peripheral CRF peptide and water avoidance stress (WAS) on upper and lower GI transit in guinea pigs. Dosages 1, 3, and 10 µg/kg of CRF were injected intraperitoneally (IP) in fasted guinea pigs 30 minutes prior to the intragastric administration of charcoal mix to measure upper GI transit. Colonic transits in non-fasted guinea pigs were assessed by fecal pellet output assay after above IP CRF doses. Blockade of CRF receptors by Astressin, and its effect on GI transit was also analyzed. Guinea pigs were subjected to WAS to measure gastrocolonic transit in different sets of experiments. Dose 10 µg/kg of CRF significantly inhibited upper GI transit. In contrast, there was dose dependent acceleration of the colonic transit. Remarkably, pretreatment of astressin significantly reverses the effect of CRF peptide on GI transit. WAS significantly increase colonic transit, but failed to accelerate upper GI transit. Peripheral CRF peptide significantly suppressed upper GI transit and accelerated colon transit, while central CRF involved WAS stimulated only colonic transit. Therefore, peripheral CRF could be utilized to establish the animal model of overlap syndrome.


Subject(s)
Acceleration , Animals , Charcoal , Colon , Corticotropin-Releasing Hormone , Dyspepsia , Guinea Pigs , Guinea , Humans , Irritable Bowel Syndrome , Models, Animal , Receptors, Corticotropin-Releasing Hormone , Water
10.
Article in English | WPRIM | ID: wpr-14797

ABSTRACT

BACKGROUND/AIMS: When a person is experiencing stress, corticotropin-releasing hormone (CRH) can modulate gut physiologies, such as visceral sensation or gastrointestinal motility, and its intravenous administration mimics stress-induced physiological changes. However, the influence of CRH on the esophagus is yet unknown. Accordingly, we investigated whether intravenous CRH administration increases esophageal sensitivity to electrical stimulation in healthy Japanese subjects. METHODS: Twenty healthy subjects were recruited. We quantified the initial perception threshold (IPT) every 15 minutes after CRH injection. Venous blood was collected with a cannula, and both plasma adrenocorticotropic hormone (ACTH) and cortisol were measured at pre-stimulation, 0, 30, 60, 90, and 120 minutes. The results from each time point were compared against a baseline IPT obtained before electrical stimulation was initiated. RESULTS: When compared to the baseline IPT value (16.9 ± 4.5), CRH significantly decreased electrical threshold of the esophagus at 30, 45, 60, 75 minutes (14.1 ± 4.2, 13.1 ± 5.0, 12.1 ± 5.7, 14.0 ± 5.8 minutes, P < 0.01, respectively) after CRH injection, suggesting that CRH increased esophageal sensitivity to the electrical stimulus. CRH also significantly increased plasma ACTH levels at 30 minutes (50.3 ± 17.7, P < 0.01), and cortisol levels at 30 minutes (22.0 ± 6.7 minutes, P < 0.01) and 60 minutes (20.3 ± 6.7 minutes, P < 0.01) after CRH injection, when compared to the pre-stimulation ACTH and cortisol values. CONCLUSION: Intravenous CRH administration increased esophageal electrical sensitivity in normal subjects, emphasizing the important role of stress in esophageal sensitivity.


Subject(s)
Administration, Intravenous , Adrenocorticotropic Hormone , Asian Continental Ancestry Group , Catheters , Corticotropin-Releasing Hormone , Electric Stimulation , Esophagus , Gastrointestinal Motility , Healthy Volunteers , Humans , Hydrocortisone , Plasma , Sensation
11.
Annals of Dermatology ; : 600-606, 2016.
Article in English | WPRIM | ID: wpr-59028

ABSTRACT

BACKGROUND: Stress is a known cause of hair loss in many species. OBJECTIVE: In this study, we investigated the role of acute stress on hair growth using a rat model. METHODS: Rats were immobilized for 24 hours and blood samples, and skin biopsies were taken. The effect of stress-serum on the in vitro proliferation of rat and human dermal papilla cells (hDPCs), as well as serum cortisol and corticotropin-releasing hormone levels, were measured. Mast cell staining was performed on the biopsied tissue. In addition, Western blot and quantitative real time polymerase chain reaction were used to assess mast cell tryptase and cytokine expression, respectively in rat skin biopsies. RESULTS: Stress-serum treatment reduced significantly the number of viable hDPCs and arrested the cell cycle in the G1 phase, compared to serum from unrestrained rats (p<0.05, respectively). Moreover, restrained rats had significantly higher levels of cortisol in serum than unrestrained rats (p<0.01). Acute stress serum increased mast cell numbers and mast cell tryptase expression, as well as inducing interleukin (IL)-6 and IL-1β up-regulation. CONCLUSION: These results suggest that acute stress also has an inhibitory effect on hair growth via cortisol release in addition to substance P-mast cell pathway.


Subject(s)
Animals , Biopsy , Blotting, Western , Cell Cycle , Corticotropin-Releasing Hormone , G1 Phase , Hair , Humans , Hydrocortisone , In Vitro Techniques , Interleukins , Mast Cells , Models, Animal , Rats , Real-Time Polymerase Chain Reaction , Skin , Tryptases , Up-Regulation
12.
Article in Chinese | WPRIM | ID: wpr-328278

ABSTRACT

<p><b>OBJECTIVE</b>To explore the protection of high intensity microwave radiation on hypothalamo-pituitary-adrenal axis (HPAA) activity and hippocampal CA1 structure in rats and the protectiveeffect of Qindan Granule (QG) on radiation injured rats.</p><p><b>METHODS</b>Totally 48 Wistar rats were randomlydivided into 8 groups, i.e., the normal control group, post-radiation day 1, 7, and 10 groups, 7 and 10days prevention groups, day 7 and 10 treatment groups, 6 in each group. Rats in prevention groups wererespectively administered with QG liquid (1 mL/100 g, 4. 75 g crude drugs) for 7 days and 10 days bygastrogavage and then microwave radiation. Then preventive effect for radiation injury was statisticallycalculated with the normal control group and the post-radiation day 1 group. Rats in treatment groupswere firstly irradiated, and then administered with QG liquid (1 mL/100 g, 4.75 g crude drugs). Finally preventive effect for radiation injury was statistically calculated with the normal control group, post-radiation day 7 and 10 groups. Contents of corticotrophin releasing hormone (CRH), beta endorphin (beta-EP), adrenocorticotropic hormone (ACTH), and heat shock protein 70 (HSP70) were detected. Morphological changes and structure of hippocampal CA1 region were observed under light microscope.</p><p><b>RESULTS</b>Compared with the normal control group, contents of CRH and beta-EP significantly decreased in each radiation group. Serum contents of ACTH and beta-EP significantly increased in post-radiation day 1 and 7 groups (P < 0.05). Compared with radiation groups, beta-EP content in serum and pituitary significantly increased, and serum ACTH content significantly decreased in prevention groups (P < 0.05). Pituitary contents of CRH and beta-EP significantly increased in prevention groups. Serum contents of ACTH, beta-EP, and HSP70 were significantly lower in day 7 treatment group than post-radiation day 7 group (P < 0.05). Morphological results showed that pyramidal neurons in the hippocampal CA1 region arranged in disorder, with swollen cells, shrunken and condensed nucleus, dark dyeing cytoplasm, unclear structure. Vessels in partial regions were dilated with static blood; tissues were swollen and sparse. In prevention and treatment groups pathological damage of hippocampal CA1 region was obviously attenuated; neurons were arranged more regularly; swollen, pycnotic, or deleted neuron number were decreased; vascular dilatation and congestion was lessened.</p><p><b>CONCLUSION</b>QG could affect HPAA function and activity of high intensity microwave radiated rats, showing certain preventive and therapeutic effects of microwave radiated rats by adjusting synthesis and release of partial bioactive peptides and hormones in HPAA, improving pathological injury in hippocampal CA1 region.</p>


Subject(s)
Adrenocorticotropic Hormone , Blood , Animals , CA1 Region, Hippocampal , Pathology , Radiation Effects , Corticotropin-Releasing Hormone , Metabolism , Drugs, Chinese Herbal , Pharmacology , HSP70 Heat-Shock Proteins , Blood , Hypothalamo-Hypophyseal System , Radiation Effects , Microwaves , Pituitary-Adrenal System , Radiation Effects , Random Allocation , Rats , Rats, Wistar , beta-Endorphin , Blood , Metabolism
13.
Article in English | WPRIM | ID: wpr-287183

ABSTRACT

<p><b>OBJECTIVE</b>To investigate whether Epimedium brevicornu Maxim (EB) and icariin could exert their protective effects on hydrocortisone induced (HCI) rats by regulating the hypothalamus-pituitary-adrenal (HPA) axis and endocrine system and the possible mechanism.</p><p><b>METHODS</b>Male 10-week-old Sprague Dawley (SD) rats were allotted to 6 groups (A-F) with 12 each, group A was injected normal saline (NS) 3 mL/kg day intraperitoneally, group A and B were given NS 6 mL/kg day by gastrogavage, group B-F were injected hydrocortisone 15 mg/kg intraperitoneally, group C and D were given EB 8 or 5 g/(kg day) by gastrogavage, group E and F were given icariin 25 or 50 mg/(kg day) by gastrogavage. Gene expressions of hypothalamus corticotropin releasing hormone (CRH) and pituitary proopiomelanocortin (POMC) were detected by reverse transcription-polymerase chain reaction (RT-PCR), and protein of pituitary POMC by Western-blot.</p><p><b>RESULTS</b>The serum T4, testosterone, cortisol and POMC mRNA expression were increased after treatment with EB or icariin in HCI rats, the serum CRH and the hypothalamus CRH mRNA expression released from hypothalamus corticotropin decreased compared with group B (P<0.05).The treatment with only icariin increased serum adrenocorticotropic hormone (ACTH) compared with group B (P<0.05).</p><p><b>CONCLUSION</b>EB and icariin might be therapeutically beneficial in the treatment of HCI rats through attuning the HPA axis and endocrine system which was involved in the release of CRH in hypothalamic, and the production of POMC-derived peptide ACTH in anterior pituitary, the secretion of corticosteroids in adrenal cortex.</p>


Subject(s)
Adrenocorticotropic Hormone , Blood , Animals , Blotting, Western , Corticotropin-Releasing Hormone , Blood , Genetics , Epimedium , Flavonoids , Pharmacology , Therapeutic Uses , Gene Expression , Hydrocortisone , Pharmacology , Hypothalamo-Hypophyseal System , Hypothalamus , Chemistry , Male , Pituitary-Adrenal System , Plant Extracts , Pharmacology , Pro-Opiomelanocortin , Chemistry , Genetics , Proteins , RNA, Messenger , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
14.
Article in Chinese | WPRIM | ID: wpr-279960

ABSTRACT

<p><b>OBJECTIVE</b>To study the changes in serum cortisol levels in adolescents with type 1 diabetes (T1DM) and elevated depressive symptoms.</p><p><b>METHODS</b>Twenty-eight adolescents with T1DM and 31 healthy peers were assessed for depressive symptoms using a depression self-rating scale developed by the Epidemiological Survey Center. Selected subjects were classified into four groups: T1DM with elevated depressive symptoms group (n=15), T1DM without elevated depressive symptoms group (n=13), elevated depressive symptoms without T1DM group (n=15), and normal control group (n=16). Fasting blood samples were collected in the morning, and the levels of serum cortisol were compared among the four groups. The correlations of serum levels of cortisol and glycosylated hemoglobin A1c (HbA1c) with the score of depression self-rating scale were evaluated by Pearson correlation analysis.</p><p><b>RESULTS</b>The fasting serum cortisol levels in the 28 T1DM patients were significantly higher than in the 31 healthy peers (P<0.01). The fasting cortisol levels in the T1DM with elevated depressive symptoms group were significantly higher compared with those in the elevated depressive symptoms without T1DM group and normal control group (P<0.01). In adolescents with T1DM, serum HbA1c level was positively correlated with the score of depression self-rating scale (r=0.481, P=0.010).</p><p><b>CONCLUSIONS</b>The fasting serum cortisol levels in adolescents with T1DM and elevated depressive symptoms are significantly increased, suggesting that the patients with comorbidity of T1DM and depression develop dysfunction of the corticotropin-releasing hormone-adrenocorticotropic hormone-cortisol axis. The elevated depressive symptoms may be associated with a poor control of glucose metabolism.</p>


Subject(s)
Adolescent , Adrenocorticotropic Hormone , Physiology , Child , Corticotropin-Releasing Hormone , Physiology , Depression , Blood , Diabetes Mellitus, Type 1 , Blood , Female , Glucose , Metabolism , Glycated Hemoglobin A , Humans , Hydrocortisone , Blood , Male
15.
Article in Chinese | WPRIM | ID: wpr-237930

ABSTRACT

<p><b>OBJECTIVE</b>To compare changes of hypothalamus-pituitary-adrenal axis (HPAA) in different rat models of Gan stagnation (GS), Pi deficiency (PD), Gan stagnation Pi deficiency (GSPD) syndromes, and to observe interventional effect of Chaishu Sijun Decoction (CSD, capable of soothing Gan-qi invigorating Pi) on them.</p><p><b>METHODS</b>Seventy Wistar rats were divided into the normal control group (group 1), the GS group (group 2), the PD group (group 3), the GSPD group (group 4), the GS intervention group (group 5), the PD intervention group (group 6), and the GSPD intervention group (group 7) according to random digit table, 10 in each group. Rats in group 1 received no treatment. Rats in group 2 and 5 were modeled by chronic restraint method. Rats in group 3 and 6 were modeled by excess fatigue plus alimentary abstinence method. Rats in group 4 and 7 were modeled by chronic restraint, excess fatigue, and alimentary abstinence method. At the 2nd weekend of modeling, CSD at 2.86 g/kg was fed to rats in group 5, 6, and 7 by gastrogavage for 2 successive weeks. Equal volume of distilled water was given to rats in the rest 4 groups. On the 29th day, rats were killed, adrenal weight weighed, and adrenal index calculated. Levels of plasma and hypothalamus corticotropin-releasing hormone (CRH), plasma and pituitary adrenocorticotrophic hormone (ACTH), and plasma corticosterone (CORT) were determined using radioimmunity.</p><p><b>RESULTS</b>Compared with group 1, adrenal index significantly decreased in group 2, 3, and 4 (P < 0.05). Of them, plasma and hypothalamus CRH, plasma CORT increased significantly in group 2 and 4 (P < 0.05). Besides, plasma and pituitary ACTH increased in group 4 (P < 0.05). Plasma and pituitary ACTH, as well as plasma CORT decreased significantly in group 3 (P < 0.05). Compared with group 2, 3, and 4, adrenal index increased significantly in group 5, 6, and 7 (P < 0.05). Compared with group 2, plasma CORT, hypothalamus CRH, and pituitary ACTH decreased significantly in group 5 (P < 0.05). Compared with group 3, plasma ACTH and CORT increased significantly in group 6 (P < 0.05). Compared with group 4, plasma CRH, ACTH, CORT, hypothalamus CRH, and pituitary ACTH decreased in group 7 (P < 0.05).</p><p><b>CONCLUSIONS</b>The function of HPA .axis was damaged to varying degrees in rats of the three models in this experiment. Hyperactivity of HPA axis existed in GS syndrome and GSPD syndrome. Impairment of feedback regulation in hypothalamus and pituitary was accompanied in GSPD syndrome. Hypofunction of HPA axis existed in PDS. CSD, capable of soothing Gan-qi invigorating'Pi, showed improvement on disarranged HPAA, but with optimal effect on GSPD syndrome. CSD had higher correlation with GSPD syndrome.</p>


Subject(s)
Adrenocorticotropic Hormone , Metabolism , Animals , Corticosterone , Corticotropin-Releasing Hormone , Metabolism , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Hypothalamo-Hypophyseal System , Metabolism , Hypothalamus , Metabolism , Medicine, Chinese Traditional , Models, Animal , Pituitary Gland , Metabolism , Pituitary-Adrenal System , Metabolism , Rats , Rats, Wistar
16.
Article in English | WPRIM | ID: wpr-150125

ABSTRACT

Cushing's disease (CD) is a rare disorder characterized by the overproduction of adrenocorticotropic hormone due to a pituitary adenoma that ultimately stimulates excessive cortisol secretion from the adrenal glands. Prior to the detection of pituitary adenomas, various clinical signs of CD such as central obesity, moon face, hirsutism, and facial plethora are usually already present. Uncontrolled hypercortisolism is associated with metabolic, cardiovascular, and psychological disorders that result in increased mortality. Hence, the early detection and treatment of CD are not only important but mandatory. Because its clinical manifestations vary from patient to patient and are common in other obesity-related conditions, the precise diagnosis of CD can be problematic. Thus, the present set of guidelines was compiled by Korean experts in this field to assist clinicians with the screening, diagnoses, and treatment of patients with CD using currently available tests and treatment modalities.


Subject(s)
Adrenal Glands , Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Cushing Syndrome , Diagnosis , Hirsutism , Humans , Hydrocortisone , Korea , Mass Screening , Mortality , Obesity, Abdominal , Petrosal Sinus Sampling , Pituitary ACTH Hypersecretion , Pituitary Neoplasms
17.
Chinese Acupuncture & Moxibustion ; (12): 1275-1279, 2015.
Article in Chinese | WPRIM | ID: wpr-352671

ABSTRACT

<p><b>OBJECTIVE</b>To explore the change pattern of hypothalamic-pituitary-adrenal (HPA) axis and related neurotransmitters under simulated weightlessness.</p><p><b>METHODS</b>A total of 40 clean-grade male Wistar rats were randomly divided into a normal group, a tail-suspension group, an electroacupuncture (EA) at Neiguan (PC 6) group, an EA at Sanyinjiao (SP 6) group, 10 rats in each group. Rats in the tail-suspension group, EA at "Neiguan" (PC 6) group and EA at "Sanyinjiao" (SP 6) group were treated with tail suspension to simulate weightlessness effect. Rats in the normal group were treated with normal diet. Rats in the tail-suspension group were treated with tail suspension for 28 d. During the time of tail suspension, rats in the EA at "Neiguan" (PC 6) group were treated with EA at "Neiguan" (PC 6), 30 min per treatment, once every two days for 14 treatments, while rats in the EA at "Sanyinjiao" (SP 6) group were treated with EA at "Sanyinjiao" (SP 6), 30 min per treatment, once every two days for 14 treatments. Samples were all collected after 4 weeks. The contents of corticotropin releasing hormone (CRH) , adrenocorticotropic hormone (ACTH), corticosterone (CORT) in as well as 5-hydroxy tryptamine (5-HT), dopamine (DA), norepinephrine (NE) were measured by using radioimmunoassay.</p><p><b>RESULTS</b>Compared with the normal group, in the tail-suspension group the content of ACTH in pituitary was significantly decreased (P< 0.05), and the content of 5-HT in hypothalamus was significantly decreased (P < 0.01); the content of CRH and 5-HT in hypothalamus was significantly decreased (P < 0.01, P < 0.05) in the EA at "Neiguan" (PC 6) group; the content of CRH and 5-HT in hypothalamus was significantly decreased (P < 0.01), and the content of CORT in serum was significantly decreased (P < 0.05) in the EA at "Sanyinjiao" (SP 6) group. Compared with the tail-suspension group, the content of ACTH in hypothalamus was significantly decreased (P< 0.05) in the EA at "Neiguan" (PC 6) group; the content of CRH, ACTH and CORT was significantly decreased (P < 0.01, P < 0.05) in the EA at "Sanyinjiao" (SP 6) group. Compared with the EA at "Neiguan" (PC 6) group, the content of CORT was decreased (P < 0.05) in the EA at "Sanyinjiao" (SP 6) group.</p><p><b>CONCLUSION</b>EA can regulate the content of 5-HT in hypothalamus in tail-suspension rats, inhibit the hyperactivity of the HPA axis, in which EA at "Sanyinjiao" (SP 6) had more significant effects than "Neiguan" (PC 6), but no obvious effects on NE and DA were observed.</p>


Subject(s)
Acupuncture Points , Adrenocorticotropic Hormone , Metabolism , Animals , Corticotropin-Releasing Hormone , Metabolism , Dopamine , Metabolism , Electroacupuncture , Hormones , Metabolism , Hypothalamus , Metabolism , Male , Neurotransmitter Agents , Metabolism , Norepinephrine , Metabolism , Pituitary-Adrenal System , Metabolism , Rats , Rats, Wistar , Serotonin , Metabolism , Weightlessness
18.
Article in English | WPRIM | ID: wpr-21889

ABSTRACT

BACKGROUND/AIMS: Dendritic cells (DCs) are a significant contributor to the pathology of numerous chronic inflammatory autoimmune disorders; however, the effects of Corticotropin-releasing factor (CRF) on intestinal DCs are poorly understood. In this study, we investigated the role of CRF in alterations of intestinal dendritic cell phenotype and function. METHODS: Mouse mesenteric lymph node dendritic cells (MLNDCs) were obtained using magnetic bead sorting. Surface expression of CRF receptor type 1 (CRF-R1) and CRF-R2 was determined by double-labeling immunofluorescence and quantitative polymerase chain reaction (qPCR) and MLNDCs were subsequently exposed to CRF in the presence or absence of CRF-R1 and CRF-R2 antagonists. Expression of surface molecules (MHC-I and MHC-II) and co-stimulatory molecules (CD80 and CD86) was determined by flow cytometric and western blot analyses, and the T cell stimulatory capacity of MLNDCs was evaluated by mixed lymphocyte reaction. RESULTS: Immunofluorescent staining and quatitative polymerase chain reaction indicated that both the CRF receptors (CRF-R1 and CRF-2) are expressed on the surface of MLNDCs. Exposure to CRF increased the expression of MHC-II on MLNDCs as well as their capacity to stimulate T cell proliferation. MLNDCs treated with CRF-R1 antagonist exhibited a phenotype characterized by a less activated state and reduced surface expression of MHC-II, and consequently showed reduced capacity to stimulate T cells. In contrast, treatment of MLNDCs with CRF-R2 antagonist yielded an opposite result. CONCLUSIONS: CRF can alter the phenotype and function of intestinal DCs through direct action on CRF-R1 and CRF-R2, and activation of the CRF-R1 and CRF-R2 pathways yields opposing outcomes.


Subject(s)
Animals , Blotting, Western , Cell Proliferation , Corticotropin-Releasing Hormone , Dendritic Cells , Fluorescent Antibody Technique , Immunity, Cellular , Lymph Nodes , Lymphocyte Culture Test, Mixed , Mice , Pathology , Phenotype , Polymerase Chain Reaction , Receptors, Corticotropin-Releasing Hormone , T-Lymphocytes
19.
Article in English | WPRIM | ID: wpr-14539

ABSTRACT

The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.


Subject(s)
Brain , Colon , Corticotropin-Releasing Hormone , Defecation , Diarrhea , GTP-Binding Proteins , Humans , Hyperalgesia , Irritable Bowel Syndrome , Mast Cells , Serotonin , Urocortins , Visceral Pain
20.
Article in English | WPRIM | ID: wpr-14538

ABSTRACT

The family of corticotropin-releasing factor (CRF) composed of 4 ligands including CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 is expressed both in the central nervous system and the periphery including the gastrointestinal tract. Two different forms of G protein coupled receptors, CRF1 and CRF2, differentially recognize CRF family members, mediating various biological functions. A large body of evidence suggests that the CRF family plays an important role in regulating inflammation and angiogenesis. Of particular interest is a contrasting role of the CRF family during inflammatory processes. The CRF family can exert both pro- and anti-inflammatory functions depending on the type of receptors, the tissues, and the disease phases. In addition, there has been a growing interest in a possible role of the CRF family in angiogenesis. Regulation of angiogenesis by the CRF family has been shown to modulate endogenous blood vessel formation, inflammatory neovascularization and cardiovascular function. This review outlines the effect of the CRF family and its receptors on 2 major biological events: inflammation and angiogenesis, and provides a possibility of their application for the treatment of inflammatory vascular diseases.


Subject(s)
Angiogenesis Inducing Agents , Blood Vessels , Central Nervous System , Corticotropin-Releasing Hormone , Gastrointestinal Tract , Humans , Inflammation , Ligands , Negotiating , Receptors, G-Protein-Coupled , Urocortins , Vascular Diseases
SELECTION OF CITATIONS
SEARCH DETAIL