Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Braz. j. biol ; 83: e246592, 2023. tab, graf
Article in English | MEDLINE, LILACS, VETINDEX | ID: biblio-1339408

ABSTRACT

Abstract Mesenchymal stem cells (MSCs) have great potential for application in cell therapy and tissue engineering procedures because of their plasticity and capacity to differentiate into different cell types. Given the widespread use of MSCs, it is necessary to better understand some properties related to osteogenic differentiation, particularly those linked to biomaterials used in tissue engineering. The aim of this study was to develop an analysis method using FT-Raman spectroscopy for the identification and quantification of biochemical components present in conditioned culture media derived from MSCs with or without induction of osteogenic differentiation. All experiments were performed between passages 3 and 5. For this analysis, MSCs were cultured on scaffolds composed of bioresorbable poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. MSCs (GIBCO®) were inoculated onto the pure polymers and 75:25 PHBV/PCL blend (dense and porous samples). The plate itself was used as control. The cells were maintained in DMEM (with low glucose) containing GlutaMAX® and 10% FBS at 37oC with 5% CO2 for 21 days. The conditioned culture media were collected and analyzed to probe for functional groups, as well as possible molecular variations associated with cell differentiation and metabolism. The method permitted to identify functional groups of specific molecules in the conditioned medium such as cholesterol, phosphatidylinositol, triglycerides, beta-subunit polypeptides, amide regions and hydrogen bonds of proteins, in addition to DNA expression. In the present study, FT-Raman spectroscopy exhibited limited resolution since different molecules can express similar or even the same stretching vibrations, a fact that makes analysis difficult. There were no variations in the readings between the samples studied. In conclusion, FT-Raman spectroscopy did not meet expectations under the conditions studied.


Resumo As células-tronco mesenquimais (MSCs) possuem grande potencial para aplicação em procedimentos terapêuticos ligados a terapia celular e engenharia de tecidos, considerando-se a plasticidade e capacidade de formação em diferentes tipos celulares por elas. Dada a abrangência no emprego das MSCs, há necessidade de se compreender melhor algumas propriedades relacionadas à diferenciação osteogênica, particularmente liga à biomateriais usados em engenharia de tecidos. Este projeto objetiva o desenvolvimento de uma metodologia de análise empregando-se a FT-Raman para identificação e quantificação de componentes bioquímicos presentes em meios de cultura condicionados por MSCs, com ou sem indução à diferenciação osteogênica. Todos os experimentos foram realizados entre as passagens 3 e 5. Para essas análises, as MSCs foram cultivadas sobre arcabouços de polímeros biorreabsorvíveis de poli (hidroxibutirato-co-hidroxivalerato) (PHBV) e o poli (ε-caprolactona) (PCL). As MSCs (GIBCO®) foram inoculadas nos polímeros puros e na mistura 75:25 de PHBV / PCL (amostras densas e porosas). As células foram mantidas em DMEM (com baixa glicose) contendo GlutaMAX® e 10% de SFB a 37oC com 5% de CO2 por 21 dias. A própria placa foi usada como controle. Os meios de cultura condicionados foram coletados e analisadas em FT-Raman para sondagem de grupos funcionais, bem como possíveis variações moleculares associadas com a diferenciação e metabolismo celular. Foi possível discernir grupos funcionais de moléculas específicas no meio condicionado, como colesterol, fosfatidilinositol, triglicerídeos, forma Beta de polipeptídeos, regiões de amida e ligações de hidrogênio de proteínas, além da expressão de DNA. Na presente avaliação, a FT-Raman apresentou como uma técnica de resolução limitada, uma vez que modos vibracionais de estiramento próximos ou mesmo iguais podem ser expressos por moléculas diferente, dificultando a análise. Não houve variações nas leituras entre as amostras estudadas, concluindo-se que a FT-Raman não atendeu às expectativas nas condições estudadas.


Subject(s)
Animals , Rats , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Spectrum Analysis, Raman , Culture Media, Conditioned , Cell Proliferation , Tissue Scaffolds
2.
Chinese Journal of Biotechnology ; (12): 1431-1439, 2020.
Article in Chinese | WPRIM | ID: wpr-826833

ABSTRACT

The purpose of this study is to provide a culture for mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages (PM) and to characterize their molecular and cellular biology. The cell number and purity from the primary culture were assessed by cell counter and flow cytometry, respectively. Morphological features were evaluated by inverted microscope. Phagocytosis by macrophages was detected by the neutral red dye uptake assay. Phenotypic markers were analyzed by real-time fluorescent quantitative PCR. Our results show that the cell number was much higher from culture of BMDM than PM, while there was no significant difference regarding the percentage of F4/80+CD11b+ cells (98.30%±0.53% vs. 94.83%±1.42%; P>0.05). The proliferation rate of BMDM was significantly higher than PM in the presence of L929 cell conditioned medium, by using CCK-8 assay. However, PM appeared to adhere to the flask wall and extend earlier than BMDM. The phagocytosis capability of un-stimulated BMDM was significantly higher than PM, as well as lipopolysaccharide (LPS)-stimulated BMDM, except the BMDM stimulated by low dose LPS (0.1 μg/mL). Furthermore, Tnfα expression was significantly higher in un-stimulated BMDM than PM, while Arg1 and Ym1 mRNA expression were significantly lower than PM. The expression difference was persistent if stimulated by LPS+IFN-γ or IL-4. Our data indicate that bone marrow can get larger amounts of macrophages than peritoneal cavity. However, it should be aware that the molecular and cellular characteristics were different between these two culture systems.


Subject(s)
Animals , Bone Marrow Cells , Physiology , Cells, Cultured , Culture Media, Conditioned , Lipopolysaccharides , Metabolism , Macrophages , Classification , Physiology , Mice , Phagocytosis
4.
Article in English | WPRIM | ID: wpr-761908

ABSTRACT

BACKGROUND: Exosomes are membrane-enclosed extracellular vesicles implicated in cell-cell communication. Exosomes contain proteins, mRNAs, non-coding RNAs (miRNAs and lncRNAs) and lipids that are derived from producing cells. These nano-sized vesicles are present in biofluids including blood, urine, saliva, amniotic fluid, semen and conditioned media of cultured cells. METHODS: This review summarizes current progress on the strategies of development of diagnostic biomarkers and drug loading onto exosomes for overcoming cancer progression. RESULTS: A number of studies indicate that the exosome appears to be a key player in tissue repair and regeneration of in a number of animal disease models. In addition, alterations of the molecular profiles in exosomes are known to be correlated with the disease progression including cancer, suggesting their usefulness in disease diagnosis and prognosis. Studies utilizing engineered exosomes either by chemical or biological methods have demonstrated promising results in a number of animal models with cancer. CONCLUSION: Understanding the molecular and cellular properties of exosomes offer benefits for cancer diagnosis by liquid biopsy and for their application in therapeutic drug delivery systems. Studies have shown that genetic or molecular engineering of exosomes augmented their target specificity and anticancer activity with less toxicity. Thus, deeper understanding of exosome biology will facilitate their therapeutic potential as an innovative drug delivery system for cancer.


Subject(s)
Amniotic Fluid , Biology , Biomarkers , Biopsy , Cells, Cultured , Culture Media, Conditioned , Diagnosis , Disease Models, Animal , Disease Progression , Drug Delivery Systems , Exosomes , Extracellular Vesicles , Female , Models, Animal , Prognosis , Regeneration , RNA, Messenger , RNA, Untranslated , Saliva , Semen , Sensitivity and Specificity
5.
Article in English | WPRIM | ID: wpr-759732

ABSTRACT

BACKGROUND: The development of a safe and convenient agent that can promote hair growth in patients with androgenetic alopecia remains challenging. OBJECTIVE: This study was designed to investigate the efficacy of a newly developed hair tonic containing a human umbilical cord blood mesenchymal stem cell (hUCB-MSC)-derived conditioned medium in promoting hair growth. METHODS: This double-blind, placebo-controlled clinical study investigated the efficacy of a hair tonic containing an hUCB-MSC-derived conditioned medium in 30 patients with patterned hair loss. Treatment efficacy was determined using phototrichograms to evaluate the density, diameter, and hair growth rate at baseline levels and after 4, 8, and 16 weeks of treatment. RESULTS: The hair density in the group treated with the hair tonic significantly increased from 125.2 to 134.6 hairs/cm2 (p<0.05). In this same group, the thickness of hair also increased from 0.083 to 0.110 mm (p<0.05). Additionally, the hair growth rate increased from 0.285 to 0.338 mm/day (p<0.05). No severe adverse reactions were reported. CONCLUSION: A hair tonic containing an hUCB-MSC-derived conditioned medium could be a new effective alternative to treat patients with androgenetic alopecia.


Subject(s)
Alopecia , Clinical Study , Culture Media, Conditioned , Fetal Blood , Hair Preparations , Hair , Humans , Mesenchymal Stem Cells , Treatment Outcome , Umbilical Cord
6.
Article in English | WPRIM | ID: wpr-765130

ABSTRACT

BACKGROUND: Secretome refers to the total set of molecules secreted or surface-shed by stem cells. The limitations of stem cell research have led numerous investigators to turn their attention to the use of secretome instead of stem cells. In this study, we intended to reinforce antifibrotic properties of the secretome released from adipose-derived stem cells (ASCs) transfected with miR-214. METHODS: We generated miR-214-transfected ASCs, and extracted the secretome (miR214-secretome) from conditioned media of the transfected ASCs through a series of ultrafiltrations. Subsequently, we intravenously injected the miR-214-secretome into mice with liver fibrosis, and determined the effects of miR-214-secretome on liver fibrosis. RESULTS: Compared with that by naïve secretome, liver fibrosis was ameliorated by intravenous infusion of miR-214-secretome into mice with liver fibrosis, which was demonstrated by significantly lower expression of fibrosis-related markers (alpha-smooth muscle actin, transforming growth factor-β, and metalloproteinases-2) in the livers as well as lower fibrotic scores in the special stained livers compared with naïve secretome. The infusion of miR-214-secretome also led to lesser local and systemic inflammation, higher expression of an antioxidant enzyme (superoxide dismutase), and higher liver proliferative and synthetic function. CONCLUSION: MicroRNA-214 transfection stimulates ASCs to release the secretome with higher antifibrotic and anti-inflammatory properties. miR-214-secretome is thus expected to be one of the prominent ways of overcoming liver fibrosis, if further studies consistently validate its safety and efficiency.


Subject(s)
Actins , Animals , Culture Media, Conditioned , Humans , Inflammation , Infusions, Intravenous , Liver , Liver Cirrhosis , Mesenchymal Stem Cells , Mice , MicroRNAs , Research Personnel , Stem Cell Research , Stem Cells , Transfection
7.
Journal of Bone Metabolism ; : 179-191, 2019.
Article in English | WPRIM | ID: wpr-764252

ABSTRACT

BACKGROUND: Osteolytic metastasis is a common destructive form of metastasis, in which there is an increased bone resorption but impaired bone formation. It is hypothesized that the changed mechanical properties of tumor affected bone cells could inhibit its mechanosensing, thus contributing to differences in bone remodeling. METHODS: Here, atomic force microscopy indentation on primary bone cells exposed to 50% conditioned medium from Walker 256 (W) carcinoma cell line or its adaptive tumor (T) cells was carried out. Nitric oxide levels of bone cells were monitored in response to low-magnitude, high-frequency (LMHF) vibrations. RESULTS: A stronger sustained inhibitive effect on bone cell viability and differentiation by T cells as compared to that of its cell line was demonstrated. This could be attributed to the higher levels of transforming growth factor-β1 (TGF-β1) in the T-conditioned medium as compared to W-conditioned medium. Bone cell elastic moduli in W and T-groups were found to decrease significantly by 61.0% and 69.6%, respectively compared to control and corresponded to filamentous actin changes. Nitric oxide responses were significantly inhibited in T-conditioned group but not in W-conditioned group. CONCLUSIONS: It implied that a change in cell mechanical properties is not sufficient as an indicator of change in mechanosensing ability. Moreover, inhibition of phosphoinositide 3-kinase/Akt downstream signaling pathway of TGF-β1 alleviated the inhibition effects on mechanosensing in T-conditioned cells, further suggesting that growth factors such as TGF-β could be good therapeutic targets for osteoblast treatment.


Subject(s)
Actins , Bone Neoplasms , Bone Remodeling , Bone Resorption , Cell Line , Cell Survival , Culture Media, Conditioned , Elastic Modulus , Intercellular Signaling Peptides and Proteins , Microscopy, Atomic Force , Neoplasm Metastasis , Nitric Oxide , Osteoblasts , Osteogenesis , Sensitivity Training Groups , T-Lymphocytes , Vibration , Walkers
8.
Article in English | WPRIM | ID: wpr-764075

ABSTRACT

BACKGROUND AND OBJECTIVES: Although it is well known that hypoxic culture conditions enhance proliferation of human mesenchymal stem cells, the exact mechanism is not fully understood. In this study, we investigated the effect of fibroblast growth factor (FGF)-17 from hypoxic human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on cell proliferation at late passages. METHODS AND RESULTS: hWJ-MSCs were cultured in α-MEM medium supplemented with 10% fetal bovine serum (FBS) in normoxic (21% O₂) and hypoxic (1% O₂) conditions. Protein antibody array was performed to analyze secretory proteins in conditioned medium from normoxic and hypoxic hWJ-MSCs at passage 10. Cell proliferation of hypoxic hWJ-MSCs was increased compared with normoxic hWJ-MSCs from passage 7 to 10, and expression of secretory FGF-17 was highly increased in conditioned medium from hypoxic hWJ-MSCs at passage 10. Knockdown of FGF-17 in hypoxic and normoxic hWJ-MSCs decreased cell proliferation, whereas treatment of hypoxic and normoxic hWJ-MSCs with recombinant protein FGF-17 increased their proliferation. Signal transduction of FGF-17 in hypoxic and normoxic hWJ-MSCs involved the ERK1/2 pathway. Cell phenotypes were not changed under either condition. Differentiation-related genes adiponectin, Runx2, and chondroadherin were downregulated in normoxic hWJ-MSCs treated with rFGF-17, and upregulated by siFGF-17. Expression of alkaline phosphatase (ALP), Runx2, and chondroadherin was upregulated in hypoxic hWJ-MSCs, and this effect was rescued by transfection with siFGF-17. Only chondroadherin was upregulated in hypoxic hWJ-MSCs with rFGF-17. CONCLUSIONS: In hypoxic culture conditions, FGF-17 from hypoxic hWJ-MSCs contributes to the maintenance of high proliferation at late passages through the ERK1/2 pathway.


Subject(s)
Adiponectin , Alkaline Phosphatase , Cell Proliferation , Culture Media, Conditioned , Fibroblast Growth Factors , Humans , Mesenchymal Stem Cells , Phenotype , Signal Transduction , Transfection
9.
Article in English | WPRIM | ID: wpr-764074

ABSTRACT

BACKGROUND AND OBJECTIVES: There have been contradictory reports on the pro-cancer or anti-cancer effects of mesenchymal stem cells. In this study, we investigated whether conditioned medium (CM) from hypoxic human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) (H-CM) showed enhanced anti-cancer effects compared with CM from normoxic hUC-MSCs (N-CM). METHODS AND RESULTS: Compared with N-CM, H-CM not only strongly reduced cell viability and increased apoptosis of human cervical cancer cells (HeLa cells), but also increased caspase-3/7 activity, decreased mitochondrial membrane potential (MMP), and induced cell cycle arrest. In contrast, cell viability, apoptosis, MMP, and cell cycle of human dermal fibroblast (hDFs) were not significantly changed by either CM whereas caspase-3/7 activity was decreased by H-CM. Protein antibody array showed that activin A, Beta IG-H3, TIMP-2, RET, and IGFBP-3 were upregulated in H-CM compared with N-CM. Intracellular proteins that were upregulated by H-CM in HeLa cells were represented by apoptosis and cell cycle arrest terms of biological processes of Gene Ontology (GO), and by cell cycle of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In hDFs, negative regulation of apoptosis in biological process of GO and PI3K-Akt signaling pathway of KEGG pathways were represented. CONCLUSIONS: H-CM showed enhanced anti-cancer effects on HeLa cells but did not influence cell viability or apoptosis of hDFs and these different effects were supported by profiling of secretory proteins in both kinds of CM and intracellular signaling of HeLa cells and hDFs.


Subject(s)
Activins , Hypoxia , Apoptosis , Biological Phenomena , Cell Cycle , Cell Cycle Checkpoints , Cell Survival , Culture Media, Conditioned , Fibroblasts , Gene Ontology , Genome , HeLa Cells , Humans , Insulin-Like Growth Factor Binding Protein 3 , Membrane Potential, Mitochondrial , Mesenchymal Stem Cells , Tissue Inhibitor of Metalloproteinase-2 , Uterine Cervical Neoplasms
10.
Article in English | WPRIM | ID: wpr-764060

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients suffer from long-term diabetes can result in severe complications in multiple organs through induction of vascular dysfunctions. However, the effects of chronic hyperglycemic conditions on hematopoiesis and the microenvironment in the bone marrow (BM) are not yet well understood. METHODS: BM cells were harvested from femurs of mice and analyzed using flow cytometry. Human PVCs were cultured in serum-free α-MEM. After 24hrs, PVC-CM was collected and filtered through a 0.22 μm filter. RESULTS: In this study, we showed that hyperglycemia alters hematopoietic composition in the BM, which can partially be restored via paracrine mechanisms, including perivascular cells (PVCs) and NADPH oxidase (NOX) inhibition in mice with streptozotocin-induced diabetes. Prolonged hyperglycemic conditions resulted in an increase in the frequency and number of long-term hematopoietic stem cells as well as the number of total BM cells. The altered hematopoiesis in the BM was partially recovered by treatment with PVC-derived conditioned medium (CM). Long-term diabetes also increased the number of myeloid-derived suppressor cells in the BM, which was partially restored by the administration of PVC-CM and diphenyleneiodonium (DPI), a NOX inhibitor. We further showed the downregulation of ERK and p38 phosphorylation in BM cells of diabetic mice treated with PVC-CM and DPI. This may be associated with dysfunction of hematopoietic cells and promotion of subsequent diabetic complications. CONCLUSIONS: Our data suggested that alterations in BM hematopoietic composition due to prolonged hyperglycemic conditions might be restored by improvement of the hematopoietic microenvironment and modulation of NOX activity.


Subject(s)
Animals , Bone Marrow , Culture Media, Conditioned , Diabetes Complications , Down-Regulation , Femur , Flow Cytometry , Hematopoiesis , Hematopoietic Stem Cells , Humans , Hyperglycemia , Mice , NADP , NADPH Oxidases , Phosphorylation
11.
Article in English | WPRIM | ID: wpr-763680

ABSTRACT

BACKGROUND: The relationship between obstructive sleep apnoea (OSA) and metabolic disorders is complex and highly associated. The impairment of adipogenic capacity in pre-adipocytes may promote adipocyte hypertrophy and increase the risk of further metabolic dysfunction. We hypothesize that intermittent hypoxia (IH), as a pathophysiologic feature of OSA, may regulate adipogenesis by promoting macrophage polarization. METHODS: Male C57BL/6N mice were exposed to either IH (240 seconds of 10% O₂ followed by 120 seconds of 21% O₂, i.e., 10 cycles/hour) or intermittent normoxia (IN) for 6 weeks. Stromal-vascular fractions derived from subcutaneous (SUB-SVF) and visceral (VIS-SVF) adipose tissues were cultured and differentiated. Conditioned media from cultured RAW 264.7 macrophages after air (Raw) or IH exposure (Raw-IH) were incubated with SUB-SVF during adipogenic differentiation. RESULTS: Adipogenic differentiation of SUB-SVF but not VIS-SVF from IH-exposed mice was significantly downregulated in comparison with that derived from IN-exposed mice. IH-exposed mice compared to IN-exposed mice showed induction of hypertrophic adipocytes and increased preferential infiltration of M1 macrophages in subcutaneous adipose tissue (SAT) compared to visceral adipose tissue. Complementary in vitro analysis demonstrated that Raw-IH media significantly enhanced inhibition of adipogenesis of SUB-SVF compared to Raw media, in agreement with corresponding gene expression levels of differentiation-associated markers and adipogenic transcription factors. CONCLUSION: Low frequency IH exposure impaired adipogenesis of SAT in lean mice, and macrophage polarization may be a potential mechanism for the impaired adipogenesis.


Subject(s)
Adipocytes , Adipogenesis , Animals , Hypoxia , Culture Media, Conditioned , Gene Expression , Humans , Hypertrophy , In Vitro Techniques , Inflammation , Intra-Abdominal Fat , Macrophages , Male , Mice , Subcutaneous Fat , Transcription Factors
12.
Article in English | WPRIM | ID: wpr-762707

ABSTRACT

PURPOSE: Almost all liver diseases are known to be accompanied by increased levels of reactive oxygen species (ROS), regardless of the cause of the liver disorder. However, little is known about the role of hypoxic conditioned media (HCM) in the view of pro-oxidative/antioxidative balance. METHODS: Normoxic conditioned media (NCM) and HCM were obtained after culturing adipose-derived stem cells in 20% O₂ or 1% O₂ for 24 hours, respectively. Their effects on the expression of various markers reflecting pro-oxidative/antioxidative balance were investigated in both in vitro (thioacetamide-treated AML12 cells) and in vivo (partially hepatectomized mice) models of liver injury, respectively. RESULTS: HCM treatment induced the higher expression of antioxidant enzymes, such as superoxide dismutase, glutathione peroxidase, and catalase than did NCM in the in vitro model of liver injury. We also found that HCM increased the expression of nuclear factor erythroid 2-related factor (NRF2). The in vivo models of liver injury consistently validated the phenomenon of upregulated expression of antioxidant enzymes by HCM. CONCLUSION: We thus could conclude that HCM provides protection against ROS-related toxicity by increasing the expression of antioxidant enzymes, in part by releasing NRF2 in the injured liver.


Subject(s)
Antioxidants , Catalase , Culture Media, Conditioned , Glutathione Peroxidase , In Vitro Techniques , Liver , Liver Diseases , Mesenchymal Stem Cells , Reactive Oxygen Species , Stem Cells , Superoxide Dismutase
13.
Article in English | WPRIM | ID: wpr-761896

ABSTRACT

BACKGROUND: Recent studies have shown that induced pluripotent stem cells (iPSCs) could be differentiated into mesenchymal stem cells (MSCs) with notable advantages over iPSCs per se. In order to promote the application of iPSC-MSCs for osteoregenerative medicine, the present study aimed to assess the ability of murine iPSC-MSCs to differentiate into osteoblast phenotype. METHODS: Osteogenic differentiation medium, blending mouse osteoblast-conditioned medium (CM) with basic medium (BM) at ratio 3:7, 5:5 and 7:3, were administered to iPSC-MSCs, respectively. After 14 days, differentiation was evaluated by lineage-specific morphology, histological stain, quantitative reverse transcription-polymerase chain reaction and immunostaining. RESULTS: The osteogenesis-related genes, alp, runx2, col1 and ocn expressions suggest that culture medium consisting of CM:BM at the ratio of 3:7 enhanced the osteogenic differentiation more than other concentrations that were tested. In addition, the alkaline phosphatase activity and osteogenic marker Runx2 expression demonstrate that the combination of CM and BM significantly enhanced the osteogenic differentiation of iPSC-MSCs. CONCLUSION: In summary, this study has shown that osteoblast-derived CM can dramatically enhance osteogenic differentiation of iPSC-MSCs toward osteoblasts. Results from this work will contribute to optimize the osteogenic induction conditions of iPSC-MSCs and will assist in the potential application of iPSC-MSCs for bone tissue engineering.


Subject(s)
Alkaline Phosphatase , Animals , Bone and Bones , Culture Media, Conditioned , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Mice , Osteoblasts , Phenotype
14.
Article in English | WPRIM | ID: wpr-785835

ABSTRACT

BACKGROUND AND OBJECTIVES: Oxidative stress (OS) is known to be an important factor of male infertility. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to have immune-modulatory and anti-oxidant effects through their secretions, hence raising the idea of their potential benefit to improve sperm parameters. This study aims at investigating the effect of AD-MSCs conditioned medium (CM) on human sperm parameters in the presence and absence of H2O2-induced OS.METHODS AND RESULTS: Sperm samples were collected from 30 healthy men and divided into two groups: non-stressed and H2O2-stressed. Isolated AD-MSCs from healthy donors undergoing liposuction were cultured and CM was collected at 24, 48 and 72 h. Both sperm groups were cultured with CM and a time course was performed followed by an evaluation of sperm parameters. The incubation of non-stressed and stressed sperm samples with AD-MSCs-CM for 24 h was found to have the optimum impact on sperm vacuolization, DNA fragmentation and OS levels in comparison to other incubation timings, while preserving motility, viability and morphology of cells. Incubation with CM improved all sperm parameters except morphology in comparison to the non-treated group, with the best effect noted with CM collected at 24 h rather than 48 or 72 h for sperm vacuolization and DNA fragmentation. When compared to fresh semen parameters (T0), samples cultured with CM 24 h showed a significant decrease in sperm vacuolization and DNA fragmentation while keeping other parameters stable.CONCLUSIONS: AD-MSCSs-CM improves sperm quality, and hence can be used in treating infertility and subsequently enhancing IVF outcomes.


Subject(s)
Antioxidants , Culture Media, Conditioned , DNA Fragmentation , DNA , Humans , In Vitro Techniques , Infertility , Infertility, Male , Lipectomy , Male , Mesenchymal Stem Cells , Oxidative Stress , Semen , Spermatozoa , Tissue Donors
15.
Article in English | WPRIM | ID: wpr-742385

ABSTRACT

BACKGROUND: The liver is an organ with remarkable regenerative capacity; however, once chronic fibrosis occurs, liver failure follows, with high mortality and morbidity rates. Continuous exposure to proinflammatory stimuli exaggerates the pathological process of liver failure; therefore, immune modulation is a potential strategy to treat liver fibrosis. Mesenchymal stem cells (MSCs) with tissue regenerative and immunomodulatory potential may support the development of therapeutics for liver fibrosis. METHODS: Here, we induced hepatic injury in mice by injecting carbon tetrachloride (CCl₄) and investigated the therapeutic potential of conditionedmedium from tonsil-derivedMSCs (T-MSCCM). In parallel, we used recombinant human IL-1Ra,which, as we have previously shown, is secreted exclusively from T-MSCs and resolves the fibrogenic activation of myoblasts. Hepatic inflammation and fibrosis were determined by histological analyses using H&E and Picro-Sirius Red staining. RESULTS: The results demonstrated that T-MSC CM treatment significantly reduced inflammation as well as fibrosis in the CCl₄-injured mouse liver. IL-1Ra injection showed effects similar to T-MSC CM treatment, suggesting that T-MSC CM may exert anti-inflammatory and anti-fibrotic effects via the endogenous production of IL-1Ra. The expression of genes involved in fibrosis was evaluated, and the results showed significant induction of alpha-1 type I collagen, transforming growth factor beta, and tissue inhibitor of metalloproteases 1 upon CCl₄ injection, whereas treatment with T-MSC CM or IL-1Ra downregulated their expression. CONCLUSION: Taken together, these data support the therapeutic potential of T-MSC CM and/or IL-1Ra for the alleviation of liver fibrosis, as well as in treating diseases involving organ fibrosis.


Subject(s)
Animals , Carbon Tetrachloride , Collagen Type I , Culture Media, Conditioned , Fibrosis , Humans , Inflammation , Interleukin 1 Receptor Antagonist Protein , Liver Cirrhosis , Liver Failure , Liver , Mesenchymal Stem Cells , Metalloproteases , Mice , Mortality , Myoblasts , Transforming Growth Factor beta
16.
Braz. j. med. biol. res ; 51(2): e6950, 2018. tab, graf
Article in English | LILACS | ID: biblio-889028

ABSTRACT

Alveolar epithelia play an essential role in maintaining the integrity and homeostasis of lungs, in which alveolar epithelial type II cells (AECII) are a cell type with stem cell potential for epithelial injury repair and regeneration. However, mechanisms behind the physiological and pathological roles of alveolar epithelia in human lungs remain largely unknown, partially owing to the difficulty of isolation and culture of primary human AECII cells. In the present study, we aimed to characterize alveolar epithelia generated from A549 lung adenocarcinoma cells that were cultured in an air-liquid interface (ALI) state. Morphological analysis demonstrated that A549 cells could reconstitute epithelial layers in ALI cultures as evaluated by histochemistry staining and electronic microscopy. Immunofluorescent staining further revealed an expression of alveolar epithelial type I cell (AECI) markers aquaporin-5 protein (AQP-5), and AECII cell marker surfactant protein C (SPC) in subpopulations of ALI cultured cells. Importantly, molecular analysis further revealed the expression of AQP-5, SPC, thyroid transcription factor-1, zonula occludens-1 and Mucin 5B in A549 ALI cultures as determined by both immunoblotting and quantitative RT-PCR assay. These results suggest that the ALI culture of A549 cells can partially mimic the property of alveolar epithelia, which may be a feasible and alternative model for investigating roles and mechanisms of alveolar epithelia in vitro.


Subject(s)
Humans , Culture Media, Conditioned , Cell Culture Techniques/methods , Alveolar Epithelial Cells/physiology , A549 Cells/physiology , Reference Values , Time Factors , Microscopy, Electron, Scanning , Immunoblotting , Cell Count , Reproducibility of Results , Analysis of Variance , Pulmonary Surfactant-Associated Protein C/analysis , Aquaporin 5/analysis , Mucin-5B/analysis , Real-Time Polymerase Chain Reaction , Zonula Occludens-1 Protein/analysis , Thyroid Nuclear Factor 1/analysis
17.
IBJ-Iranian Biomedical Journal. 2018; 22 (2): 90-98
in English | IMEMR | ID: emr-192455

ABSTRACT

Background: Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchymal stem cells [MSCs] secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium [CM] in hypothyroidism male rats after inducing bone defect


Methods: In this study, 24 male rats were randomly assigned to three groups: [I] hypothyroidism + bone defect [HYPO], [II] hypothyroidism + bone defect + CM [HYPO + CM], and [III] no hypothyroidism + bone defect [control]. Four weeks after surgery, the right tibia was removed, and immediately, biomechanical and histological examinations were performed


Results: The results showed a significant reduction in bending stiffness [32.64 +/- 3.99], maximum force [14.63 +/- 1.89], high stress load [7.59 +/- 2.31], and energy absorption [12.68 +/- 2.12] at the osteotomy site in hypothyroidism rats in comparison to the control and hypothyroidism + condition medium groups [p < 0.05]. There was also a significant decrease in the trabecular bone volume [3.86 +/- 3.88] and the number of osteocytes [5800 +/- 859.8] at the osteotomy site in hypothyroidism rats compared to the control and hypothyroidism + condition medium groups [p < 0.01 and p < 0.02, respectively]


Conclusion: The present study suggests that the use of the CM can improve the fracture regeneration and accelerates bone healing at the osteotomy site in hypothyroidism rats


Subject(s)
Animals, Laboratory , Culture Media, Conditioned , Hypothyroidism/veterinary , Osteotomy , Tibial Fractures , Fracture Healing
18.
Article in English | WPRIM | ID: wpr-727873

ABSTRACT

Lysophosphatidic acid (LPA) is known to play a critical role in breast cancer metastasis to bone. In this study, we tried to investigate any role of LPA in the regulation of osteoclastogenic cytokines from breast cancer cells and the possibility of these secretory factors in affecting osteoclastogenesis. Effect of secreted cytokines on osteoclastogenesis was analyzed by treating conditioned media from LPA-stimulated breast cancer cells to differentiating osteoclasts. Result demonstrated that IL-8 and IL-11 expression were upregulated in LPA-treated MDA-MB-231 cells. IL-8 was induced in both MDA-MB-231 and MDA-MB-468, however, IL-11 was induced only in MDA-MB-231, suggesting differential LPARs participation in the expression of these cytokines. Expression of IL-8 but not IL-11 was suppressed by inhibitors of PI3K, NFkB, ROCK and PKC pathways. In the case of PKC activation, it was observed that PKCδ and PKCμ might regulate LPA-induced expression of IL-11 and IL-8, respectively, by using specific PKC subtype inhibitors. Finally, conditioned Medium from LPA-stimulated breast cancer cells induced osteoclastogenesis. In conclusion, LPA induced the expression of osteolytic cytokines (IL-8 and IL-11) in breast cancer cells by involving different LPA receptors. Enhanced expression of IL-8 by LPA may be via ROCK, PKCu, PI3K, and NFkB signaling pathways, while enhanced expression of IL-11 might involve PKCδ signaling pathway. LPA has the ability to enhance breast cancer cells-mediated osteoclastogenesis by inducing the secretion of cytokines such as IL-8 and IL-11.


Subject(s)
Breast Neoplasms , Breast , Culture Media, Conditioned , Cytokines , Interleukin-11 , Interleukin-8 , Neoplasm Metastasis , Osteoclasts , Receptors, Lysophosphatidic Acid
19.
Article in English | WPRIM | ID: wpr-758874

ABSTRACT

We investigated the effect of transforming growth factor beta 1 (TGF-β1) on equine hyaluronan synthase 2 (HAS2) gene expression and hyaluronan (HA) synthesis in culture models of articular chondrocytes. Equine chondrocytes were treated with TGF-β1 at different concentrations and times in monolayer cultures. In three-dimensional cultures, chondrocyte-seeded gelatin scaffolds were cultured in chondrogenic media containing 10 ng/mL of TGF-β1. The amounts of HA in conditioned media and in scaffolds were determined by enzyme-linked immunosorbent assays. HAS2 mRNA expression was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The uronic acid content and DNA content of the scaffolds were measured by using colorimetric and Hoechst 33258 assays, respectively. Cell proliferation was evaluated by using the alamarBlue assay. Scanning electron microscopy (SEM), histology, and immunohistochemistry were used for microscopic analysis of the samples. The upregulation of HAS2 mRNA levels by TGF-β1 stimulation was dose and time dependent. TGF-β1 was shown to enhance HA and uronic acid content in the scaffolds. Cell proliferation and DNA content were significantly lower in TGF-β1 treatments. SEM and histological results revealed the formation of a cartilaginous-like extracellular matrix in the TGF-β1-treated scaffolds. Together, our results suggest that TGF-β1 has a stimulatory effect on equine chondrocytes, enhancing HA synthesis and promoting cartilage matrix generation.


Subject(s)
Bisbenzimidazole , Cartilage , Cell Proliferation , Chondrocytes , Culture Media, Conditioned , DNA , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix , Gelatin , Gene Expression , Horses , Hyaluronic Acid , Immunohistochemistry , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Reverse Transcription , RNA, Messenger , Transforming Growth Factor beta , Transforming Growth Factors , Up-Regulation
20.
Neuroscience Bulletin ; (6): 1077-1090, 2018.
Article in English | WPRIM | ID: wpr-775477

ABSTRACT

Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.


Subject(s)
Animals , Brain , Metabolism , Pathology , Brain Ischemia , Pathology , Bronchoalveolar Lavage Fluid , Cell Hypoxia , Physiology , Cells, Cultured , Cerebrovascular Circulation , Physiology , Chromatography, High Pressure Liquid , Culture Media, Conditioned , Pharmacology , Disease Models, Animal , Endothelial Cells , Metabolism , Gene Expression Regulation , Physiology , Glia Maturation Factor , Metabolism , In Situ Nick-End Labeling , Lung Injury , Metabolism , Pathology , Male , Neuroglia , Metabolism , Neurologic Examination , Peroxidase , Metabolism , Proteome , RNA Interference , Physiology , RNA, Small Interfering , Genetics , Metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species , Metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL