Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. med. biol. res ; 54(2): e9869, 2021. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142585

ABSTRACT

Severe blockage in myeloid differentiation is the hallmark of acute myeloid leukemia (AML). Trdmt1 plays an important role in hematopoiesis. However, little is known about the function of Trdmt1 in AML cell differentiation. In the present study, Trdmt1 was up-regulated and miR-181a was down-regulated significantly during human leukemia HL-60 cell differentiation after TAT-CT3 fusion protein treatment. Accordingly, miR-181a overexpression in HL-60 cells inhibited granulocytic maturation. In addition, our "rescue" assay demonstrated that Trdmt1 3′-untranslated region promoted myeloid differentiation of HL-60 cells by sequestering miR-181a and up-regulating C/EBPα (a critical factor for normal myelopoiesis) via its competing endogenous RNA (ceRNA) activity on miR-181a. These findings revealed an unrecognized role of Trdmt1 as a potential ceRNA for therapeutic targets in AML.


Subject(s)
Humans , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Cell Differentiation , HL-60 Cells
2.
J. appl. oral sci ; 28: e20190583, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1090773

ABSTRACT

Abstract Genetic and epigenetic changes have been associated with periodontitis in various genes; however, little is known about genes involved in epigenetic mechanisms and in oxidative stress. Objective: This study aims to investigate the association of polymorphisms C677T in MTHFR (rs1801133) and −149C→T in DNMT3B (rs2424913), as well as the methylation profiles of MTHFR, miR-9-1, miR-9-3, SOD1, and CAT with periodontitis. The association between polymorphisms and DNA methylation profiles was also analyzed. Methodology: The population studied was composed of 100 nonsmokers of both sexes, divided into healthy and periodontitis groups. Genomic DNA was extracted from the epithelial buccal cells, which were collected through a mouthwash. Polymorphism analysis was performed through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), while methylation-specific PCR (MSP) or combined bisulfite restriction analysis techniques were applied for methylation analysis. Results: For DNMT3B, the T allele and the TT genotype were detected more frequently in the periodontitis group, as well as the methylated profile on the miR-9-1 promoter region. There was also a tendency towards promoter region methylation on the CAT sequence of individuals with periodontal disease. Conclusion: The polymorphism −149C→T in DNMT3B (rs2424913) and the methylated profile of the miR-9-1 promoter region are associated with periodontitis.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Periodontitis/genetics , Polymorphism, Genetic , DNA Methylation/genetics , MicroRNAs/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Polymorphism, Restriction Fragment Length , Catalase/genetics , Case-Control Studies , Polymerase Chain Reaction , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Genetic Association Studies , Superoxide Dismutase-1/genetics , Genotype
3.
Article in English | WPRIM | ID: wpr-191846

ABSTRACT

This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.


Subject(s)
Animals , Animals, Genetically Modified/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle/embryology , DNA (Cytosine-5-)-Methyltransferases/genetics , Embryo, Mammalian/embryology , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , HSP70 Heat-Shock Proteins/genetics , Nuclear Transfer Techniques/veterinary , Parthenogenesis , Pregnancy , RNA, Messenger/genetics , Transcription, Genetic
4.
Iranian Journal of Cancer Prevention. 2008; 1 (3): 111-118
in English | IMEMR | ID: emr-87019

ABSTRACT

Gastric cancer is one of the most common malignant tumors in Iran. Hypomethylation and/or hypermethylation of DNA have been described in Gastric cancer and is presumed to be an early event in this process. We hypothesized that Single nucleotide polymorphisms of DNMT1 gene may be associated with the genetic susceptibility to Gastric cancer. 200 patients and 200 controls, both with Iranian origin were studied. Three polymorphisms were genotyped by PCR-RFLP. Allele frequencies and genotypes were compared between the cases and controls. Odds ratios were calculated and the interaction between polymorphisms, age and sex were examined. There was no significant association between DNMT1 polymorphisms and Gastric cancer. We could not show any association between DNMT1 polymorphisms and gastric cancer. Larger sets of polymorphisms and sample sizes are required to test the possibility of association between polymorphisms of this gene and gastric cancer


Subject(s)
Humans , Male , Female , DNA (Cytosine-5-)-Methyltransferases/genetics , Stomach Neoplasms/genetics , Case-Control Studies
5.
Article in English | WPRIM | ID: wpr-634782

ABSTRACT

Hypermethylation in the promoter region is an important epigenetic mechanism for the transcriptional repression of a number of cancer-associated genes, and over-expression and/or increased activity of DNA methyltransferases are considered to be the main cause of promoter hypermethylation. In order to explore the roles of two methyltransferase members (DNMT1 and DNMT3b) in the cholangiocarcinoma tumorigenesis, antisense eukaryotic expression plasmid of DNMT1 and DNMT3b gene was constructed respectively, and were co-transfected into the human cholangiocarcinoma cell line QBC-939 to observe their biological effects on the cell growth and proliferation ability, apoptosis, cell cycle alteration, and the tumorigenesis ability in the subcutaneous tissue of nude mouse. The results demonstrated that co-transfection with antisense eukaryotic expression plasmid of DNMT1 and DNMT3b gene and single transfection with antisense eukaryotic expression plasmid of DNMT1 gene can suppress the growth and proliferation of QBC-939, block the cell cycle at G1 phase, increase the apoptosis rate, minimize the tumor size in the subcutaneous tissue of nude mouse. The suppressing biological effect of co-transfection is stronger than single transfection with antisense DNMT1. Meanwhile, single transfection with antisense eukaryotic expression plasmid of DNMT3b gene has no effects on the biological characteristics of QBC-939. This study suggests that DNMT1 gene plays a key role in DNA methylation and DNMT3b gene may act as an accessory to support its function in inactivation of tumor suppressor genes. Combination DNMT1 and DNMT3b will increase their biological effects and have the synergistic effect on suppressing the growth of human cholangiocarcinoma cell line QBC-939.


Subject(s)
Apoptosis , Biliary Tract Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/metabolism , DNA (Cytosine-5-)-Methyltransferases/biosynthesis , DNA (Cytosine-5-)-Methyltransferases/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Genetic Vectors , Mice, Nude , Neoplasm Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL