Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 957
Filter
1.
Article in Chinese | WPRIM | ID: wpr-1009355

ABSTRACT

OBJECTIVE@#To explore the genetic basis of two children with unexplained psychomotor developmental delay and facial dysmorphisms suggestive of Coffin-Siris syndrome (CSS).@*METHODS@#A boy and a girl suspected for CSS at the 980th Hospital of the People's Liberation Army Joint Service Support Force respectively in July 2019 and January 2021, and seven members from their families, were selected as the study subjects. Clinical data and family history of the children were collected, and detailed physical examination was carried out, in addition with laboratory and related auxiliary examinations. Potential variants and copy number variations (CNVs) were detected by whole exome sequencing (WES) and copy number variation sequencing (CNV-seq).@*RESULTS@#Child 1, an 8-month-old female, had featured microcephaly, atrial septal defect, curving of fifth finger/toe, and low limb muscle tone. Child 2 was a 2.5-year-old male with language delay, social impairment, dense hair but no curving of the fifth fingers. Genetic testing revealed that child 1 had loss of heterozygosity for exons 8 to 21 of the ARID1B gene, which was unreported previously. Family verification showed that both of her parents were of the wild type. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and American Society of Molecular Pathology (AMP), the variant was rated as pathogenic (PVS1+PS2+PM2-supporting). Child 2 was found to harbor a heterozygous c.4263-6 (IVS17) T>G variant of the ARID1B gene. Transcriptome sequencing confirmed that the variant can affect the normal splicing, resulting in retention of a 5 bp sequence in intron 17. Family verification showed that both of his parents were of the wild type. Based on the guidelines from the ACMG, the variant was rated as pathogenic (PS2+PM2-supporting+PP3+PS3).@*CONCLUSION@#WES and RNA-seq have confirmed the diagnosis of CSS in both children. Discovery of the novel variants has expanded the spectrum of pathogenic mutations underlying CSS, and provided a basis for the genetic counseling.


Subject(s)
Child, Preschool , Female , Humans , Infant , Male , Abnormalities, Multiple/diagnosis , DNA Copy Number Variations , DNA-Binding Proteins/genetics , Intellectual Disability/diagnosis , Micrognathism/genetics , Mutation , Transcription Factors/genetics
2.
Chinese Journal of Pathology ; (12): 58-63, 2024.
Article in Chinese | WPRIM | ID: wpr-1012425

ABSTRACT

Objective: To investigate the clinicopathological and genetic features of epithelioid and spindle cell rhabdomysarcoma with EWSR1-TFCP2 or FUS-TFCP2 fusion. Methods: The clinical, morphological and immunohistochemical features of 14 cases of epithelioid and spindle cell rhabdomysarcoma with EWSR1-TFCP2 or FUS-TFCP2 fusion diagnosed from January 2019 to December 2022 in the Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan, China were retrospectively analyzed. The cases were all subject to FISH or next generation sequencing for analysis of molecular genetic features. The literature was reviewed. Results: There were 5 males and 9 females, with the age at presentation ranging from 6 to 36 years (mean, 22 years). Tumors occurred in the head and neck (9 cases), pelvic region (2 cases), bladder (one case), right humerus (one case), and the abdominal wall, humerus and pubic at the same time (one case). Presenting symptoms varied by location but often included pain or discomfort. Most of the patients showed aggressive radiographic features with soft tissue extension. The tumors had a median size of 6.6 cm (range, 2-23 cm). The tumors were poorly defined and irregularly shaped. Microscopic examination showed diffuse proliferation of spindle or epithelioid cells. While morphologically high-grade tumors displayed obvious cytological atypia, a high mitotic count and tumor necrosis, low-grade tumors grew in sheets and fascicles composed of spindle, epithelioid cells with moderate or abundant amounts of eosinophilic cytoplasm, without pronounced cytological atypia. The tumor cells expressed Desmin, MyoD1, and Myogenin, as well as ALK, EMA, and CKpan. EWSR1/FUS-TFCP2 gene fusion was detected in 14 cases with next generation sequencing and confirmed by FISH. Six cases had EWSR1-TFCP2 fusions and 8 cases showed FUS-TFCP2 fusions. Follow-up information was available in 13 patients, ranged from 5 to 37 months. At the end of follow-up period, 7 patients died of the disease. Six patients were alive:two cases had local recurrences and metastases, two cases of recurrences, one case of metastasis and one case without recurrences and metastasis. Conclusions: Epithelioid and spindle cell rhabdomysarcomas with EWSR1-TFCP2 or FUS-TFCP2 fusion show a very aggressive clinical course, and more commonly occur in the head and neck. Their genetic hallmark is the presence of EWSR1/FUS-TFCP2 fusions. Familiarity with its clinicopathological characteristics is helpful in avoiding misdiagnoses.


Subject(s)
Male , Female , Humans , Child , Adolescent , Young Adult , Adult , Retrospective Studies , Transcription Factors/genetics , Rhabdomyosarcoma , RNA-Binding Protein EWS/genetics , China , Biomarkers, Tumor/genetics , DNA-Binding Proteins/genetics , RNA-Binding Protein FUS/genetics
3.
Article in English | WPRIM | ID: wpr-1010719

ABSTRACT

Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.


Subject(s)
Humans , DNA-Binding Proteins , Head and Neck Neoplasms/genetics , N-Terminal Acetyltransferases , RNA, Transfer , Serine , Signal Transduction , Squamous Cell Carcinoma of Head and Neck
4.
Braz. j. biol ; 84: e250575, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350309

ABSTRACT

Abstract Cancer is a fatal malignancy and its increasing worldwide prevalence demands the discovery of more sensitive and reliable molecular biomarkers. To investigate the GINS1 expression level and its prognostic value in distinct human cancers using a series of multi-layered in silico approach may help to establish it as a potential shared diagnostic and prognostic biomarker of different cancer subtypes. The GINS1 mRNA, protein expression, and promoter methylation were analyzed using UALCAN and Human Protein Atlas (HPA), while mRNA expression was further validated via GENT2. The potential prognostic values of GINS1 were evaluated through KM plotter. Then, cBioPortal was utilized to examine the GINS1-related genetic mutations and copy number variations (CNVs), while pathway enrichment analysis was performed using DAVID. Moreover, a correlational analysis between GINS1 expression and CD8+ T immune cells and a the construction of gene-drug interaction network was performed using TIMER, CDT, and Cytoscape. The GINS1 was found down-regulated in a single subtypes of human cancer while commonly up-regulated in 23 different other subtypes. The up-regulation of GINS1 was significantly correlated with the poor overall survival (OS) of Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Kidney renal clear cell carcinoma (KIRC). The GINS1 was also found up-regulated in LIHC, LUAD, and KIRC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of GINS1 in two diverse pathways, while few interesting correlations were also documented between GINS1 expression and its promoter methylation level, CD8+ T immune cells level, and CNVs. Moreover, we also predicted few drugs that could be used in the treatment of LIHC, LUAD, and KIRC by regulating the GINS1 expression. The expression profiling of GINS1 in the current study has suggested it a novel shared diagnostic and prognostic biomarker of LIHC, LUAD, and KIRC.


Resumo O câncer é uma doença maligna fatal e sua crescente prevalência mundial exige a descoberta de biomarcadores moleculares mais sensíveis e confiáveis. Investigar o nível de expressão de GINS1 e seu valor prognóstico em cânceres humanos distintos, usando uma série de abordagens in silico em várias camadas, pode ajudar a estabelecê-lo como um potencial biomarcador de diagnóstico e prognóstico compartilhado de diferentes subtipos de câncer. O mRNA de GINS1, a expressão da proteína e a metilação do promotor foram analisados ​​usando UALCAN e Human Protein Atlas (HPA), enquanto a expressão de mRNA foi posteriormente validada via GENT2. Os valores prognósticos potenciais de GINS1 foram avaliados por meio do plotter KM. Em seguida, o cBioPortal foi utilizado para examinar as mutações genéticas relacionadas ao GINS1 e as variações do número de cópias (CNVs), enquanto a análise de enriquecimento da via foi realizada usando DAVID. Além disso, uma análise correlacional entre a expressão de GINS1 e células imunes T CD8 + e a construção de uma rede de interação gene-droga foi realizada usando TIMER, CDT e Cytoscape. O GINS1 foi encontrado regulado negativamente em um único subtipo de câncer humano, enquanto comumente regulado positivamente em 23 outros subtipos diferentes. A regulação positiva de GINS1 foi significativamente correlacionada com a sobrevida global pobre (OS) de Carcinoma Hepatocelular de Fígado (LIHC), Adenocarcinoma de Pulmão (LUAD) e Carcinoma de Células Claras Renais de Rim (KIRC). O GINS1 também foi encontrado regulado positivamente em pacientes LIHC, LUAD e KIRC de diferentes características clínico-patológicas. A análise de enriquecimento de vias revelou o envolvimento de GINS1 em duas vias diversas, enquanto poucas correlações interessantes também foram documentadas entre a expressão de GINS1 e seu nível de metilação do promotor, nível de células imunes T CD8 + e CNVs. Além disso, também previmos poucos medicamentos que poderiam ser usados ​​no tratamento de LIHC, LUAD e KIRC, regulando a expressão de GINS1. O perfil de expressão de GINS1 no estudo atual sugeriu que é um novo biomarcador de diagnóstico e prognóstico compartilhado de LIHC, LUAD e KIRC.


Subject(s)
Humans , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Liver Neoplasms , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Up-Regulation , DNA-Binding Proteins , DNA Copy Number Variations
5.
Article in Chinese | WPRIM | ID: wpr-980794

ABSTRACT

OBJECTIVE@#To observe the effects of auricular thumbtack needle on breast feeding and lactation function in primiparous women with cesarean section, and to explore its mechanism of action from the perspective of lactation-related gene expression.@*METHODS@#One hundred cases of primiparous women with cesarean section were randomly divided into an observation group (50 cases, 3 cases dropped off) and a control group (50 cases, 2 cases were eliminated). The patients in the control group were treated with routine obstetric care. Based on the treatment of the control group, the patients in the observation group were treated with auricular thumbtack needle at Neifenmi (CO18), Xiong (AH10), Xiongzhui (AH11), Shenmen (TF4), and Jiaogan (AH6a), etc., with one side of auricular point selected, only once for a total of 3 d. The lactation initiation time, lactation adequacy rate at postpartum 72 h, exclusive breastfeeding rate at postpartum 42 d, and breastfeeding score after treatment were compared between the two groups. Real-time quantitative PCR and Western blot method were used to detect the mRNA and protein expression levels of TDP-43, Btn1A1 and XDH.@*RESULTS@#After treatment, the lactation initiation time in the observation group was earlier than that in the control group (P<0.01), and breastfeeding score in the observation group was higher than that in the control group (P<0.01). The lactation adequacy rate at postpartum 72 h was 63.8% (30/47) in the observation group, which was higher than 41.7% (20/48) in the control group (P<0.05). The exclusive breastfeeding rate at postpartum 42 d was 72.3% (34/47) in the observation group, which was higher than 47.9% (23/48) in the control group (P<0.05). The mRNA and protein expression levels of TDP-43 and Btn1A1 in breast milk in the observation group were higher than those in the control group (P<0.01), while there was no statistically significant difference in mRNA and protein expression of XDH in breast milk between the two groups (P>0.05).@*CONCLUSION@#The auricular thumbtack needle in addition to routine care could promote lactation initiation, improve lactation adequacy rate and exclusive breastfeeding rate in primiparous women with cesarean section, and the action mechanism may be related to up-regulation of TDP-43 and Btn1A1 expression.


Subject(s)
Pregnancy , Humans , Female , Breast Feeding , Cesarean Section , Lactation , Milk, Human , DNA-Binding Proteins
6.
Article in Chinese | WPRIM | ID: wpr-981286

ABSTRACT

Objective To study the pathological types,expression of mismatch repair protein,human epidermal growth factor receptor 2(HER2),and Pan-TRK,and Epstein-Barr virus(EBV)infection in patients with colorectal cancer resected in Tibet. Methods A total of 79 patients with colorectal cancer resected in Tibet Autonomous Region People's Hospital from December 2013 to July 2021 were enrolled in this study.The clinical and pathological data of the patients were collected.The expression of mismatch repair protein,HER2,and Pan-TRK was detected by immunohistochemical(IHC)staining,and detection of HER2 gene by fluorescence in situ hybridization(FISH)in the patients with HER2 IHC results of 2+ or above.EBV was detected by in situ hybridization with EBV-encoded small RNA. Results A total of 79 colorectal cancer patients were included in this study,with the male-to-female ratio of 1.26:1 and the mean age of(57.06±12.74)years(24-83 years).Among them,4 patients received preoperative neoadjuvant therapy.Colonic cancer and rectal cancer occurred in 57(57/79,72.15%,including 31 and 26 in the right colon and left colon,respectively)and 22(22/79,27.85%)patients,respectively.The maximum diameter of tumor varied within the range of 1-20 cm,with the mean of(6.61±3.33)cm.Among the 79 colorectal cancer patients,75(75/79,94.94%)patients showed adenocarcinoma.Lymph node metastasis occurred in 12(12/21,57.14%)out of the 21 patients with severe tumor budding,13(13/23,56.52%)out of the 23 patients with moderate tumor budding,and 2(2/31,6.45%)out of the 31 patients with mild tumor budding,respectively.The lymph node metastasis rate showed differences between the patients with severe/moderate tumor budding and the patients with mild tumor budding(all P<0.001).The IHC staining showed that mismatch repair protein was negative in 10(10/65,15.38%)patients,including 5 patients with both MSH2 and MSH6 negative,4 patients with both MLH1 and PMS2 negative,and 1 patient with MSH6 negative.Pan-TRK was negative in 65 patients.The IHC results of HER2 showed 0 or 1+ in 60 patients and 2+ in 5 patients.FISH showed no positive signal in the 5 patients with HER2 IHC results of 2+.The detection with EBV-encoded small RNA showed positive result in 1(1/65,1.54%)patient. Conclusions Non-specific adenocarcinoma of the right colon is the most common in the patients with colorectal cancer resected in Tibet,and 15% of the patients showed mismatch repair protein defects.EBV-associated colorectal carcer is rare,Pan-TRK expression and HER2 gene amplification are seldom.The colorectal cancer patients with moderate and severe tumor budding are more likely to have lymph node metastasis.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Aged, 80 and over , Adenocarcinoma , Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , DNA Mismatch Repair , DNA-Binding Proteins/genetics , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human/metabolism , In Situ Hybridization, Fluorescence , Lymphatic Metastasis , Tibet
7.
Chinese Journal of Biotechnology ; (12): 359-371, 2023.
Article in Chinese | WPRIM | ID: wpr-970380

ABSTRACT

This study aims to develop an improved cell screening system for farnesoid X receptor (FXR) agonists based on a dual luciferase reporter gene system. FXR response element (FXRE) fragments from FXR target genes were cloned and inserted into upstream of firefly luciferase (Luc) gene in the plasmid pGL4-luc2P-Hygro. In combination with the internal reference plasmid containing renilla luciferase, a dual luciferase reporter gene system was developed and used for high throughput screening of FXR agonists. After studying the effects of over-expression of RXR, mouse or human FXR, various FXRE fragments, and different ratio of FXR plasmid amount to reporter gene plasmid, induction efficiency of the screening system was optimized by the known FXR agonist GW4064, and Z factor for the system reached 0.83 under optimized conditions. In summary, an improved cell screening system based on double luciferase reporter gene detection system was developed to facilitate the discovery of FXR agonists, where a new enhanced FXRE element was formed by a superposition of multiple FXRE fragments from FXR target genes, instead of a superposition of traditional IR-1 (inverted repeats-1) fragments.


Subject(s)
Humans , Mice , Animals , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Genes, Reporter , Luciferases/genetics
8.
Asian Journal of Andrology ; (6): 223-229, 2023.
Article in English | WPRIM | ID: wpr-971017

ABSTRACT

We identified distinct senescence-related molecular subtypes and critical genes among prostate cancer (PCa) patients undergoing radical prostatectomy (RP) or radical radiotherapy (RT). We conducted all analyses using R software and its suitable packages. Twelve genes, namely, secreted frizzled-related protein 4 (SFRP4), DNA topoisomerase II alpha (TOP2A), pleiotrophin (PTN), family with sequence similarity 107 member A (FAM107A), C-X-C motif chemokine ligand 14 (CXCL14), prostate androgen-regulated mucin-like protein 1 (PARM1), leucine zipper protein 2 (LUZP2), cluster of differentiation 38 (CD38), cartilage oligomeric matrix protein (COMP), vestigial-like family member 3 (VGLL3), apolipoprotein E (APOE), and aldehyde dehydrogenase 2 family member (ALDH2), were eventually used to subtype PCa patients from The Cancer Genome Atlas (TCGA) database and GSE116918, and the molecular subtypes showed good correlations with clinical features. In terms of the tumor immune environment (TME) analysis, compared with cluster 1, cancer-associated fibroblasts (CAFs) scored significantly higher, while endothelial cells scored lower in cluster 2 in TCGA database. There was a statistically significant correlation between both CAFs and endothelial cells with biochemical recurrence (BCR)-free survival for PCa patients undergoing RP. For the GSE116918 database, cluster 2 had significantly lower levels of CAFs and tumor purity and higher levels of stromal, immune, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) scores than cluster 1; in addition, patients with high levels of CAFs, stromal scores, immune scores, and ESTIMATE scores and low levels of tumor purity tended to suffer from BCR. Based on the median of differentially expressed checkpoints, high expression of CD96, hepatitis A virus cellular receptor 2 (HAVCR2), and neuropilin 1 (NRP1) in GSE116918 and high expression of CD160 and tumor necrosis factor (ligand) superfamily member 18 (TNFSF18) in TCGA database were associated with a significantly higher risk of BCR than their counterparts. In conclusion, we first constructed distinct molecular subtypes and critical genes for PCa patients undergoing RP or RT from the fresh perspective of senescence.


Subject(s)
Male , Humans , Endothelial Cells , Ligands , Prostatic Neoplasms/pathology , Prostate/pathology , Prostatectomy , Aldehyde Dehydrogenase, Mitochondrial , DNA-Binding Proteins , Transcription Factors
9.
Asian Journal of Andrology ; (6): 152-157, 2023.
Article in English | WPRIM | ID: wpr-971026

ABSTRACT

Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.


Subject(s)
Male , Humans , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , DNA-Binding Proteins/metabolism , Prolyl Hydroxylases/metabolism , Hypoxia , Prostatic Neoplasms/pathology , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , DNA Helicases/metabolism
10.
Neuroscience Bulletin ; (6): 273-291, 2023.
Article in English | WPRIM | ID: wpr-971555

ABSTRACT

MAGED4B belongs to the melanoma-associated antigen family; originally found in melanoma, it is expressed in various types of cancer, and is especially enriched in glioblastoma. However, the functional role and molecular mechanisms of MAGED4B in glioma are still unclear. In this study, we found that the MAGED4B level was higher in glioma tissue than that in non-cancer tissue, and the level was positively correlated with glioma grade, tumor diameter, Ki-67 level, and patient age. The patients with higher levels had a worse prognosis than those with lower MAGED4B levels. In glioma cells, MAGED4B overexpression promoted proliferation, invasion, and migration, as well as decreasing apoptosis and the chemosensitivity to cisplatin and temozolomide. On the contrary, MAGED4B knockdown in glioma cells inhibited proliferation, invasion, and migration, as well as increasing apoptosis and the chemosensitivity to cisplatin and temozolomide. MAGED4B knockdown also inhibited the growth of gliomas implanted into the rat brain. The interaction between MAGED4B and tripartite motif-containing 27 (TRIM27) in glioma cells was detected by co-immunoprecipitation assay, which showed that MAGED4B was co-localized with TRIM27. In addition, MAGED4B overexpression down-regulated the TRIM27 protein level, and this was blocked by carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), an inhibitor of the proteasome. On the contrary, MAGED4B knockdown up-regulated the TRIM27 level. Furthermore, MAGED4B overexpression increased TRIM27 ubiquitination in the presence of MG132. Accordingly, MAGED4B down-regulated the protein levels of genes downstream of ubiquitin-specific protease 7 (USP7) involved in the tumor necrosis factor-alpha (TNF-α)-induced apoptotic pathway. These findings indicate that MAGED4B promotes glioma growth via a TRIM27/USP7/receptor-interacting serine/threonine-protein kinase 1 (RIP1)-dependent TNF-α-induced apoptotic pathway, which suggests that MAGED4B is a potential target for glioma diagnosis and treatment.


Subject(s)
Humans , Tumor Necrosis Factor-alpha , DNA-Binding Proteins/metabolism , Ubiquitin-Specific Peptidase 7 , Cisplatin , Temozolomide , Transcription Factors , Glioma , Cell Proliferation , Melanoma , Cell Line, Tumor , Apoptosis , Nuclear Proteins/genetics
11.
Article in Chinese | WPRIM | ID: wpr-1009266

ABSTRACT

OBJECTIVE@#To explore the clinical characteristics and genetic etiology of a patient with mental retardation and ejaculatory dysfunction.@*METHODS@#A patient with mental retardation and ejaculatory dysfunction who was admitted to the First Affiliated Hospital of Air Force Military Medical University on November 18, 2021 was selected as the study subject. Clinical data of the patient were collected. Peripheral venous blood samples were collected from the patient and his parents. Whole exome sequencing (WES) was carried out for the patient, and the candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#The patient, a 26-year-old male, had manifested atypical mental retardation and ejaculatory dysfunction. WES revealed that he has harbored a heterozygous variant of the ARID1B gene, namely c.5776C>T (p.Arg1926X). Sanger sequencing verified that neither of his parents has carried the same variant. The variant has been recorded in the 1000 Genomes, ExAC, gnomAD and ClinVar databases. A search of the dbSNP database suggested that the variant has a population frequency of 0.000 4%. The variant was predicted as deleterious by online software including Mutation Taster, CADD, and MutPred. Analysis with Cluster Omega online software suggested that the amino acid encoded by the variant site was highly conserved among various species. Analysis with PyMOL software suggested that the variant may affect the function of the encoded protein. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and ClinGen, the variant was predicted to be pathogenic.@*CONCLUSION@#The c.5776C>T (p.Arg1926X) variant of the ARID1B gene probably underlay the mental retardation and ejaculatory dysfunction in this patient. Above finding has broadened the spectrum of the ARID1B gene variants and provided reference for the diagnosis and treatment of the patient.


Subject(s)
Male , Humans , Adult , Intellectual Disability/genetics , Transcription Factors/genetics , Computational Biology , Gene Frequency , Genomics , DNA-Binding Proteins/genetics
12.
Article in Chinese | WPRIM | ID: wpr-1009466

ABSTRACT

DNA sensor, a kind of pattern recognition receptor (PRR), is widely expressed in innate immune cells. It activates the inflammatory signaling pathways and triggers an innate immune response by recognizing the pathogens or DNA in abnormal host cells. DNA-dependent activator of IFN-regulatory factors (DAI) is the first cytoplasmic DNA receptor discovered, which plays an important role in regulating the innate immune responses characterized by induction of interferon and programmed cell death. The article summarizes the molecular characteristics of DAI, its downstream signaling pathways, and its role and mechanism in anti-infective immunity, tumor immunity and inflammatory diseases. It also makes a preliminary exploration of the correlation between DAI and transplantation immunology, and provides a new target for the therapy of various immune diseases.


Subject(s)
DNA/metabolism , Receptors, Pattern Recognition , Immunity, Innate , Signal Transduction/genetics , DNA-Binding Proteins/genetics
13.
Article in English | WPRIM | ID: wpr-1009928

ABSTRACT

OBJECTIVES@#To explore the mechanism of transforming growth factor-β1 (TGF-β1) induce renal fibrosis.@*METHODS@#Renal fibroblast NRK-49F cells treated with and without TGF-β1 were subjected to RNA-seq analysis. DESeq2 was used for analysis. Differentially expressed genes were screened with the criteria of false discovery rate<0.05 and l o g 2 F C >1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for differentially expressed genes. Genes encoding transcription factors were further screened for differential expression genes. Then, the expression of these genes during renal fibrosis was verified using unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis model and a public gene expression dataset (GSE104954).@*RESULTS@#After TGF-β1 treatment for 6, 12 and 24 h, 552, 1209 and 1028 differentially expressed genes were identified, respectively. GO analysis indicated that these genes were significantly enriched in development, cell death, and cell migration. KEGG pathway analysis showed that in the early stage of TGF-β1 induction (TGF-β1 treatment for 6 h), the changes in Hippo, TGF-β and Wnt signaling pathways were observed, while in the late stage of TGF-β1 induction (TGF-β1 treatment for 24 h), the changes of extracellular matrix-receptor interaction, focal adhesion and adherens junction were mainly enriched. Among the 291 up-regulated differentially expressed genes treated with TGF-β1 for 6 h, 13 genes (Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Ahr, Foxo1, Myc, Tcf7, Foxc2, Glis1) encoded transcription factors. Validation in a cell model showed that TGF-β1 induced expression of 9 transcription factors (encoded by Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Myc, Tcf7), while the expression levels of the other 4 genes did not significantly change after TGF-β1 treatment. Validation results in UUO-induced mouse renal fibrosis model showed that Snai1, Irf8, Bhlhe40, Junb, Arid5a, Myc and Tcf7 were up-regulated after UUO, Vdr was down-regulated and there was no significant change in Lef1. Validation based on the GSE104954 dataset showed that IRF8 was significantly overexpressed in the renal tubulointerstitium of patients with diabetic nephropathy or IgA nephropathy, MYC was highly expressed in diabetic nephropathy, and the expressions of the other 7 genes were not significantly different compared with the control group.@*CONCLUSIONS@#TGF-β1 induces differentially expressed genes in renal fibroblasts, among which Irf8 and Myc were identified as potential targets of chronic kidney disease and renal fibrosis.


Subject(s)
Mice , Animals , Humans , Transforming Growth Factor beta1/metabolism , Diabetic Nephropathies/pathology , Transcriptome , Signal Transduction , Kidney , Ureteral Obstruction/pathology , Fibrosis , Interferon Regulatory Factors , Transforming Growth Factor beta/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
14.
Chinese Journal of Lung Cancer ; (12): 701-708, 2023.
Article in Chinese | WPRIM | ID: wpr-1010077

ABSTRACT

The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.


Subject(s)
Humans , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Lung Neoplasms , DNA Repair , Genomic Instability , Rad51 Recombinase/metabolism
15.
Article in English | WPRIM | ID: wpr-1010591

ABSTRACT

Eukaryotic organisms constantly face a wide range of internal and external factors that cause damage to their DNA. Failure to accurately and efficiently repair these DNA lesions can result in genomic instability and the development of tumors (Canela et al., 2017). Among the various forms of DNA damage, DNA double-strand breaks (DSBs) are particularly harmful. Two major pathways, non-homologous end joining (NHEJ) and homologous recombination (HR), are primarily responsible for repairing DSBs (Katsuki et al., 2020; Li and Yuan, 2021; Zhang and Gong, 2021; Xiang et al., 2023). NHEJ is an error-prone repair mechanism that simply joins the broken ends together (Blunt et al., 1995; Hartley et al., 1995). In contrast, HR is a precise repair process. It involves multiple proteins in eukaryotic cells, with the RAD51 recombinase being the key player, which is analogous to bacterial recombinase A (RecA) (Shinohara et al., 1992). The central event in HR is the formation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments that facilitate homology search and DNA strand invasion, ultimately leading to the initiation of repair synthesis (Miné et al., 2007; Hilario et al., 2009; Ma et al., 2017).


Subject(s)
Recombinational DNA Repair , DNA-Binding Proteins/metabolism , DNA Repair , DNA Damage , DNA
16.
Frontiers of Medicine ; (4): 1204-1218, 2023.
Article in English | WPRIM | ID: wpr-1010813

ABSTRACT

Brain development requires a delicate balance between self-renewal and differentiation in neural stem cells (NSC), which rely on the precise regulation of gene expression. Ten-eleven translocation 2 (TET2) modulates gene expression by the hydroxymethylation of 5-methylcytosine in DNA as an important epigenetic factor and participates in the neuronal differentiation. Yet, the regulation of TET2 in the process of neuronal differentiation remains unknown. Here, the protein level of TET2 was reduced by the ubiquitin-proteasome pathway during NSC differentiation, in contrast to mRNA level. We identified that TET2 physically interacts with the core subunits of the glucose-induced degradation-deficient (GID) ubiquitin ligase complex, an evolutionarily conserved ubiquitin ligase complex and is ubiquitinated by itself. The protein levels of GID complex subunits increased reciprocally with TET2 level upon NSC differentiation. The silencing of the core subunits of the GID complex, including WDR26 and ARMC8, attenuated the ubiquitination and degradation of TET2, increased the global 5-hydroxymethylcytosine levels, and promoted the differentiation of the NSC. TET2 level increased in the brain of the Wdr26+/- mice. Our results illustrated that the GID complex negatively regulates TET2 protein stability, further modulates NSC differentiation, and represents a novel regulatory mechanism involved in brain development.


Subject(s)
Animals , Mice , DNA-Binding Proteins/genetics , Cell Differentiation , Neural Stem Cells , Translocation, Genetic , Ubiquitins/genetics , Ligases/genetics
17.
Article in Chinese | WPRIM | ID: wpr-981809

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a child with congenital heart disease (CHD) and global developmental delay (GDD).@*METHODS@#A child who was hospitalized at the Department of Cardiac Surgery of Fujian Children's Hospital on April 27, 2022 was selected as the study subject. Clinical data of the child was collected. Umbilical cord blood sample of the child and peripheral blood samples of his parents were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#The child, a 3-year-and-3-month-old boy, had manifested cardiac abnormalities and developmental delay. WES revealed that he had harbored a nonsense variant of c.457C>T (p.Arg153*) in the NONO gene. Sanger sequencing showed that neither of his parents has carried the same variant. The variant has been recorded by the OMIM, ClinVar and HGMD databases, but not in the normal population databases of 1000 Genomes, dbSNP and gnomAD. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was rated as a pathogenic variant.@*CONCLUSION@#The c.457C>T (p.Arg153*) variant of the NONO gene probably underlay the CHD and GDD in this child. Above finding has expanded the phenotypic spectrum of the NONO gene and provided a reference for the clinical diagnosis and genetic counseling for this family.


Subject(s)
Humans , Male , Child, Preschool , Computational Biology , DNA-Binding Proteins , Genetic Counseling , Genomics , Heart Defects, Congenital/genetics , Mutation , Parents , RNA-Binding Proteins , Developmental Disabilities/genetics
18.
Article in Chinese | WPRIM | ID: wpr-981834

ABSTRACT

OBJECTIVE@#To explore the clinical feature and genetic etiology of a patient with normosmic idiopathic hypogonadotropic hypogonadism (nIHH) due to variant of CHD7 gene.@*METHODS@#A patient who had presented at Anhui Provincial Children's Hospital in October 2022 was selected as the study subject. Clinical data of the patient was collected. The patient and his parents were subjected to trio-whole exome sequencing. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#The patient had featured delayed development of secondary sexual characteristics but normal olfactory function. Genetic testing revealed that he has harbored a c.3052C>T (p.Pro1018Ser) missense variant of the CHD7 gene, for which both of his parents were of the wild type. The variant has not been recorded in the PubMed and HGMD databases. Analysis of amino acid sequences suggested that the variant site is highly conserved, and the variant may affect the stability of protein structure. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.3032C>T variant was classified as a likely pathogenic (PS2+PM2_Supporting+PP2+PP3+PP4).@*CONCLUSION@#The delayed development of secondary sexual characteristics of the patient may be attributed to the c.3052C>T (p.Pro1018Ser) variant of the CHD7 gene. Above finding has expanded the variation spectrum of the CHD7 gene.


Subject(s)
Child , Humans , Male , Amino Acid Sequence , Computational Biology , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genetic Testing , Genomics , Hypogonadism/genetics , Mutation
19.
Article in English | WPRIM | ID: wpr-982027

ABSTRACT

OBJECTIVES@#To investigate the prevalence of pathogenic germline mutations of mismatch repair (MMR) genes in prostate cancer patients and its relationship with clinicopathological characteristics.@*METHODS@#Germline sequencing data of 855 prostate cancer patients admitted in Fudan University Shanghai Cancer Center from 2018 to 2022 were retrospectively analyzed. The pathogenicity of mutations was assessed according to the American College of Medical Genetics and Genomics (ACMG) standard guideline, Clinvar and Intervar databases. The clinicopathological characteristics and responses to castration treatment were compared among patients with MMR gene mutation (MMR+ group), patients with DNA damage repair (DDR) gene germline pathogenic mutation without MMR gene (DDR+MMR- group) and patients without DDR gene germline pathogenic mutation (DDR- group).@*RESULTS@#Thirteen (1.52%) MMR+ patients were identified in 855 prostate cancer patients, including 1 case with MLH1 gene mutation, 6 cases with MSH2 gene mutation, 4 cases with MSH6 gene mutation and 2 cases with PMS2 gene mutation. 105 (11.9%) patients were identified as DDR gene positive (except MMR gene), and 737 (86.2%) patients were DDR gene negative. Compared with DDR- group, MMR+ group had lower age of onset (P<0.05) and initial prostate-specific antigen (PSA) (P<0.01), while no significant differences were found between the two groups in Gleason score and TMN staging (both P>0.05). The median time to castration resistance was 8 months (95%CI: 6 months-not achieved), 16 months (95%CI: 12-32 months) and 24 months (95%CI: 21-27 months) for MMR+ group, DDR+MMR- group and DDR- group, respectively. The time to castration resistance in MMR+ group was significantly shorter than that in DDR+MMR- group and DDR- group (both P<0.01), while there was no significant difference between DDR+MMR- group and DDR- group (P>0.05).@*CONCLUSIONS@#MMR gene mutation testing is recommended for prostate cancer patients with early onset, low initial PSA, metastasis or early resistance to castration therapy.


Subject(s)
Male , Humans , Prostate-Specific Antigen/genetics , Germ-Line Mutation , Retrospective Studies , DNA Mismatch Repair/genetics , DNA-Binding Proteins/metabolism , China , Prostatic Neoplasms/pathology
20.
Article in Chinese | WPRIM | ID: wpr-982063

ABSTRACT

OBJECTIVE@#To investigate the correlation between single-nucleotide polymorphism (SNP) of ARID5B gene and resistance to methotrexate (MTX) in children with acute lymphoblastic leukemia (ALL).@*METHODS@#A total of 144 children with ALL who were treated in General Hospital of Ningxia Medical University from January 2015 to November 2021 were enrolled and divided into MTX resistant group and non-MTX resistant group, with 72 cases in each group. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) technology was used to measure the SNP of ARID5B gene in all children and analyze its correlation with MTX resistant.@*RESULTS@#There were no significant differences in the genotype and gene frequency of rs7923074, rs10821936, rs6479778, and rs2893881 between MTX resistant group and non-MTX resistant group (P>0.05). The frequency of C/C genotype in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T/T genotype was opposite (P<0.05). The frequency of C allele in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T allele was opposite (P<0.05). Multivariate logistic regression analysis showed that ARID5B gene rs4948488 TT genotype and T allele frequency were risk factors for MTX resistant in ALL children (P<0.05).@*CONCLUSION@#The SNP of ARID5B gene is associated with MTX resistant in ALL children.


Subject(s)
Child , Humans , DNA-Binding Proteins/genetics , Gene Frequency , Genotype , Methotrexate , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics , Drug Resistance, Neoplasm
SELECTION OF CITATIONS
SEARCH DETAIL