Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Braz. j. biol ; 83: e242818, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285628

ABSTRACT

Abstract The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .


Resumo O estudo teve como objetivo avaliar o impacto da dieta rica em gordura (HFD) e da microbiota intestinal humana sintética (GM) combinada com HFD e dieta alimentar (CD) na indução de diabetes tipo 2 (T2D) usando modelo de camundongos. Para nosso conhecimento, este é o primeiro estudo usando transplante de GM humano selecionado através do método baseado em cultura acoplada à modulação dietética em camundongos para o estabelecimento in vivo de inflamação que leva a T2D e disbiose intestinal. Vinte bactérias (T2D1-T2D20) de amostras de fezes de indivíduos T2D confirmados verificaram ser morfologicamente diferentes e foram submetidas à purificação em meios diferentes aerobicamente e anaerobicamente, o que revelou sete bactérias mais comuns entre 20 isolados com base na caracterização bioquímica. Com base no sequenciamento do gene 16S rRNA, esses sete isolados foram identificados como Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenides (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). Esses sete isolados foram, posteriormente, usados ​​como microbioma intestinal sintético (GM) por seu papel na indução de T2D em camundongos. Linhagens consanguíneas de camundongos albinos foram divididas em quatro grupos e foram alimentadas com CD, HFD, GM + HFD e GM + CD. Camundongos que receberam a dieta modificada com HFD e GM + (CD / HFD) mostraram um aumento altamente significativo (P < 0,05) no peso e na concentração de glicose no sangue, bem como um nível elevado de citocinas inflamatórias (TNF-α, IL-6 e MCP-1) em comparação com os ratos que receberam apenas CD. O sequenciamento do gene 16S rRNA de 11 bactérias fecais obtidas de três animais selecionados aleatoriamente de cada grupo revelou disbiose intestinal em animais que receberam GM. Cepas bacterianas, incluindo Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) e Lactobacillus Gasseri (MT152635D), foram tratadas com dieta modificada / CD) em comparação com as linhagens Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629), que foram isoladas de camundongos recebendo CD / HFD. Em conclusão, esses resultados sugerem que a constituição de GM e dieta desempenham papel significativo na inflamação levando ao início ou/e possivelmente à progressão de T2D.


Subject(s)
Humans , Animals , Rabbits , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Bacteroides , RNA, Ribosomal, 16S/genetics , Prevotella , Bacteroidetes , Ruminococcus , Diet, High-Fat/adverse effects , Dysbiosis , Inflammation , Mice, Inbred C57BL
2.
Braz. j. biol ; 83: e248755, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350303

ABSTRACT

Abstract Consuming a high-fat diet causes a harmful accumulation of fat in the liver, which may not reverse even after switching to a healthier diet. Different reports dealt with the role of purslane as an extract against high-fat diet; meanwhile, it was necessary to study the potential role of fresh purslane as a hypolipidemic agent. This study is supposed to investigate further the potential mechanism in the hypolipidemic effect of fresh purslane, by measuring cholesterol 7a-hydroxylase (CYP7A1) and low-density lipoprotein receptor (Ldlr). Rats were divided into two main groups: the first one is the normal control group (n=7 rats) and the second group (n=28 rats) received a high fat diet for 28 weeks to induce obesity. Then the high fat diet group was divided into equal four subgroups. As, the positive control group still fed on a high fat diet only. Meanwhile, the other three groups were received high-fat diet supplemented with a different percent of fresh purslane (25, 50 and 75%) respectively. At the end of the experiment, rats were sacrificed and samples were collected for molecular, biochemical, and histological studies. Current study reported that, supplementation of fresh purslane especially at a concentration of 75% play an important role against harmful effects of high-fat diet at both cellular and organ level, by increasing CYP7A1 as well as Ldlr mRNA expression. Also, there were an improvement on the tested liver functions, thyroid hormones, and lipid profile. Fresh purslane plays the potential role as a hypolipidemic agent via modulation of both Ldlr and Cyp7A, which will point to use fresh purslane against harmful effects of obesity.


Resumo O consumo de uma dieta rica em gordura causa um acúmulo prejudicial de gordura no fígado, que pode não reverter mesmo após a mudança para uma dieta mais saudável. Diferentes relatórios trataram do papel da beldroega como um extrato contra uma dieta rica em gordura; entretanto, foi necessário estudar o papel potencial da beldroega fresca como agente hipolipemiante. Este estudo pretende investigar mais profundamente o mecanismo potencial no efeito hipolipidêmico da beldroega fresca, medindo o colesterol 7a-hidroxilase (CYP7A1) e o receptor de lipoproteína de baixa densidade (Ldlr). Os ratos foram divididos em dois grupos principais: o primeiro é o grupo controle normal (n = 7 ratos) e o segundo grupo (n = 28 ratos) recebeu dieta rica em gorduras por 28 semanas para induzir a obesidade. Em seguida, o grupo de dieta rica em gordura foi dividido em quatro subgrupos iguais. Como, o grupo de controle positivo ainda se alimentava apenas com dieta rica em gordura. Enquanto isso, os outros três grupos receberam dieta rica em gordura suplementada com diferentes porcentagens de beldroegas frescas (25%, 50% e 75%), respectivamente. Ao final do experimento, os ratos foram sacrificados e amostras coletadas para estudos moleculares, bioquímica e histológicos. O estudo atual relatou que a suplementação de beldroegas frescas, especialmente a uma concentração de 75%, desempenha papel importante contra os efeitos prejudiciais da dieta rica em gordura em nível celular e orgânico, aumentando a expressão de CYP7A1 e Ldlr mRNA. Além disso, houve melhora nas funções hepáticas testadas, nos hormônios tireoidianos e no perfil lipídico. Beldroegas frescas desempenham papel potencial como agente hipolipemiante por meio da modulação de Ldlr e Cyp7A, o que apontará para o uso de beldroegas frescas contra os efeitos nocivos da obesidade.


Subject(s)
Animals , Rats , Portulaca , Diet, High-Fat/adverse effects , Hypolipidemic Agents , Cholesterol 7-alpha-Hydroxylase , Rats, Sprague-Dawley , Liver
3.
Rev. Ciênc. Méd. Biol. (Impr.) ; 21(2): 180-186, out.2022. tab, fig
Article in Portuguese | LILACS | ID: biblio-1399804

ABSTRACT

Introdução: estudos sugerem forte associação da exposição perinatal e pós-natal a dietas ricas em gordura e complicações cardiovasculares. Objetivo: avaliar os efeitos da exposição a dieta hiperlipídica no período perinatal e pós desmame sobre indicadores de risco cardiometabólico e alterações histomorfometrica na aorta em ratos. Metodologia: Ratas Wistar foram separadas em grupos de acordo com a dieta durante a gestação e lactação: dieta controle (n=3) e dieta hiperlipídica (n=3). No 21º dia de vida filhotes machos foram divididos em subgrupos (n=6): CC: formado por ratos expostos a dieta controle durante toda a vida; CH: formado por ratos cuja a mãe consumiu dieta controle e após o desmame os filhotes consumiram dieta hiperlipídica; HH: formado por filhotes expostos a dieta hiperlipídica durante toda a vida e HC: formado por ratos cuja a mãe consumiu dieta hiperlipídica e após o desmame os filhotes consumiram dieta controle. No 60º dia de vida, IMC, índices aterogênicos, proteína C reativa e histomorfometria da aorta dos descendentes foram avaliados. Resultados: o grupo HC apresentou maior IMC em comparação aos grupos HH e CH (p= 0,0004). A razão colesterol total / HDL-colesterol foi maior para o grupo CH comparado ao CC e HC (p = 0,016). Coeficiente aterogênico (p = 0,003), espessura da aorta (p = 0,003) e quantidade de lamelas elásticas (p = 0,0002) foram maiores nos grupos CH e HH em comparação a CC e HC. Conclusão: exposição a dieta hiperlipídica nos períodos perinatal e pós desmame aumentou o risco cardiometabólico e alterou a histomorfometria aórtica de ratos.


Background: studies suggest a strong association of perinatal and postnatal exposure to high-fat diets and cardiovascular complications. Objective: to evaluate the effects of exposure to a high-fat diet in the perinatal and post-weaning period on indicators of cardiometabolic risk and aorta histomorphometric changes in the rats. Methodology: Wistar rats were separated into groups according to the diet during pregnancy and lactation: control diet (n=3) and high fat diet (n=3). On the 21st day of life, male pups were divided into subgroups (n=6): CC: formed by rats exposed to a control diet for all life; CH: formed by rats whose mother consumed a control diet and after weaning the pups consumed a high-fat diet; HH: formed by pups exposed to a high-fat diet for all life and HC: formed by rats whose mother consumed a high-fat diet and after weaning the pups consumed a control diet. On the 60th day of life, BMI, atherogenic indices, C-reactive protein and histomorphometry of the aorta of the offspring were evaluated. Results: the HC group showed higher BMI compared to the HH and CH groups (p=0.0004). The total cholesterol / HDL-cholesterol ratio was higher for the CH group compared to CC and HC (p = 0.016). Atherogenic coefficient (p= 0,003), aortic thickness (p = 0.003) and amount of elastic lamellae (p = 0.0002) were higher in CH and HH groups compared to CC and HC. Conclusion: exposure to a high-fat diet in the perinatal and post-weaning periods increased cardiometabolic risk and altered aortic histomorphometry in rats.


Subject(s)
Animals , Male , Female , Rats , Aorta , Rats , Rats, Wistar , Diet, High-Fat , Lipids
4.
Acta sci., Health sci ; 44: e58558, Jan. 14, 2022.
Article in English | LILACS | ID: biblio-1367771

ABSTRACT

Cardiovascular disease(CVD) remains the major cause of mortality in the world, typically claiming a third of all deaths. The primary cause of CVD is atherosclerosis. Therefore, timely prevention and therapy of atherosclerosis are able to reduce the risk of the development of its clinical manifestations. Anti-atherosclerotic activity of medicinal plants mainly appears in their multiple effects.This study was carried out to evaluate the hypolipidemic activity of virgin olive oil in experimentally induced hyperlipemic Wistar. A total of 24 rats were randomly allocated to 4 equal groups and treated as follows for 50 days: (1) Normal control (NC); that were fed with a standart diet; (2) High Cholesterol Diet Control (HCD); which received high cholesterol diet for 50 days; (3) Animals receiving high cholesterol diet for 50 days, after this period the animals are fed for eight days by the standard foodand receiving by gavage virgin olive oil (HCD+VOO) and(4) Animals fed for eight days with the standard food and receiving by gavage olive oil (VOO). High Cholesterol Diet containing yolk egg and coconut oil. Results showed that olive oil caused a significant (p < 0.01) reduction in serum levels of Total Cholesterol (TC), Triglycerides (TG), Low­Density Lipoprotein Cholesterol (LDL) and Atherogenic Index Serum (AIS). The results also demonstrated a significant (p < 0.01) increase in High­Density Lipoprotein Cholesterol (HDL). Moreover, virgin olive oil induced a significant reduction in liver lipid content. On the other hand, a High cholesterol diet induced oxidative stress was measured by estimating reduced glutathione level and amount of thiobarbituric acid reactive substances (TBARS) formed as an index of lipid peroxidation in a liver and a heart. Virgin olive oil supplementation attenuated all these variations. Our observations of the study indicate that the virgin olive oil has a significant antihyperlipidemic potential.


Subject(s)
Animals , Rats , Oxidative Stress/immunology , Atherosclerosis/diet therapy , Diet, High-Fat/methods , Olive Oil/pharmacology , Triglycerides/pharmacology , Lipid Peroxidation/immunology , Cholesterol/pharmacology , Rats, Wistar/immunology , Diet, Atherogenic/methods , Glutathione/pharmacology , Hypercholesterolemia/immunology , Lipoproteins/immunology
5.
São Paulo; s.n; s.n; 2022. 103 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1397316

ABSTRACT

The inverse relationship between HDL-C (high-density lipoprotein cholesterol) and cardiovascular disease is well established. However, it is consensus that the cholesterol content present in HDL does not capture its complexity, and other metrics need to be explored. HDL is a heterogeneous, protein-enriched particle with functions going beyond lipid metabolism. In this way, its protein content seems to be attractive to investigate its behavior in the face of pathologies. Many of the proteins with important function in HDL are in low abundance (<1% of total proteins), which makes their detection challenging. Quantitative proteomics allows detecting proteins with high precision and robustness in complex matrix. However, quantitative proteomics is still poorly explored in the context of HDL. In this sense, in the second chapter of this thesis, the analytical performance of two quantitative methodologies was carefully investigated. These methods achieved adequate linearity and high precision using labeled peptides in a pool HDL, in addition to comparable ability to differentiate proteins from HDL subclasses of healthy subjects. Another bottleneck that waits for a solution in proteomics is the lack of standardization in data processing and analysis after mass spectrometry acquisition. In addition, interest in the cardioprotective properties of omega-3 is growing, but little is known about its effects on the HDL proteome. Thus, in the third chapter of this thesis, we compared five protein quantification strategies using Skyline and MaxDIA software platforms in order to investigate the HDL proteome from mice submitted to a high-fat diet supplemented or not with omega-3. MaxDIA with label-free quantification (MaxLFQ) achieved high precision to show that polyunsaturated fatty acids remodel the HDL proteome to a less inflammatory profile. Therefore, the two studies presented in this thesis begin to open new paths for a deeper and more reliable understanding of HDL, both at the level of protein quantification by mass spectrometry and after data acquisition


A inversa relação entre HDL-C (do inglês, high-density lipoprotein cholesterol) e doenças cardiovasculares é bem estabelecida. No entanto, é consenso que o conteúdo de colesterol presente na HDL não captura sua complexidade, e outras métricas precisam ser exploradas. A HDL é uma partícula heterogênea, enriquecida em proteínas, com funções que vão além do metabolismo de lipídeos. Dessa forma, seu conteúdo proteico parece ser mais atrativo para exprimir seu comportamento frente às patologias. Muitas das proteínas com função importante estão em baixa abundância (<1% do total de proteínas), o que torna a detecção desafiadora. Métodos quantitativos de proteômica permitem detectar proteínas com alta precisão e robustez em matrizes complexas. No entanto, a proteômica quantitativa ainda é pouco explorada no contexto da HDL. Nesse sentido, no segundo capítulo dessa tese, a performance analítica de dois métodos quantitativos foi criteriosamente investigada, os quais alcançaram adequada linearidade e alta precisão usando peptídeos marcados em um pool de HDL, além de comparável habilidade em diferenciar as proteínas das subclasses da HDL de indivíduos saudáveis. Outro gargalo que aguarda por solução em proteômica é a falta de padronização no processamento e análise de dados após a aquisição por espectrometria de massas. Além disso, é crescente o interesse das propriedades cardioprotetivas do ômega-3, porém pouco se conhece sobre seus efeitos no proteoma da HDL. Então, no terceiro capítulo dessa tese, comparamos cinco estratégias de quantificação de proteínas utilizando os softwares Skyline e MaxDIA com o intuito de comparar o proteoma da HDL de camundongos submetidos a uma dieta hiperlipídica suplementados ou não com ômega-3. MaxDIA com quantificação label-free (MaxLFQ) apresentou alta precisão para mostrar que o ômega-3 remodela o proteoma da HDL para um perfil menos inflamatório. Portanto, os dois estudos apresentados nessa tesa começam a abrir novos caminhos para o entendimento mais profundo e confiável da HDL tanto por meio da quantificação das proteínas por espectrometria de massas quanto após à aquisição dos dados


Subject(s)
Proteomics/instrumentation , Hyperlipidemias/pathology , Cholesterol, HDL/analysis , Mass Spectrometry/methods , Cardiovascular Diseases/pathology , Diet/classification , Diet, High-Fat/adverse effects
6.
Braz. j. biol ; 82: e234855, 2022. tab, graf
Article in English | LILACS | ID: biblio-1153468

ABSTRACT

Abstract Exposure to the hight-fat diet may alter the control of food intake promoting hyperphagia and obesity. The objective of this study was to investigate the effects of this diet on dopamine receptors (drd1 and drd2), proopiomelanocortin (pomc), neuropeptideY (npy) genes expression, and preference food in adult rats. Wistar female rats were fed a hight-fat or control diet during pregnancy and lactation. The offspring were allocated into groups: Lactation - Control (C) and High-fat (H). Post-weaning - Control Control (CC), offspring of mothers C, fed a control diet after weaning; Control Hight-fat (CH), offspring of mothers C, fed a hight-fat diet after weaning; Hight-fat Control (HC), offspring of mothers H, fed with control diet after weaning; and Hight-fat Hight-fat (HH), offspring of mothers H, fed a H diet after weaning. The groups CH and HH presented greater expression of drd1 in comparison to the CC. The drd2 of CH and HC presented higher gene expression than did CC. HH presented higher pomc expression in comparison to the other groups. HC also presented greater expression in comparison to CH. The npy of HH presented greater expression in relation to CH and HC. HH and HC have had a higher preference for a high-fat diet at 102º life's day. The high-fat diet altered the gene expression of the drd1, drd2, pomc and npy, and influencing the food preference for high-fat diet.


Resumo A exposição à dieta hiperlipídica pode alterar o controle da ingestão de alimentos, promovendo hiperfagia e obesidade. O objetivo deste estudo foi investigar os efeitos dessa dieta sobre a expressão gênica dos receptores de dopamina (drd1 e drd2), da proopiomelanocortina (pomc) e neuropeptídeo Y (npy), e preferência alimentar em ratos adultos. Ratas Wistar foram alimentadas com uma dieta hiperlipídica ou controle durante a gestação e lactação. Os descendentes foram alocados em grupos: Lactação - Controle (C) e Hiperlipídica (H). Pós-desmame - Controle Controle (CC), descendentes das genitoras do grupo controle e alimentados com dieta controle após o desmame; Controle Hiperlipídica (CH), descendentes das genitoras do grupo controle e alimentados com dieta hiperlipídica após o desmame; Hiperlipídica Controle (HC), descendentes das genitoras do grupo hiperlipídica e alimentados com dieta controle após o desmame; Hiperlipídica Hiperlipídica (HH), descendentes das genitoras do grupo hiperlipídica e alimentados com dieta hiperlipídica após o desmame. Os grupos CH e HH apresentaram maior expressão de drd1 em comparação ao CC. O drd2 de CH e HC apresentou maior expressão gênica que o CC. HH apresentou maior expressão de pomc em comparação com os outros grupos. O HC também apresentou maior expressão de pomc em comparação ao CH. O npy do HH apresentou maior expressão em relação ao CH e HC. HH e HC tiveram uma preferência maior por uma dieta rica em gordura no 102º dia de vida. A dieta hiperlipídica alterou a expressão gênica dos drd1, drd2, pomc e npy e influenciou na preferência alimentar pela dieta hiperlipídica.


Subject(s)
Animals , Female , Pregnancy , Rats , Pro-Opiomelanocortin/genetics , Diet, High-Fat/adverse effects , Body Weight , Neuropeptide Y/genetics , Gene Expression , Receptors, Dopamine/genetics , Rats, Wistar , Food Preferences
7.
Braz. j. biol ; 82: e247102, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278491

ABSTRACT

Abstract The current investigation was carried out to estimate the protective effect of aqueous extract of Cheatomorpha gracilis (AEC) against High fat Diet (HFD) induced liver damage in mice. The results of the in vitro study showed that AEC have higher antioxidant capacities in the DPPH and hydroxyl radical-scavenging assays. Indeed, many phenolic compounds (gallic acid, quercetin, naringenin, apigenin, kaempferol and rutin) were identified in the AEC. In the animal studies, during 6 weeks, HFD promoted oxidative stress with a rise level of malonaldehyde (MDA), protein carbonyls (PCOs) levels and a significant decrease of the antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase. Interestingly, the treatment with AEC (250 mg/kg body weight) significantly reduced the effects of HFD disorders on some plasmatic liver biomarkers (AST, ALT and ALP) in addition to, plasmatic proteins inflammatory biomarkers (α2 and β1 decreases / β2 and γ globulins increases). It can be suggest that supplementation of MECG displays high potential to quench free radicals and attenuates high fat diet promoted liver oxidative stress and related disturbances.


Resumo A presente investigação foi realizada para estimar o efeito protetor do extrato aquoso de Cheatomorpha gracilis (AEC) contra o dano hepático induzido por dieta rica em gordura (HFD) em camundongos. Os resultados do estudo in vitro mostraram que os AEC têm maiores capacidades antioxidantes nos ensaios DPPH e de eliminação de radicais hidroxila. De fato, muitos compostos fenólicos (ácido gálico, quercetina, naringenina, apigenina, kaempferol e rutina) foram identificados no AEC. Nos estudos em animais, durante 6 semanas, HFD promoveu estresse oxidativo com aumento do nível de malonaldeído (MDA), níveis de proteína carbonil (PCOs) e diminuição significativa das atividades de enzimas antioxidantes como superóxido dismutase, catalase e glutationa peroxidase. Curiosamente, o tratamento com AEC (250 mg / kg de peso corporal) reduziu significativamente os efeitos dos distúrbios de HFD em alguns biomarcadores hepáticos plasmáticos (AST, ALT e ALP), além de biomarcadores inflamatórios de proteínas plasmáticas (reduções α2 e β1 / β2 e γ aumenta as globulinas). Pode-se sugerir que a suplementação de MECG apresenta alto potencial para extinguir os radicais livres e atenua o estresse oxidativo do fígado promovido pela dieta rica em gordura e distúrbios relacionados.


Subject(s)
Animals , Rats , Plant Extracts/pharmacology , Diet, High-Fat/adverse effects , Chromatography, High Pressure Liquid , Oxidative Stress , Liver , Antioxidants/metabolism
8.
Article in Chinese | WPRIM | ID: wpr-936366

ABSTRACT

OBJECTIVE@#To investigate the changes of tetraspanin 8 (TSPAN8) expression levels and its role in lipid metabolism during the development of non-alcoholic fatty liver disease (NAFLD).@*METHODS@#Thirty male C57BL/6J mice were randomly divided into normal diet group and high-fat diet (HFD) group (n=15), and after feeding for 1, 3, and 6 months, the expression levels of TSPAN8 in the liver tissues of the mice were detected with Western blotting. In a HepG2 cell model of NAFLD induced by free fatty acids (FFA), the effect of TSPAN8 overexpression on lipid accumulation was examined using Oil Red O staining and an automated biochemical analyzer, and the mRNA expressions of the key genes involved in lipid metabolism were detected using qRT-PCR.@*RESULTS@#Western blotting showed that compared with that in mice with normal feeding, the expression of TSPAN8 was significantly decreased in the liver tissues of mice with HFD feeding for 3 and 6 months (P < 0.05). In HepG2 cells, treatment with FFA significantly decreased the expression of TSPAN8 at both the mRNA and protein levels (P < 0.01). TSPAN8 overexpression in FFA-treated cells showed significantly lowered intracellular triglyceride levels (P < 0.001) and obviously reduced mRNA expression of fatty acid transport protein 5 (FATP5) (P < 0.01). The expression of FATP5 was significantly increased in FFA-treated cells as compared with the control cells (P < 0.001).@*CONCLUSION@#TSPAN8 is involved in lipid metabolism in NAFLD, and overexpression of TSPAN8 may inhibit cellular lipid deposition by reducing the expression of FATP5.


Subject(s)
Animals , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Messenger/metabolism
9.
Article in Chinese | WPRIM | ID: wpr-941037

ABSTRACT

OBJECTIVE@#To observe the effect of mibefradil on skeletal muscle mass, function and structure in obese mice.@*METHODS@#Fifteen 6-week-old C57BL/6 mice were randomized equally into normal diet group (control group), high-fat diet (HFD) group and high-fat diet +mibefradil intervention group (HFD +Mibe group). The grip strength of the mice was measured using an electronic grip strength meter, and the muscle content of the hindlimb was analyzed by X-ray absorptiometry (DXA). Triglyceride (TG) and total cholesterol (TC) levels of the mice were measured with GPO-PAP method. The cross-sectional area of the muscle fibers was observed with HE staining. The changes in the level of autophagy in the muscles were detected by Western blotting and immunofluorescence assay, and the activation of the Akt/mTOR signaling pathway was detected with Western blotting.@*RESULTS@#Compared with those in the control group, the mice in HFD group had a significantly greater body weight, lower relative grip strength, smaller average cross sectional area of the muscle fibers, and a lower hindlimb muscle ratio (P < 0.05). Immunofluorescence assay revealed a homogenous distribution of LC3 emitting light red fluorescence in the cytoplasm in the muscle cells in HFD group and HFD+Mibe group, while bright spots of red fluorescence were detected in HFD group. In HFD group, the muscular tissues of the mice showed an increased expression level of LC3 II protein with lowered expressions of p62 protein and phosphorylated AKT and mTOR (P < 0.05). Mibefradil treatment significantly reduced body weight of the mice, lowered the expression level of p62 protein, and increased forelimb grip strength, hindlimb muscle ratio, cross-sectional area of the muscle fibers, and the expression levels of LC3 II protein and phosphorylated AKT and mTOR (P < 0.05).@*CONCLUSION@#Mibefradil treatment can moderate high-fat diet-induced weight gain and improve muscle mass and function in obese mice possibly by activating AKT/mTOR signal pathway to improve lipid metabolism and inhibit obesityinduced autophagy.


Subject(s)
Animals , Body Weight , Diet, High-Fat , Mibefradil/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
10.
Article in English | WPRIM | ID: wpr-928963

ABSTRACT

OBJECTIVE@#To evaluate the effect of Shilajit, a medicine of Ayurveda, on the serum changes in cytokines and adipokines caused by non-alcoholic fatty liver disease (NAFLD).@*METHODS@#After establishing fatty liver models by feeding a high-fat diet (HFD) for 12 weeks, 35 Wistar male rats were randomly divided into 5 groups, including control (standard diet), Veh (HFD + vehicle), high-dose Shilajit [H-Sh, HFD + 250 mg/(kg·d) Shilajit], low-dose Shilajit [L-Sh, HFD + 150 mg/(kg·d) Shilajit], and pioglitazone [HFD + 10 mg/(kg·d) pioglitazone] groups, 7 rats in each group. After 2-week of gavage administration, serum levels of glucose, insulin, interleukin 1beta (IL-1β), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), adiponectin, and resistin were measured, and insulin resistance index (HOMA-IR) was calculated.@*RESULTS@#After NAFLD induction, the serum level of IL-10 significantly increased and serum IL-1β, TNF-α levels significantly decreased by injection of both doses of Shilajit and pioglitazone (P<0.05). Increases in serum glucose level and homeostasis model of HOMA-IR were reduced by L-Sh and H-Sh treatment in NAFLD rats (P<0.05). Both doses of Shilajit increased adiponectin and decreased serum resistin levels (P<0.05).@*CONCLUSION@#The probable protective role of Shilajit in NAFLD model rats may be via modulating the serum levels of IL-1β, TNF-α, IL-10, adipokine and resistin, and reducing of HOMA-IR.


Subject(s)
Adiponectin , Animals , Cytokines , Diet, High-Fat , Glucose , Insulin Resistance , Interleukin-10 , Liver , Male , Minerals , Non-alcoholic Fatty Liver Disease/pathology , Pioglitazone/therapeutic use , Rats , Rats, Wistar , Resins, Plant , Resistin/therapeutic use , Tumor Necrosis Factor-alpha
11.
Article in Chinese | WPRIM | ID: wpr-928129

ABSTRACT

This study aimed to explore the effects of Gynostemma pentaphyllum saponins(GPs) on non-alcoholic fatty liver disease(NAFLD) induced by high-fat diet in rats and reveal the underlying mechanism. The NAFLD model rats were prepared with high-fat diet. Forty male Sprague Dawley(SD) rats were randomly assigned into the control group, model group, and low-, moderate-, and high-dose GPs(50, 100, and 150 mg·kg~(-1), respectively) groups. After intragastric administration for 8 continuous weeks, we determined the body weight, liver weight, the levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-c), high-density lipoprotein cholesterol(HDL-c), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) in serum, and the levels of TC, TG, malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), and interleukin 6(IL-6) in the liver. Furthermore, we observed the pathological changes of liver tissue by oil red O staining and hematoxylin-eosin(HE) staining, sequenced the 16 S rRNA of the intestinal flora in rat feces, and determined the content of short-chain fatty acids in rat feces. The results showed that GPs inhibited the excessive weight gain of high-fat diet-induced NAFLD in rats, reduced the liver weight, lowered the TC, TG, LDL-c, AST, and ALT levels in serum(P<0.05), and rose the HDL-c level in serum(P<0.01). GPs relieved the liver damage caused by high-fat diet, mainly manifested by the lowered levels of TC, TG, MDA, and IL-6 in the liver(P<0.01) and elevated levels of CAT and SOD in the liver. Furthermore, GPs reversed the intestinal flora disorder caused by high-fat diet, restored the diversity of intestinal flora, increased the relative abundance of Bacteroides, and reduced the relative abundance of Firmicutes and the ratio of Firmicutes to Bacteroides. Moreover, GPs promoted the proliferation of beneficial bacteria such as Akkermansia, Bacteroides, and Parabacteroides, and inhibited the growth of harmful bacteria such as Desulfovibrio, Escherichia-Shigella, and Helicobacter. GPs increased the content of short-chain fatty acids(acetic acid, propionic acid, and butyric acid)(P<0.01). These findings indicate that GPs can alleviate the high-fat diet-induced NAFLD in rats via regulating the intestinal flora and short-chain fatty acid metabolism.


Subject(s)
Alanine Transaminase/metabolism , Animals , Cholesterol, LDL/pharmacology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Gynostemma , Interleukin-6/metabolism , Liver , Male , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Rats, Sprague-Dawley , Saponins/pharmacology , Superoxide Dismutase/metabolism
12.
Article in Chinese | WPRIM | ID: wpr-927989

ABSTRACT

The present study investigated the pharmaceutical effect and underlying mechanism of Zexie Decoction(ZXD) on nonalcoholic fatty liver disease(NAFLD) in vitro and in vivo via the LKB1/AMPK/PGC-1α pathway based on palmitic acid(PA)-induced lipid accumulation model and high-fat diet(HFD)-induced NAFLD model in mice. As revealed by the MTT assay, ZXD had no effect on HepG2 activity, but dose-dependently down-regulated alanine aminotransferase(ALT) and aspartate aminotransferase(AST) in the liver cell medium induced by PA, and decreased the plasma levels of ALT and AST, and total cholesterol(TC) and triglyceride(TG) levels in the liver. Nile red staining showed PA-induced intracellular lipid accumulation, significantly increased lipid accumulation of hepatocytes induced by PA, suggesting that the lipid accumulation model in vitro was properly induced. ZXD could effectively improve the lipid accumulation of hepatocytes induced by PA. Oil red O staining also demonstrated that ZXD improved the lipid accumulation in the liver of HFD mice. JC-1 staining for mitochondrial membrane potential indicated that ZXD effectively reversed the decrease in mitochondrial membrane potential caused by hepatocyte injury induced by PA, activated PGC-1α, and up-regulated the expression of its target genes, such as ACADS, CPT-1α, CPT-1β, UCP-1, ACSL-1, and NRF-1. In addition, as revealed by the Western blot and immunohistochemistry, ZXD up-regulated the protein expression levels of LKB1, p-AMPK, p-ACC, and PGC-1α in vivo and in vitro. In conclusion, ZXD can improve NAFLD and its mechanism may be related to the regulation of the LKB1/AMPK/PGC-1α pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Alanine Transaminase/metabolism , Animals , Diet, High-Fat , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
13.
Article in Chinese | WPRIM | ID: wpr-927896

ABSTRACT

Objective: To investigate the effects of continuous exercise training (CT) and high-intensity interval exercise training (HIIT) on liver lipid metabolism and the correlation of the level of fibroblast growth factor 21(FGF21) in serum and liver tissues. Methods: Male SD rats were randomly divided into normal diet group (N) and obesity model group (H) after 1 week of adaptive feeding. Rats in the obesity model group were fed with 45% high-fat diet for about 8 weeks, and 20% weight increase compared with normal rats was considered as obesity. The rats were divided into normal diet control group (LC), normal diet HIIT group (LHI), normal diet CT group (LCT), High fat diet-induced obese control group (OC), obese HIIT group (OHI), and obese CT group (OCT) (n=10). Exercised rats were given weight-bearing swimming training intervention for 8 weeks. Blood samples were collected at least 24h after the last exercise intervention to detect the serum levels of inflammatory factors and FGF21. Liver tissue samples were collected to detect the lipid content, lipid metabolic enzyme content and FGF21 expression level. Results: Compared with LC group, the body weight, serum inflammatory factors levels and hepatic triglyceride content were increased significantly (P<0.05). Hepatic triglyceride content was downregulated in LHI group and FGF21 expression level was enhanced in LCT group (P<0.05). Compared with OC group, the body weight and hepatic triglyceride content were decreased significantly (P<0.05), mitochondrial CPT-1β and β-HAD enzyme contents in liver were increased significantly (P<0.05) in OHI group, the contents of LPL and FAT/CD36 enzyme in liver and the levels of FGF21 in serum and liver of OCT group were increased significantly (P<0.05). Conclusion: Both exercise modes can reduce the body weight in normal and obese rats, and lipid deposition in the liver of obese rats. HIIT has a more significant effect on alleviating liver lipid deposition in obese rats by upregulating mitochondrial lipid oxidation level in normal and obese rats. CT improves the levels of FGF21 in serum and liver tissues of normal and obese rats, enhances enzyme contents that involved in fatty acids uptake to the liver, which has limited effect on alleviating lipid deposition in liver of obese rats.


Subject(s)
Animals , Body Weight , Diet, High-Fat/adverse effects , Fatty Liver , Fibroblast Growth Factors , Male , Obesity/metabolism , Rats , Rats, Sprague-Dawley , Triglycerides
14.
Article in English | WPRIM | ID: wpr-927639

ABSTRACT

OBJECTIVE@#This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells.@*METHODS@#Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured.@*RESULTS@#C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05).@*CONCLUSION@#Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.


Subject(s)
ATP Binding Cassette Transporter 1/immunology , Animals , Caprylates/chemistry , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Humans , Inflammation/metabolism , Janus Kinase 2/immunology , Lipid Metabolism/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/immunology , Signal Transduction
15.
Acta Physiologica Sinica ; (6): 209-216, 2022.
Article in Chinese | WPRIM | ID: wpr-927596

ABSTRACT

Mounting evidence has shown that exercise exerts extensive beneficial effects, including preventing and protecting against chronic diseases, through improving metabolism and other mechanisms. Recent studies have shown that exercise preconditioning affords significant cardioprotective effects. However, whether exercise preconditioning improves high fat diet (HFD)-induced obesity and lipid metabolic disorder remains unknown. The study was aimed to explore the effects of exercise preconditioning on HFD-induced obesity and lipid metabolic disorder in mice. 4-week-old C57BL/6 mice were subjected to swimming or sedentary control for 3 months, and then were fed with normal diet (ND) or HFD for 4 more months. The results showed that the blood glucose was decreased, and the glucose tolerance and grip strength were increased in exercised mice after training. Exercise preconditioning failed to improve HFD-induced body weight gain, but improved HFD-induced glucose intolerance. Exercise preconditioning showed no significant effects on both exercise capacity and physical activity in ND- and HFD-fed mice. HFD feeding increased total cholesterol and low density lipoprotein (LDL) levels in circulation, promoted subcutaneous fat and epididymal fat accumulation in mice. Exercise preconditioning increased circulating high density lipoprotein (HDL) and decreased circulating LDL, without affecting the subcutaneous fat and epididymal fat in HFD-fed mice. HFD feeding increased liver weight and hepatic total cholesterol contents, and dysregulated the expressions of several mitochondria function-related proteins in mice. These abnormalities were partially reversed by exercise preconditioning. Together, these results suggest that exercise preconditioning can partially reverse the HFD-induced lipid metabolic disorder and hepatic dysfunction, and these beneficial effects of exercise sustain for a period of time, even after exercise is discontinued.


Subject(s)
Animals , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Lipids , Liver , Mice , Mice, Inbred C57BL , Obesity
16.
J. bras. nefrol ; 43(4): 460-469, Dec. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1350919

ABSTRACT

Abstract Introduction: The receptor for AGEs (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface receptors expressed in many organs, among them, the kidneys. When activated, RAGE leads to a sequence of signaling that results in inflammation and oxidative stress, both involved in kidney disease pathogenesis. Gamma-oryzanol (γOz) comprises a mixture of ferulic acid (FA) esters and phytosterols (sterols and triterpene alcohols) mainly found in rice, with antioxidant and anti-inflammatory activities. Aim: To evaluate the effect of γOz to reduce renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to a high sugar-fat diet. Methods: Male Wistar rats (±187g) were randomly divided into two experimental groups: control (n = 7 animals) and high sugar-fat diet (HSF, n = 14 animals) for 20 weeks. After this period, when the presence of renal disease risk factors was detected in the HSF group (insulin resistance, dyslipidemia, increased systolic blood pressure and obesity), the HSF animals were divided to begin the treatment with γOz or continue receiving only HSF for 10 more weeks. Results: No effect of γOz on obesity and metabolic parameters was observed. However, kidney inflammation and oxidative stress decreased as soon as RAGE levels were reduced in HSF + γOz. Conclusion: It is possible to conclude that the gamma- oryzanol was effective in reducing inflammation and oxidative stress in the kidney by modulating the AGEs/RAGE axis.


Resumo Introdução: O receptor para AGEs (RAGE) é um membro multiligante da superfamília das imunoglobulinas dos receptores de superfície celular expresso em muitos órgãos, entre eles, os rins. Quando ativado, o RAGE leva a uma sequência de sinalização que resulta em inflamação e estresse oxidativo, ambos envolvidos na patogênese de doenças renais. O gama-orizanol (γOz) compreende uma mistura de ésteres de ácido ferúlico (AF) e fitoesteróis (esteróis e álcoois triterpenos) encontrados principalmente no arroz, com atividades antioxidantes e anti-inflamatórias. Objetivo: Avaliar o efeito do γOz para reduzir a inflamação renal e o estresse oxidativo pela modulação do eixo RAGE/AGEs em animais submetidos a uma dieta rica em gordura e açúcar. Métodos: Ratos Wistar machos (±187g) foram divididos aleatoriamente em dois grupos experimentais: controle (n = 7 animais) e dieta rica em gordura e açúcar (HSF, do inglês high sugar-fat diet, n = 14 animais) por 20 semanas. Após este período, quando foi detectada a presença de fatores de risco de doença renal no grupo HSF (resistência à insulina, dislipidemia, aumento da pressão arterial sistólica e obesidade), os animais HSF foram divididos para iniciar o tratamento com γOz ou continuar recebendo apenas HSF por mais 10 semanas. Resultados: Não foi observado nenhum efeito do γOz na obesidade e nos parâmetros metabólicos. No entanto, a inflamação e o estresse oxidativo renais diminuíram assim que os níveis de RAGE foram reduzidos em HSF + γOz. Conclusão: É possível concluir que o gama- orizanol foi eficaz em reduzir a inflamação e o estresse oxidativo no rim pela modulação do eixo RAGE/AGEs.


Subject(s)
Animals , Male , Rats , Sugars , Diet, High-Fat , Phenylpropionates , Rats, Wistar , Oxidative Stress , Inflammation/drug therapy
17.
J. bras. nefrol ; 43(2): 156-164, Apr.-June 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1286929

ABSTRACT

Abstract Introduction: Obesity, diabetes, and hypertension are common risk factors for chronic kidney disease (CKD). CKD arises due to many pathological insults, including inflammation and oxidative stress, which affect renal function and destroy nephrons. Rice bran (RB) is rich in vitamins and minerals, and contains significant amount of antioxidants. The aim of this study was to evaluate the preventive effect of RB on renal disease risk factors. Methods: Male Wistar rats (±325 g) were divided into two experimental groups to received a high sugar-fat diet (HSF, n = 8) or high sugar-fat diet with rice bran (HSF + RB, n = 8) for 20 weeks. At the end, renal function, body composition, metabolic parameters, renal inflammatory and oxidative stress markers were analyzed. Results: RB prevented obesity [AI (HSF= 9.92 ± 1.19 vs HSF + RB= 6.62 ± 0.78)], insulin resistance [HOMA (HSF= 83 ± 8 vs. HSF + RB= 42 ± 11)], dyslipidemia [TG (HSF= 167 ± 41 vs. HSF + RB=92 ± 40)], inflammation [TNF-α (HSF= 80 ± 12 vs. HSF + RB=57 ± 14), IL-6 (903 ± 274 vs. HSF + RB=535 ± 277)], oxidative stress [protein carbonylation (HSF= 3.38 ± 0.18 vs. HSF + RB=2.68 ± 0.29), RAGE (HSF=702 ± 36 vs. RSF + RB=570 ± 190)], and renal disease [protein/creatinine ratio (HSF=1.10 ± 0.38 vs. HSF + RB=0.49 ± 0.16)]. Conclusion: In conclusion, rice bran prevented renal disease by modulating risk factors.


Resumo Introdução: Obesidade, diabetes e hipertensão arterial são fatores de risco comuns para doenças renais crônicas (DRC). A DRC surge devido a muitos insultos patológicos, incluindo inflamação e estresse oxidativo, que afetam a função renal e destroem os néfrons. O farelo de arroz (FA) é rico em vitaminas e minerais, e contém uma quantidade significativa de antioxidantes. O objetivo deste estudo foi avaliar o efeito preventivo do FA nos fatores de risco de doenças renais. Métodos: Ratos Wistar machos (±325 g) foram divididos em dois grupos experimentais para receber uma dieta rica em gordura e açúcar (DRGA, n = 8) ou uma dieta rica em gordura e açúcar com farelo de arroz (DRGA + FA, n = 8) por 20 semanas. Ao final, foram analisados a função renal, composição corporal, parâmetros metabólicos, marcadores renais inflamatórios e de estresse oxidativo. Resultados: FA preveniu a obesidade [IA (DRGA= 9,92 ± 1,19 vs. DRGA + FA= 6,62 ± 0. 78)], resistência à insulina [HOMA (DRGA= 83 ± 8 vs DRGA + FA= 42 ± 11)], dislipidemia [TG (DRGA= 167 ± 41 vs. DRGA + FA=92 ± 40)], inflamação [FNT-α (DRGA= 80 ± 12 vs. DRGA + FA=57 ± 14), IL-6 (903 ± 274 vs. DRGA + FA= 535 ± 277)], estresse oxidativo [carbonilação de proteína (DRGA= 3. 38 ± 0,18 vs. DRGA + FA=2,68 ± 0,29), RAGE (DRGA=702 ± 36 vs. DRGA + FA=570 ± 190)], e doença renal [relação proteína/creatinina (DRGA=1,10 ± 0,38 vs. DRGA + FA=0,49 ± 0,16)]. Conclusão: Em conclusão, o farelo de arroz preveniu doenças renais através da modulação dos fatores de risco.


Subject(s)
Animals , Male , Rats , Oryza , Risk Factors , Rats, Wistar , Oxidative Stress , Sugars , Diet, High-Fat/adverse effects , Kidney/physiology
18.
Arch. endocrinol. metab. (Online) ; 65(5): 537-548, 2021. graf
Article in English | LILACS | ID: biblio-1345195

ABSTRACT

ABSTRACT Objective: Obesity is characterized by a state of chronic, low-intensity systemic inflammation frequently associated with insulin resistance and dyslipidemia. Materials and methods: Given that chronic inflammation has been implicated in the pathogenesis of mood disorders, we investigated if chronic obesity that was initiated early in life - lasting through adulthood - could be more harmful to memory impairment and mood fluctuations such as depression. Results: Here we show that pre-pubertal male rats (30 days old) treated with a high-fat diet (40%) for 8-months gained ~50% more weight when compared to controls, exhibited depression and anxiety-like behaviors but no memory impairment. The prefrontal cortex of the obese rats exhibited an increase in the expression of genes related to inflammatory response, such as NFKb, MMP9, CCl2, PPARb, and PPARg. There were no alterations in genes known to be related to depression. Conclusion: Long-lasting obesity with onset in prepuberal age led to depression and neuroinflammation but not to memory impairment.


Subject(s)
Animals , Male , Rats , Behavior, Animal , Depression/etiology , Anxiety , Diet, High-Fat/adverse effects , Obesity
19.
Braz. j. med. biol. res ; 54(8): e10782, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249333

ABSTRACT

We explored the cascade effects of a high fat-carbohydrate diet (HFCD) and pioglitazone (an anti-diabetic therapy used to treat type 2 diabetes mellitus (T2DM)) on lipid profiles, oxidative stress/antioxidant, insulin, and inflammatory biomarkers in a rat model of insulin resistance. Sixty albino rats (80-90 g) were randomly divided into three dietary groups; 1) standard diet; 2) HFCD diet for 12 weeks to induce an in vivo model of insulin resistance; and 3) HFCD diet plus pioglitazone. Blood and tissue samples were taken to assess hepatic function, lipid profiles, oxidative biomarkers, malondialdehyde (MDA) levels, antioxidant defense biomarkers, including reduced glutathione (GSH), superoxide dismutase (SOD), and the inflammatory markers interleukin-6 (IL-6) and tumor necrotic factor (TNF-α). HFCD-fed rats had significantly (P≤0.05) increased serum triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein (LDL), alanine transaminase (ALT), and bilirubin levels, but decreased high-density lipoprotein (HDL) levels compared with the normal group. Moreover, serum leptin, resistin, TNF-α, and IL-6 levels were increased significantly in HFCD animals compared with controls. Similarly, HFCD-induced insulin resistance caused antioxidant and cytokine disturbances, which are important therapy targets for pioglitazone. Importantly, administration of this drug ameliorated these changes, normalized leptin and resistin and inflammatory markers by reducing TNF-α levels. Metabolic cascades of elevated lipid profiles, oxidative stress, insulin, and inflammatory biomarkers are implicated in insulin resistance progression. HFCD induced metabolic cascades comprising hypertriglyceridemia, hyperglycemia, insulin resistance, obesity-associated hormones, and inflammatory biomarkers may be alleviated using pioglitazone.


Subject(s)
Animals , Rats , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Carbohydrates/pharmacology , Oxidative Stress , Diet, High-Fat , Pioglitazone/metabolism , Pioglitazone/pharmacology , Insulin/metabolism , Liver/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology
20.
Braz. j. med. biol. res ; 54(10): e10669, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285654

ABSTRACT

Mechanisms involved in cardiac function and calcium (Ca2+) handling in obese-resistant (OR) rats are still poorly determined. We tested the hypothesis that unsaturated high-fat diet (HFD) promotes myocardial dysfunction in OR rats, which it is related to Ca2+ handling. In addition, we questioned whether exercise training (ET) becomes a therapeutic strategy. Male Wistar rats (n=80) were randomized to standard or HFD diets for 20 weeks. The rats were redistributed for the absence or presence of ET and OR: control (C; n=12), control + ET (CET; n=14), obese-resistant (OR; n=9), and obese-resistant + ET (ORET; n=10). Trained rats were subjected to aerobic training protocol with progressive intensity (55-70% of the maximum running speed) and duration (15 to 60 min/day) for 12 weeks. Nutritional, metabolic, and cardiovascular parameters were determined. Cardiac function and Ca2+ handling tests were performed in isolated left ventricle (LV) papillary muscle. OR rats showed cardiac atrophy with reduced collagen levels, but there was myocardial dysfunction. ET was efficient in improving most parameters of body composition. However, the mechanical properties and Ca2+ handling from isolated papillary muscle were similar among groups. Aerobic ET does not promote morphological and cardiac functional adaptation under the condition of OR.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal , Obesity , Rats, Wistar , Diet, High-Fat/adverse effects , Heart
SELECTION OF CITATIONS
SEARCH DETAIL