Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.691
Filter
1.
Braz. j. med. biol. res ; 54(2): e9017, 2021. graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142574

ABSTRACT

The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.


Subject(s)
Animals , Rabbits , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , MAP Kinase Signaling System , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Melitten/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Caspase 3 , Apoptotic Protease-Activating Factor 1 , Neoplasm Invasiveness
2.
Article in English | WPRIM | ID: wpr-880864

ABSTRACT

C18 ceramide plays an important role in the occurrence and development of oral squamous cell carcinoma. However, the function of ceramide synthase 1, a key enzyme in C18 ceramide synthesis, in oral squamous cell carcinoma is still unclear. The aim of our study was to investigate the relationship between ceramide synthase 1 and oral cancer. In this study, we found that the expression of ceramide synthase 1 was downregulated in oral cancer tissues and cell lines. In a mouse oral squamous cell carcinoma model induced by 4-nitroquinolin-1-oxide, ceramide synthase 1 knockout was associated with the severity of oral malignant transformation. Immunohistochemical studies showed significant upregulation of PCNA, MMP2, MMP9, and BCL2 expression and downregulation of BAX expression in the pathological hyperplastic area. In addition, ceramide synthase 1 knockdown promoted cell proliferation, migration, and invasion in vitro. Overexpression of CERS1 obtained the opposite effect. Ceramide synthase 1 knockdown caused endoplasmic reticulum stress and induced the VEGFA upregulation. Activating transcription factor 4 is responsible for ceramide synthase 1 knockdown caused VEGFA transcriptional upregulation. In addition, mild endoplasmic reticulum stress caused by ceramide synthase 1 knockdown could induce cisplatin resistance. Taken together, our study suggests that ceramide synthase 1 is downregulated in oral cancer and promotes the aggressiveness of oral squamous cell carcinoma and chemotherapeutic drug resistance.


Subject(s)
Animals , Apoptosis , Carcinoma, Squamous Cell , Cell Line, Tumor , Down-Regulation , Endoplasmic Reticulum Stress , Head and Neck Neoplasms , Mice , Mouth Neoplasms , Oxidoreductases
3.
Article in English | WPRIM | ID: wpr-878339

ABSTRACT

Objective@#Cervical cancer (CC) is one of the most common malignant tumors in gynecology. This study aimed to investigate the prognostic significance of serum microRNA (miR)-378a-3p in CC and the effect of miR-378a-3p on tumor growth.@*Methods@#Real-time quantitative polymerase chain reaction analysis was used to measure the expression of miR-378a-3p in serum from patients with CC and healthy control subjects as well as from CC tissues and adjacent normal tissues. The association between serum miR-378a-3p levels and clinicopathological factors was analyzed. The correlation between miR-378a-3p levels and overall survival (OS) of CC patients was determined by Kaplan-Meier analysis. The CC cell proliferation and migration abilities after transfection of miR-378a-3p mimics were detected by Cell Counting Kit-8 and scratch wound healing assays, respectively. Tumor volume and weight in mice treated with miR-378a-3p were measured using a caliper and an electronic balance.@*Results@#MiR-378a-3p expression was downregulated in the serum and tissues of CC patients compared to that in healthy control subjects and normal tissues, respectively. Low expression of miR-378a-3p was positively correlated with large tumor size, advanced tumor stage, and lymph node metastasis. The OS of patients with low expression of miR-378a-3p was significantly lower than that of patients with high expression. Overexpression of miR-378a-3p suppressed the proliferation and migration of CC cells. @*Conclusion@#MiR-378a-3p downregulation is associated with the development and prognosis of CC, suggesting that it may be a potential biomarker for CC.


Subject(s)
Animals , Biomarkers/blood , Cell Movement , Cell Proliferation , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , MicroRNAs/blood , Middle Aged , Uterine Cervical Neoplasms/metabolism
4.
Acta Physiologica Sinica ; (6): 17-25, 2021.
Article in Chinese | WPRIM | ID: wpr-878231

ABSTRACT

This study was aimed to determine the effect of acute cerebral ischemia on the protein expression level of silent mating type information regulator 2 homolog 3 (Sirt3) in the neurons and clarify the pathological role of Sirt3 in acute cerebral ischemia. The mice with middle cerebral artery occlusion (MCAO) and primary cultured rat hippocampal neurons with oxygen glucose deprivation (OGD) were used as acute cerebral ischemia models in vivo and in vitro, respectively. Sirt3 overexpression was induced in rat hippocampal neurons by lentivirus transfection. Western blot was utilized to measure the changes in Sirt3 protein expression level. CCK8 assay was used to detect cell viability. Immunofluorescent staining was used to detect mitochondrial function. Transmission electron microscope was used to detect mitochondrial autophagy. The results showed that, compared with the normoxia group, hippocampal neurons from OGD1 h/reoxygenation 2 h (R2 h) and OGD1 h/R12 h groups exhibited down-regulated Sirt3 protein expression levels. Compared with contralateral normal brain tissue, the ipsilateral penumbra region from MCAO1 h/reperfusion 24 h (R24 h) and MCAO1 h/R72 h groups exhibited down-regulated Sirt3 protein expression levels, while there was no significant difference between the Sirt3 protein levels on both sides of sham group. OGD1 h/R12 h treatment damaged mitochondrial function, activated mitochondrial autophagy and reduced cell viability in hippocampal neurons, whereas Sirt3 over-expression attenuated the above damage effects of OGD1 h/R12 h treatment. These results suggest that acute cerebral ischemia results in a decrease in Sirt3 protein level. Sirt3 overexpression can alleviate acute cerebral ischemia-induced neural injuries by improving the mitochondrial function. The current study sheds light on a novel strategy against neural injuries caused by acute cerebral ischemia.


Subject(s)
Animals , Brain Ischemia , Down-Regulation , Infarction, Middle Cerebral Artery , Mice , Mitochondria , Neurons/metabolism , Rats , Reperfusion Injury , Sirtuin 3/metabolism , Sirtuins
5.
Braz. j. med. biol. res ; 54(4): e10345, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153539

ABSTRACT

Osteoarthritis (OA) is a chronic health condition. MicroRNAs (miRs) are critical in chondrocyte apoptosis in OA. We aimed to investigate the mechanism of miR-130b in OA progression. Bone marrow mesenchymal stem cells (BMSCs) and chondrocytes were first extracted. Chondrogenic differentiation of BMSCs was carried out and verified. Chondrocytes were stimulated with interleukin (IL)-1β to imitate OA condition in vitro. The effect of miR-130b on the viability, inflammation, apoptosis, and extracellular matrix of OA chondrocytes was studied. The target gene of miR-130b was predicted and verified. Rescue experiments were performed to further study the underlying downstream mechanism of miR-130b in OA. miR-130b first increased and drastically reduced during chondrogenic differentiation of BMSCs and in OA chondrocytes, respectively, while IL-1β stimulation resulted in increased miR-130b expression in chondrocytes. miR-130b inhibitor promoted chondrogenic differentiation of BMSCs and chondrocyte growth and inhibited the levels of inflammatory factors. miR-130b targeted SOX9. Overexpression of SOX9 facilitated BMSC chondrogenic differentiation and chondrocyte growth, while siRNA-SOX9 contributed to the opposite trends. Silencing of SOX9 significantly attenuated the pro-chondrogenic effects of miR-130b inhibitor on BMSCs. Overall, miR-130b inhibitor induced chondrogenic differentiation of BMSCs and chondrocyte growth by targeting SOX9.


Subject(s)
MicroRNAs/genetics , Mesenchymal Stem Cells , Down-Regulation , Cell Differentiation , Cells, Cultured
6.
Braz. j. med. biol. res ; 54(2): e9161, 2021. graf
Article in English | LILACS | ID: biblio-1153511

ABSTRACT

Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.


Subject(s)
Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Receptor, EphA7/metabolism , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness
7.
Int. braz. j. urol ; 46(6): 950-961, Nov.-Dec. 2020. graf
Article in English | LILACS | ID: biblio-1134248

ABSTRACT

ABSTRACT Objective To evaluate the effects of Arf6 downregulation on human prostate cancer cells. Materials and Methods The effects of Arf6 downregulation on cell proliferation, migration, invasion and apoptosis were assessed by MTT, BrdU, scratch, Transwell assays and flow cytometry respectively. AKT, p-AKT, ERK1/2, p-ERK1/2 and Rac1 protein expressions were detected by Western blot. Results Downregulating Arf6 by siRNA interference suppressed the mRNA and protein expressions of Arf6. The proliferation capacities of siRNA group at 48h, 72h, and 96h were significantly lower than those of control group (P <0.05). The migration distance of siRNA group at 18h was significantly shorter than that of control group (P <0.01). The number of cells penetrating Transwell chamber membrane significantly decreased in siRNA group compared with that of control group (P <0.01). After 24h, negative control and normal control groups had similar apoptotic rates (P >0.05) which were both significantly lower than that of siRNA group (P <0.01). After Arf6 expression was downregulated, p-ERK1/2 and Rac1 protein expressions were significantly lower than those of control group (P <0.05). Conclusion Downregulating Arf6 expression can inhibit the proliferation, migration and invasion of prostate cancer cells in vitro, which may be related to ERK1/2 phosphorylation and Rac1 downregulation.


Subject(s)
Humans , Male , Prostatic Neoplasms/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Apoptosis , RNA, Small Interfering/genetics , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness
9.
Mem. Inst. Oswaldo Cruz ; 115: e200458, 2020. graf
Article in English | LILACS, SES-SP | ID: biblio-1135229

ABSTRACT

BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.


Subject(s)
Animals , Plant Proteins/therapeutic use , Salmonella Infections/drug therapy , Plant Extracts/pharmacology , Calotropis/chemistry , Homeostasis/drug effects , Inflammation/drug therapy , Latex/chemistry , Anti-Bacterial Agents/therapeutic use , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Down-Regulation , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology
10.
Article in Chinese | WPRIM | ID: wpr-879932

ABSTRACT

OBJECTIVE@#To investigate the regulatory effect of iridoid glycoside of radix scrophulariae (IGRS) on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion @*METHODS@#Rat pheochromocytoma PC12 cells were pretreated with IGRS (50, 100, 200 μg/mL) for 24h, and the @*RESULTS@#The damage caused by OGD/R to PC12 cells was significantly reduced by IGRS, with significant effect on increasing survival rate and reducing LDH release (all @*CONCLUSIONS@#IGRS has neuroprotective effect, which may alleviate cerebral ischemia-reperfusion injury by regulating SERCA2, maintaining calcium balance, and inhibiting endoplasmic reticulum stress-mediated apoptosis.


Subject(s)
Animals , Cell Survival/drug effects , Down-Regulation/drug effects , Endoplasmic Reticulum Stress/drug effects , Glucose , In Vitro Techniques , Iridoid Glycosides/pharmacology , Oxygen , PC12 Cells , Rats , Reperfusion , Reperfusion Injury/prevention & control , Snails/chemistry
11.
Article in Chinese | WPRIM | ID: wpr-828918

ABSTRACT

OBJECTIVE@#To investigate the effect of down-regulation of pannexin 2 (Panx-2) channels on cisplatin-induced apoptosis in I-10 cells.@*METHODS@#The expression of Panx-2 protein in testicular cancer cells was detected with Western blotting. The testicular cancer cell line I-10 was transfected with two short hairpin RNA (shRNA1 and shRNA2) Lipofectamine, the empty vector (NC group) or Lipofectamine2000 (blank control group), and the changes in the expression of Panx-2 was detected with Western blotting. The effects of transfection with a Panx-2 inhibitor on surviving fraction of the cells treated with cisplatin (16 μmol/L) for 24 h, 48 h and 72 h was assessed with MTT assay, and the clonogenic capacity of the cells was evaluated with colony-forming assay. At 8 h after incubation with 16 μmol/L cisplatin, AnnexinV/PI double staining was used to detect the early apoptosis of the cells. After 24 h of treatment with 16 μmol/L cisplatin, the cells were examined for expressions of caspase-3, Bcl-2 and Bax using Western blotting.@*RESULTS@#The expression of Panx-2 was significantly increased in cisplatin-resistant I-10/DDP ( < 0.001) cells and Tcam-2/DDP ( < 0.01) cells as compared with I-10 cells and Tcam-2 cells. Transfection of I-10 cells with shRNA1 and shRNA2 resulted in significantly decreased Panx-2 expression ( < 0.05) and significantly reduced cell surviving fraction ( < 0.001). In the presence of cisplatin, the cells in NC group showed a higher clonogenic efficiency than those in shRNA1 and shRNA2 groups ( < 0.001). The early-stage apoptosis rate of the cells in shRNA1 and shRNA2 groups were significantly higher than that in NC group ( < 0.01). Panx-2 knockdown in I-10 cells significantly increased caspase-3 and Bax expressions ( < 0.05) and significantly decreased the expression of Bcl-2 ( < 0.01).@*CONCLUSIONS@#Down-regulation of Panx-2 channel enhances cisplatin-induced apoptosis in cultured testicular cancer cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cisplatin , Connexins , Down-Regulation , Drug Resistance, Neoplasm , Humans , Male , Testicular Neoplasms
12.
Acta Physiologica Sinica ; (6): 541-550, 2020.
Article in Chinese | WPRIM | ID: wpr-878199

ABSTRACT

The occurrence and development of pulmonary arterial hypertension (PAH) is closely related to the genetic mutation of bone morphogenetic protein receptor type II (BMPRII) encoding gene and the inflammatory response mediated by nuclear factor κB (NF-κB) pathway. This paper was aimed to investigate the effect of NF-κB pathway inhibitors on lipopolysaccharide (LPS)-induced pulmonary artery endothelial cell injury. Human pulmonary artery endothelial cells were treated with 1 μg/mL of LPS. The expression levels of BMPRII and interleukin-8 (IL-8) were detected by Western blot and qPCR. The rat PAH model was established by intraperitoneal (i.p.) injection of monocrotaline (MCT). The expression levels of BMPRII and IL-8 in pulmonary artery endothelial cells were detected by immunofluorescence staining. Cardiac hemodynamic changes and pulmonary vascular remodeling were detected in the MCT-PAH model rats. The results showed that LPS caused down-regulation of BMPRII expression and up-regulation of IL-8 expression in human pulmonary artery endothelial cells. NF-κB inhibitor BAY11-7082 (10 μmol/L) reversed the effect of LPS. In the pulmonary artery endothelial cells of MCT-PAH model, BMPRII expression was down-regulated, IL-8 expression was up-regulated, weight ratio of right ventricle to left ventricle plus septum [RV/(LV+S)] and right ventricular systolic pressure (RVSP) were significantly increased, cardiac output (CO) and tricuspid annular plane systolic excursion (TAPSE) were significantly reduced, and pulmonary vessel wall was significantly thickened. BAY11-7082 (5 mg/kg, i.p., 21 consecutive days) reversed the above changes in the MCT-PAH model rats. These results suggest that LPS down-regulates the expression level of BMPRII through NF-κB signaling pathway, promoting the occurrence and development of PAH. Therefore, the NF-κB pathway can be used as a potential therapeutic target for PAH.


Subject(s)
Animals , Bone Morphogenetic Protein Receptors, Type II , Down-Regulation , Endothelial Cells/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Lipopolysaccharides , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Vascular Remodeling
13.
Chinese Medical Journal ; (24): 2429-2436, 2020.
Article in English | WPRIM | ID: wpr-877825

ABSTRACT

BACKGROUND@#Endothelial cells play a key role in the cytokine storm caused by influenza A virus. MicroRNA-155 (miR-155) is an important regulator in inflammation. Its role in the inflammatory response to influenza A infection, however, has yet to be elucidated. In this study, we explored the role as well as the underlying mechanism of miR-155 in the cytokine production in influenza A-infected endothelial cells.@*METHODS@#Human pulmonary microvascular endothelial cells (HPMECs) were infected with the influenza A virus strain H1N1. The efficiency of H1N1 infection was confirmed by immunofluorescence. The expression levels of proinflammatory cytokines and miR-155 were determined using real-time polymerase chain reaction. A dual-luciferase reporter assay characterized the interaction between miR-155 and sphingosine-1-phosphate receptor 1 (S1PR1). Changes in the target protein levels were determined using Western blot analysis.@*RESULTS@#MiR-155 was elevated in response to the H1N1 infection in HPMECs (24 h post-infection vs. 0 h post-infection, 3.875 ± 0.062 vs. 1.043 ± 0.013, P = 0.001). Over-expression of miR-155 enhanced inflammatory cytokine production (miR-155 mimic vs. negative control, all P < 0.05 in regard of cytokine levels) and activation of nuclear factor kappa B in infected HPMECs (miR-155 mimic vs. negative control, P = 0.004), and down-regulation of miR-155 had the opposite effect. In addition, S1PR1 was a direct target of miR-155 in the HPMECs. Inhibition of miR-155 enhanced the expression of the S1PR1 protein. Down-regulation of S1PR1 decreased the inhibitory effect of the miR-155 blockade on H1N1-induced cytokine production and nuclear factor kappa B activation in HPMECs.@*CONCLUSION@#MiR-155 maybe modulate influenza A-induced inflammatory response by targeting S1PR1.


Subject(s)
Down-Regulation , Endothelial Cells , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus , Influenza, Human/genetics , MicroRNAs/genetics , Sphingosine-1-Phosphate Receptors
14.
Yonsei Medical Journal ; : 210-217, 2020.
Article in English | WPRIM | ID: wpr-811475

ABSTRACT

PURPOSE: The goal of this study was to explore the effects of hsa-let-7g on cell proliferation and apoptosis, and elucidate its role in lung cancer development.MATERIALS AND METHODS: The expression levels of has-let-7g and HOXB1 in tissues and cells were measured by qRT-PCR. An inhibitor of hsa-let-7g or one targeting a control messenger RNA were transfected into A549 and H1944 lung cancer cells, and the effects of hsa-let-7g dysregulation on cell viability and apoptosis were analyzed using CCK-8 and apoptosis detection assays. HOXB1 was confirmed as the target gene of hsa-let-7g, based on luciferase reporter assay results. The relationship between hsa-let-7g and HOXB1 was confirmed by co-transfection of inhibitors of hsa-let-7g and HOXB1 followed by Western blot, CCK-8, and apoptosis detection assays.RESULTS: We observed high expression of hsa-let-7g in lung cancer tissues compared to the corresponding normal tissues, and generally higher expression of hsa-let-7g in patients with advanced tumor classification. The results of CCK-8 and apoptosis detection experiments showed that the inhibition of hsa-let-7g significantly inhibited proliferation of A549 and H1944 cells, but also promoted apoptosis. HOXB1 is a specific target of hsa-let-7g, and downregulation of HOXB1 in lung cancer cells reversed the suppressive effects caused by knocking down hsa-let-7g.CONCLUSION: These data collectively suggest that the expression of hsa-let-7g inhibits lung cancer cells apoptosis and promotes proliferation by down-regulating HOXB1. The results from this study demonstrate the potential of hsa-let-7g/HOXB1 axis as a therapeutic target for the treatment of lung cancer.


Subject(s)
Apoptosis , Blotting, Western , Cell Proliferation , Cell Survival , Classification , Down-Regulation , Humans , Luciferases , Lung Neoplasms , Lung , MicroRNAs , RNA, Messenger , Sincalide
15.
Article in English | WPRIM | ID: wpr-811198

ABSTRACT

PURPOSE: We investigated the expression of the N-myc and STAT interactor (NMI) protein in invasive ductal carcinoma tissue and estimated its clinicopathologic significance as a prognostic factor. The expression levels and prognostic significance of NMI were also analyzed according to the molecular subgroup of breast cancers.METHODS: Human NMI detection by immunohistochemistry was performed using tissue microarrays of 382 invasive ductal carcinomas. The correlation of NMI expression with patient clinicopathological parameters and prognostic significance was analyzed and further assessed according to the molecular subgroup of breast cancers. Moreover, in vitro experiments with 13 breast cancer cell lines were carried out. We also validated NMI expression significance in The Cancer Genome Atlas cohort using the Human Protein Atlas (HPA) database.RESULTS: Low NMI expression was observed in 190 cases (49.7%). Low NMI expression was significantly associated with the “triple-negative” molecular subtype (p < 0.001), high nuclear grade (p < 0.001), high histologic grade (p < 0.001), and advanced anatomic stage (p = 0.041). Patients with low NMI expression had poorer progression-free survival (p = 0.038) than patients with high NMI expression. Low NMI expression was not significantly associated with patient prognosis in the molecular subgroup analysis. In vitro, a reduction of NMI expression was observed in 8 breast cancer cell lines, especially in the estrogen receptor-positive and basal B type of triple-negative breast cancer molecular subgroups. The HPA database showed that low NMI expression levels were associated with a lower survival probability compared with that associated with high NMI expression (p = 0.053).CONCLUSION: NMI expression could be a useful prognostic biomarker and a potential novel therapeutic target in invasive ductal carcinoma.


Subject(s)
Biomarkers, Tumor , Breast , Breast Neoplasms , Carcinoma, Ductal , Cell Line , Cohort Studies , Databases, Genetic , Disease-Free Survival , Down-Regulation , Estrogens , Genome , Humans , Immunohistochemistry , In Vitro Techniques , Prognosis , Triple Negative Breast Neoplasms
16.
Article in English | WPRIM | ID: wpr-811138

ABSTRACT

BACKGROUND: Recent studies have shown that microRNAs (miRNAs) are involved in the process of cardiomyocyte apoptosis. We have previously reported that granulocyte-colony stimulating factor (G-CSF) ameliorated diastolic dysfunction and attenuated cardiomyocyte apoptosis in a rat model of diabetic cardiomyopathy. In this study, we hypothesized a regulatory role of cardiac miRNAs in the mechanism of the anti-apoptotic effect of G-CSF in a diabetic cardiomyopathy rat model.METHODS: Rats were given a high-fat diet and low-dose streptozotocin injection and then randomly allocated to receive treatment with either G-CSF or saline. H9c2 rat cardiomyocytes were cultured under a high glucose (HG) condition to induce diabetic cardiomyopathy in vitro. We examined the extent of apoptosis, miRNA expression, and miRNA target genes in the myocardium and H9c2 cells.RESULTS: G-CSF treatment significantly decreased apoptosis and reduced miR-34a expression in diabetic myocardium and H9c2 cells under the HG condition. G-CSF treatment also significantly increased B-cell lymphoma 2 (Bcl-2) protein expression as a target for miR-34a. In addition, transfection with an miR-34a mimic significantly increased apoptosis and decreased Bcl-2 luciferase activity in H9c2 cells.CONCLUSION: Our results indicate that G-CSF might have an anti-apoptotic effect through down-regulation of miR-34a in a diabetic cardiomyopathy rat model.


Subject(s)
Animals , Apoptosis , Diabetic Cardiomyopathies , Diet, High-Fat , Down-Regulation , Glucose , Granulocyte Colony-Stimulating Factor , In Vitro Techniques , Luciferases , Lymphoma, B-Cell , MicroRNAs , Models, Animal , Myocardium , Myocytes, Cardiac , Rats , Streptozocin , Transfection
17.
Acta Physiologica Sinica ; (6): 175-180, 2020.
Article in Chinese | WPRIM | ID: wpr-827070

ABSTRACT

The present study was aimed to clarify the signaling molecular mechanism by which fibroblast growth factor 21 (FGF21) regulates leptin gene expression in adipocytes. Differentiated 3T3-F442A adipocytes were used as study object. The mRNA expression level of leptin was detected by fluorescence quantitative RT-PCR. The phosphorylation levels of proteins of signal transduction pathways were detected by Western blot. The results showed that FGF21 significantly down-regulated the mRNA expression level of leptin in adipocytes, and FGF21 receptor inhibitor BGJ-398 could completely block this effect. FGF21 up-regulated the phosphorylation levels of ERK1/2 and AMPK in adipocytes. Either ERK1/2 inhibitor SCH772984 or AMPK inhibitor Compound C could partially block the inhibitory effect of FGF21, and the combined application of these two inhibitors completely blocked the effect of FGF21. Neither PI3K inhibitor LY294002 nor Akt inhibitor AZD5363 affected the inhibitory effect of FGF21 on leptin gene expression. These results suggest that FGF21 may inhibit leptin gene expression by activating ERK1/2 and AMPK signaling pathways in adipocytes.


Subject(s)
3T3 Cells , Adenylate Kinase , Adipocytes , Metabolism , Animals , Down-Regulation , Fibroblast Growth Factors , Metabolism , Leptin , Metabolism , MAP Kinase Signaling System , Mice , Phosphorylation , Signal Transduction
18.
Article in Chinese | WPRIM | ID: wpr-826365

ABSTRACT

To explore whether the downregulation of protein phosphatase 2A catalytic subunit(PP2Ac)involved in the pathogenesis of mitochondria fission/fusion dynamics and functional imbalance induced by human tau accumulation. After cotransfection with mito-dsRed plasmids and pIRES-eGFP-tau40 plasmids 48 hours,the rat primary hippocampal neurons were observed with a laser scanning confocal microscope for their changes in shape and distribution of mitochondria.The expressions of mitochondria fission/fusion protein and PP2Ac and PP2Ab were detected by Western blotting.Furthermore,the shape and distribution of mitochondria of rat primary hippocampal neuron and wild type 293wt cells were assayed 48 hours after co-transfection with siPP2Ac-EGFP plasmids and mito-DsRed plasmids,and the fission/fusion dynamics of 293wt cells was captured with live cell time-lapse imaging after co-transfection with siPP2Ac plasmids and mito-Dendra2 plasmids.After transfection with siPP2Ac plasmids,the relative level of mitochondria fission/fusion protein of 293wt cells was assayed by Western blotting,and mitochondria membrane potential was detected by JC-1 staining,and the cellular viability was measured by CCK8 assay.Finally,the shape and distribution and membrane potential of mitochondria of HEK293 cells with stable transfection of htau40(293htau)were detected after co-transfection with PP2Ac and mito-dsRed plasmids. Human tau40 expression decreased distribution of mitochondria and significantly lowered PP2Ac level in primary hippocampal neuron(=4.814, =0.0086).Down-regulation of PP2Ac caused mitochondria elongation and perinuclear accumulation in primary hippocampal neuron and 293wt cells;in addition,down-regulation of PP2Ac in 293wt cells significantly increased mitochondria fusion rate(=2.857, =0.0074)and the levels of mitochondria fusion protein mitofusin(MFN)1(=6.768, =0.0025),MFN2(=3.121, =0.0035),and optic atrophy 1(=3.775, =0.0199);however,the levels of dynamin-like protein-1 and Fis1 remained unchanged.The down-regulation of PP2Ac in 293wt cells led to the significant decrease in mitochondria membrane potential(=2.300, =0.0270)and cell viability(=6.249, <0.0001).Finally,up-regulation of PP2Ac attenuated the abnormalities in the shape,distribution and function of mitochondria in the 293htau cells. Down-regulation of PP2Ac is involved in the abnormal shape and distribution of mitochondria and its dysfunction induced by human tau40 in rat primary hippocampal neurons and HEK293 cells.


Subject(s)
Animals , Catalytic Domain , Down-Regulation , HEK293 Cells , Humans , Mitochondria , Protein Phosphatase 2 , Rats , tau Proteins
19.
Braz. j. med. biol. res ; 53(5): e9608, 2020. graf
Article in English | LILACS | ID: biblio-1098119

ABSTRACT

Cataract, an eye disease that threatens the health of millions of people, brings about severe economic burden for patients and society. MicroRNA (miR)-378a-5p and miR-630 were recognized as essential regulators in multiple cancers. However, the exact functions of miR-378a-5p and miR-630 in cataract are still unclear. The expression of miR-378a-5p, miR-630, and E2F transcription factor 3 (E2F3) in tissues and cells was measured by quantitative real-time polymerase chain reaction. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was used to evaluate cell viability. Flow cytometry was conducted to analyze cell apoptosis. The interaction between E2F3 and miR-378a-5p or miR-630 was confirmed by dual-luciferase reporter assay. The expression of proteins E2F3, B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase 3 was detected by western blot assay. The expression of miR-378a-5p and miR-630 was up-regulated whereas E2F3 was down-regulated in human cataract lens tissues compared with normal lens tissues. Depletion of miR-378a-5p or miR-630 enhanced proliferation and reduced apoptosis of human lens epithelial cells. Interestingly, up-regulation of E2F3 exhibited the same trend. Next, dual-luciferase reporter assay validated the interaction between E2F3 and miR-378a-5p or miR-630. The rescue experiments further revealed that E2F3 knockdown could recover miR-378a-5p, and miR-630 inhibitor induced promotion of cell proliferation and inhibition of apoptosis in cataract. miR-378a-5p and miR-630 repressed proliferation and induced apoptosis of lens epithelial cells by targeting E2F3 in cataract, representing a prospective alternative therapy for cataract.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Cataract/metabolism , Apoptosis , MicroRNAs/metabolism , Epithelial Cells/metabolism , E2F3 Transcription Factor/metabolism , Down-Regulation , Blotting, Western , Disease Progression , Real-Time Polymerase Chain Reaction , Flow Cytometry
20.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Article in English | LILACS | ID: biblio-1089349

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Humans , Diabetic Nephropathies/metabolism , Bone Morphogenetic Protein 7/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Down-Regulation , Up-Regulation , Cells, Cultured , MicroRNAs/metabolism , Diabetic Nephropathies/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL