Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Medicina (B.Aires) ; 81(1): 76-90, mar. 2021. graf
Article in Spanish | LILACS | ID: biblio-1287244

ABSTRACT

Resumen El descubrimiento de un nuevo principio activo farmacéutico implica estudios preclínicos, que tienen como objetivo demostrar que es eficaz y seguro para un posterior ensayo en seres humanos. Esto conduce a la necesidad de desarrollar tecnologías que aprovechen las nuevas herramientas analíticas disponi bles dentro de un contexto donde los resultados de las pruebas realizadas, estén plenamente documentados, bajo sistemas de buenas prácticas de laboratorio auditables. En esta revisión se actualizan y describen algunos de los ensayos realizados en la etapa preclínica del desarrollo de un nuevo fármaco y el estado actual de la tecnología analítica empleada para el dosaje de diferentes biomarcadores sanguíneos de interés. Se analizaron los biomarcadores más relevantes, las normativas de validación de las técnicas analíticas empleadas para su determinación y los problemas que se presentan al tratar de aplicarlas.


Abstract New drug discovery involves preclinical studies to demonstrate its effectivity and safety for further tests in humans. This leads to the need to develop technologies that take advantage of the new analytical tools available within a context where the results of the tests carried out are fully documented, under auditable systems of good laboratory practice. This review updates and describes some of the tests carried out in the preclinical stage of the development of a new drug and the current state of the analytical technology used to measure different blood biomarkers of interest. Biomarker parameters were analyzed at the physiological level, considering both the validation regulations of the analytical techniques used for their determination as the problems that arise when trying to apply them, since many of these biomarkers are endogenous compounds in the used matrices.


Subject(s)
Humans , Biomarkers , Drug Discovery
2.
Protein & Cell ; (12): 717-733, 2021.
Article in English | WPRIM | ID: wpr-888715

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.


Subject(s)
Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Alveolar Epithelial Cells/virology , Antibodies, Neutralizing/therapeutic use , COVID-19/virology , Down-Regulation , Drug Discovery , Human Embryonic Stem Cells/metabolism , Humans , Immunity , Lipid Metabolism , Lung/virology , RNA, Viral/metabolism , SARS-CoV-2/physiology , Virus Replication/drug effects
3.
Article in Chinese | WPRIM | ID: wpr-888093

ABSTRACT

Currently available drugs for complex diseases have such limitations as unsatisfactory efficacy, drug resistance, and toxic side effects. Complexity of biological systems is a determinant of drug efficacy. It is not an effective approach to find disturbance strategies for the complicated biological network for complex diseases based on the static topological structures, as biological systems undergo dynamic changes all the time. Supported by profound theoretical basis and rich clinical experience, traditional Chinese medicine(TCM) emphasizes systematic and dynamic treatment depending on changes. Guided by TCM theory in practical treatment, Chinese medicine dynamically and comprehensively regulates the overall state. Therefore, if the dynamic factors are taken into consideration in design, the resultant drugs will be more effective. This study proposes state-regulating(SR) medicine from the perspective of system dynamics, elaborating the concept in terms of the connotations and principle and verifying the feasibility of SR medicine design with the attractor method. Thus, SR medicine is a new concept for drug discovery and design from the aspect of system dynamics, which integrates the TCM focusing on holistic dynamic regulation with biomedicine that features local microscopic research such as molecular mechanisms. The attractor method is a feasible techinical way for SR medicine design.


Subject(s)
Drug Discovery , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Research Design
4.
Mem. Inst. Oswaldo Cruz ; 115: e200254, 2020. tab, graf
Article in English | SES-SP, LILACS, SES-SP | ID: biblio-1135246

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious infection that may break the healthcare system of several countries. Here, we aimed at presenting a critical view of ongoing drug repurposing efforts for COVID-19 as well as discussing opportunities for development of new treatments based on current knowledge of the mechanism of infection and potential targets within. Finally, we also discuss patent protection issues, cost effectiveness and scalability of synthetic routes for some of the most studied repurposing candidates since these are key aspects to meet global demand for COVID-19 treatment.


Subject(s)
Humans , Pneumonia, Viral/drug therapy , Coronavirus Infections/drug therapy , Drug Discovery , Drug Repositioning , Pandemics , Betacoronavirus , SARS-CoV-2 , COVID-19
5.
Article in Chinese | WPRIM | ID: wpr-828529

ABSTRACT

Cullin-RING E3 ligases (CRLs) are the major components of ubiquitin-proteasome system, responsible for ubiquitylation and subsequent degradation of thousands of cellular proteins. CRLs play vital roles in the regulation of multiple cellular processes, including cell cycle, cell apoptosis, DNA replication, signalling transduction among the others, and are frequently dysregulated in many human cancers. The discovery of specific neddylation inhibitors, represented by MLN4924, has validated CRLs as promising targets for anti-cancer therapies with a growing market. Recent studies have focused on the discovery of the CRLs inhibitors by a variety of approaches, including high through-put screen, virtual screen or structure-based drug design. The field is, however, still facing the major challenging, since CRLs are a large multi-unit protein family without typical active pockets to facilitate the drug design, and enzymatic activity is mainly dependent on undruggable protein-protein interactions and dynamic conformation changes. Up to now, most reported CRLs inhibitors are aiming at targeting the F-box family proteins (e.g., SKP2, β-TrCP and FBXW7), the substrate recognition subunit of SCF E3 ligases. Other studies reported few small molecule inhibitors targeting the UBE2M-DCN1 interaction, which specifically inhibits CRL3/CRL1 by blocking the cullin neddylation. On the other hand, several CRL activators have been reported, such as plant auxin and immunomodulatory imide drugs, thalidomide. Finally, proteolysis-targeting chimeras (PROTACs) has emerged as a new technology in the field of drug discovery, specifically targeting the undruggable protein-protein interaction. The technique connects the small molecule that selectively binds to a target protein to a CRL E3 via a chemical linker to trigger the degradation of target protein. The PROTAC has become a hotspot in the field of E3-ligase-based anti-cancer drug discovery.


Subject(s)
Antineoplastic Agents , Pharmacology , Therapeutic Uses , Drug Design , Drug Discovery , Enzyme Inhibitors , Pharmacology , Therapeutic Uses , Humans , Neoplasms , Ubiquitin-Protein Ligases , Metabolism , Ubiquitination
6.
Rev. medica electron ; 41(5): 1300-1309, sept.-oct. 2019.
Article in Spanish | LILACS, CUMED | ID: biblio-1102891

ABSTRACT

Desde siempre, el ser humano buscó una explicación a los fenómenos y una solución a sus males. El instinto fue quien primero guió al hombre para buscar remedios con los que aliviar sus males lamiendo o limpiando sus heridas. Mediante el método de "ensayo-error", el hombre prehistórico fue encontrando plantas y sustancias minerales que resultaban eficaces. En la Edad Media y el Mundo Moderno, la medicina Hippocrático-galénica tuvo, en relación a la terapéutica, a Dioscórides como el gran referente Con el decurso de los años, científicos como Pasteur, Koch, Cantani, Emmerich, Low, Tiberio, sentaron las bases para que más tarde otros como Freudenreich, Domagk, Fleming, Waksman, entre otros, descubrieran y perfeccionaran la amplia gama de antibióticos que hoy conocemos. A pesar de estos avances, en la actualidad se observan múltiples mecanismos de resistencia bacteriana que ponen en peligro la eficacia antibiótica (AU).


The human beings have always looked for an explanation to the phenomena and a solution to his misfortunes. Firstly the instinct was what guided the man to look for remedies to alleviate his ills licking or cleaning his wounds. By means of the "trial-error" method, the prehistoric man was finding plants and mineral substances that were effective. In the Middle Ages and the Modern World, the Hippocratic-galenic medicine took Dioscorides as the great referent in relation to therapeutic. As the years went by, scientist like Pasteur, Koch, Cantani, Emmerich, Low, Tiberio, set the bases for Freudenreich, Domagk, Fleming, Waksman among others to discover and improve the wide range antibiotics known today. In spite of these advances, multiple mechanisms of bacterial resistance putting in danger antibiotic effectiveness are observed today (AU).


Subject(s)
Humans , Clinical Evolution , History of Pharmacy , Anti-Bacterial Agents/history , Drug Resistance, Microbial , Drug Discovery/history , History of Medicine
7.
São Paulo; s.n; s.n; 2019. 105 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1008472

ABSTRACT

A malária, doença causada pelo protozoário do gênero Plasmodium, está entre as doenças que mais causam mortes os países subdesenvolvidosn. O hospedeiro é infectado por meio da picada do mosquito do gênero Anopheles, que introduz o parasita durante a hematofagia. As formas mais graves são causadas pelo Plasmodium vivax e o Plasmodium falciparum. As regiões mais afetadas por estas formas são África Subsaariana, Ásia, América Central e Sul. Desde o começo do século XXI, a Organização Mundial de Saúde (OMS) busca erradicar a doença, porém o P.falciparum se mostrou resistente aos fármacos antimaláricos existentes, dificultando a eficácia do tratamento. Isto, entre outros fatores, como mortalidade e alto índice de infecção, tornam necessárias novas pesquisas para a descoberta de novos fármacos mais seguros e eficazes contra a malária. Estudos têm mostrado como um alvo promissor para a criação de novos antimaláricos, a cisteína protease falcipaína, a qual se apresenta em três isoformas no parasita, sendo elas, falcipaína 1, 2 e 3. A falcipaína 2 está ligada com a hidrólise da hemoglobina, e seus inibidores vem sendo estudados como alternativas na busca de agentes antimaláricos. Derivados de semicarbazona, tais como o nitrofural e o hidroximetilnitrofural demonstraram atividade inibitória de cisteíno proteases parasitárias. Utilizando estratégias modernas de planejamento de fármacos e por meio da integração entre técnicas computacionais e experimentais, realizou-se o planejamento, síntese e avaliação biológica de compostos derivados dos ditiocarbazatos e tiossemicarbazonas, bioisosteros de semicarbazona, como inibidores da cisteíno protease falcipaína 2, no intuito de obter novos antimaláricos. Aplicaram-se técnicas de modelagem molecular em três séries de compostos (A, B e C), sendo a A e B derivados dos ditiocarbazatos e a C das tiossemicarbazonas. Estes estudos sugerem, três compostos da série A, quatro na série B e três na C com maior potencial para inibição da falcipaína 2. Isso devido aos resultados teóricos indicarem condições favoráveis ao ataque nucleofílico da cisteína 42 catalítica da falcipaína 2 às tiocarbonilass presentes nos compostos planejados. Estes derivados foram sintetizados, analisados por espectroscopia de ressonância magnética de 1H e 13C, espectroscopia de IV, ponto de fusão e pureza caracterizando sua formação. Após a obtenção, os compostos foram enviados para ensaios biológicos frente ao parasita P. falciparum. Os compostos testados não apresentaram inibição, porém é sabido que muitos inibidores enzimáticos não são ativos contra o parasita mesmo tendo alta potência contra a enzima, isto devido às barreiras a serem ultrapassadas até chegar ao alvo bioquímico, deste modo faz-se necessário ensaios contra a enzima para validar nossa hipótese


Malaria, a disease caused by the protozoan of the genus Plasmodium, is among the most deadly diseases in poor countries. The host is infected through the bite of the mosquito of the genus ,i>Anopheles, which introduces the parasite during hematophagy. The most severe forms are caused by Plasmodium vivax and Plasmodium falciparum. The regions most affected by these forms are Sub-Saharan Africa, Asia, Central and South America. Since the beginning of the 21st century, the World Health Organization (WHO) has sought to eradicate the disease, but P. falciparum has been resistant to antimalarial drugs treatment. Among other factors, such as mortality and high infection rates, new research is needed to find new, safer and more effective drugs against malaria. Studies have shown as a promising target for the creation of new antimalarial drugs, the cysteine protease falcipain, which is present in three isoforms in the parasite: falcipain 1, 2 and 3. Falcipain 2 is linked to the hydrolysis of hemoglobin, and its inhibitors have been studied as alternatives in the search for antimalarial agents. Derivatives of semicarbazone such as nitrofural and hydroxymethylnitrofural demonstrated inhibitory activity of parasitic cysteine proteases. Using modern strategies for drug design and the integration of computational and experimental techniques, the design, synthesis and biological evaluation of compounds derived from dithiocarbazates and thiossemicarbazones, semicarbazone biosynthesis as inhibitors of cysteine protease falcipain 2 were carried out in order to new antimalarials. Molecular modeling studies were performed in three series of compounds (A, B and C), with A and B being derived from dithiocarbazates and C from thiossemicarbazones. These studies suggest three compounds in the A series, four in the B series, and three in the C group with the greatest potential for inhibition of falcipain 2. This is due to the theoretical results indicating favorable conditions for the nucleophilic attack of the catalytic cysteine of falcipain 2 on thionyls present in the compounds planned. These derivatives were synthesized, analyzed by 1H and 13C magnetic resonance spectroscopy, IR spectroscopy and melting point, characterizing their formation. After being obtained, the compounds were sent for biological assays against the P. falciparum parasite. The compounds tested did not show inhibition, but it is known that many enzyme inhibitors are not active against the parasite even though they have high potency against the enzyme, this is due to the barriers to be overcome until reaching the biochemical target, thus enzyme to validate our hypothesis


Subject(s)
Plasmodium falciparum/classification , Biological Phenomena/analysis , Drug Discovery/instrumentation , Malaria/drug therapy , Cysteine Proteases/analysis , Antimalarials/analysis
8.
Article in English | WPRIM | ID: wpr-761807

ABSTRACT

A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted druginduced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.


Subject(s)
Blood Pressure , Cardiac Electrophysiology , Cardiac Resynchronization Therapy , Cardiotoxicity , Clinical Medicine , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Electrocardiography , Heart , Humans , In Vitro Techniques , Ion Channels , Models, Cardiovascular , Relaxation , Risk Assessment
9.
Article in English | WPRIM | ID: wpr-761793

ABSTRACT

In drug discovery or preclinical stages of development, potency parameters such as IC₅₀, K(i), or K(d) in vitro have been routinely used to predict the parameters of efficacious exposure (AUC, C(min), etc.) in humans. However, to our knowledge, the fundamental assumption that the potency in vitro is correlated with the efficacious concentration in vivo in humans has not been investigated extensively. Thus, the present review examined this assumption by comparing a wide range of published pharmacokinetic (PK) and potency data. If the drug potency in vitro and its in vivo effectiveness in humans are well correlated, the steady-state average unbound concentrations in humans [C(u_ss.avg) = f(u)·F·Dose/(CL·τ) = f(u)·AUCss/τ] after treatment with approved dosage regimens should be higher than, or at least comparable to, the potency parameters assessed in vitro. We reviewed the ratios of C(u_ss.avg)/potency in vitro for a total of 54 drug entities (13 major therapeutic classes) using the dosage, PK, and in vitro potency reported in the published literature. For 54 drugs, the C(u_ss.avg)/in vitro potency ratios were < 1 for 38 (69%) and < 0.1 for 22 (34%) drugs. When the ratios were plotted against f(u) (unbound fraction), “ratio < 1” was predominant for drugs with high protein binding (90% of drugs with f(u) ≤ 5%; i.e., 28 of 31 drugs). Thus, predicting the in vivo efficacious unbound concentrations in humans using only in vitro potency data and f(u) should be avoided, especially for molecules with high protein binding.


Subject(s)
Drug Discovery , Humans , In Vitro Techniques , Plasma , Protein Binding
10.
Article in English | WPRIM | ID: wpr-765343

ABSTRACT

Epilepsy has been known to humankind since antiquity. The surgical treatment of epilepsy began in the early days of neurosurgery and has developed greatly. Many surgical procedures have stood the test of time. However, clinicians treating epilepsy patients are now witnessing a huge tide of change. In 2017, the classification system for seizure and epilepsy types was revised nearly 36 years after the previous scheme was released. The actual difference between these systems may not be large, but there have been many conceptual changes, and clinicians must bid farewell to old terminology. Paradigms in drug discovery are changing, and novel antiseizure drugs have been introduced for clinical use. In particular, drugs that target genetic changes harbor greater therapeutic potential than previous screening-based compounds. The concept of focal epilepsy has been challenged, and now epilepsy is regarded as a network disorder. With this novel concept, stereotactic electroencephalography (SEEG) is becoming increasingly popular for the evaluation of dysfunctioning neuronal networks. Minimally invasive ablative therapies using SEEG electrodes and neuromodulatory therapies such as deep brain stimulation and vagus nerve stimulation are widely applied to remedy dysfunctional epilepsy networks. The use of responsive neurostimulation is currently off-label in children with intractable epilepsy.


Subject(s)
Child , Classification , Deep Brain Stimulation , Drug Discovery , Drug Resistant Epilepsy , Electrodes , Electroencephalography , Epilepsies, Partial , Epilepsy , Humans , Neurons , Neurosurgery , Seizures , Vagus Nerve Stimulation
11.
Article in Korean | WPRIM | ID: wpr-766575

ABSTRACT

Recent advances in new technologies such as artificial intelligence, big data, and virtual reality have led to significant innovations in various industries. Artificial intelligence, particularly in applications using deep learning algorithms, has shown performance superior to that of humans in several contexts. Accordingly, many researchers and companies have tried to apply artificial intelligence to the healthcare system, with applications including image interpretation, voice recognition, clinical decision support, risk prediction, drug discovery, medical robotics, and workflow improvement. However, several important technical, ethical, and social barriers must be overcome, such as overfitting, lack of interpretability, privacy, security, and safety. Doctors should be prepared to play a key role in applying artificial intelligence through the full course of development, validation, clinical performance, and monitoring.


Subject(s)
Artificial Intelligence , Decision Support Systems, Clinical , Delivery of Health Care , Drug Discovery , Humans , Learning , Machine Learning , Privacy , Robotics , Voice
12.
Article in English | WPRIM | ID: wpr-766013

ABSTRACT

BACKGROUND: Development of chemotherapeutics for the treatment of advanced hepatocellular carcinoma (HCC) has been lagging. Screening of candidate therapeutic agents by using patient-derived preclinical models may facilitate drug discovery for HCC patients. METHODS: Four primary cultured HCC cells from surgically resected tumor tissues and six HCC cell lines were used for high-throughput screening of 252 drugs from the Prestwick Chemical Library. The efficacy and mechanisms of action of the candidate anti-cancer drug were analyzed via cell viability, cell cycle assays, and western blotting. RESULTS: Guanabenz acetate, which has been used as an antihypertensive drug, was screened as a candidate anti-cancer agent for HCC through a drug sensitivity assay by using the primary cultured HCC cells and HCC cell lines. Guanabenz acetate reduced HCC cell viability through apoptosis and autophagy. This occurred via inhibition of growth arrest and DNA damage-inducible protein 34, increased phosphorylation of eukaryotic initiation factor 2α, increased activating transcription factor 4, and cell cycle arrest. CONCLUSIONS: Guanabenz acetate induces endoplasmic reticulum stress–related cell death in HCC and may be repositioned as an anti-cancer therapeutic agent for HCC patients.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Autophagy , Blotting, Western , Carcinoma, Hepatocellular , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Cell Line , Cell Survival , DNA , Drug Discovery , Drug Repositioning , Endoplasmic Reticulum , Guanabenz , Humans , Mass Screening , Peptide Initiation Factors , Phosphorylation , Primary Cell Culture
13.
Article in Chinese | WPRIM | ID: wpr-775255

ABSTRACT

Rifamycins, a group of bacterial RNA polymerase inhibitors, are the firstline antimicrobial drugs to treat tuberculosis. In light of the emergence of rifamycinresistant bacteria, development of new RNA polymerase inhibitors that kill rifamycinresistant bacteria with high bioavailability is urgent. Structural analysis of bacterial RNA polymerase in complex with inhibitors by crystallography and cryo-EM indicates that RNA polymerase inhibitors function through five distinct molecular mechanisms:inhibition of the extension of short RNA; competition with substrates; inhibition of the conformational change of the'bridge helix'; inhibition of clamp opening;inhibition of clamp closure. This article reviews the research progress of these five groups of RNA polymerase inhibitors to provide references for the modification of existing RNA polymerase inhibitors and the discovery of new RNA polymerase inhibitors.


Subject(s)
Antitubercular Agents , Therapeutic Uses , Bacteria , DNA-Directed RNA Polymerases , Metabolism , Drug Discovery , Drug Resistance, Bacterial , Enzyme Activation , Enzyme Inhibitors , Pharmacology , Humans , RNA, Bacterial , Tuberculosis , Drug Therapy
14.
Article in English | WPRIM | ID: wpr-786679

ABSTRACT

As the pharmaceutical industry in Korea is reaching the golden era of drug discovery due to increased investments in research and development and government funds, the need for a more efficient tool for the quantitative analysis has emerged. Therefore, the demand for pharmacometrics (PMx) consultancy services increased. Higher quality service suitable for regulatory submission and out-licensing deals were desired. In this analysis, we compiled and summarized 3 years of experiences of Q-fitter, the first PMx consultancy service company providing PMx analysis to the pharmaceutical industry in Korea. The projects were organized by companies, company types, indications, therapeutic areas, drug development stages, purposes, and scope of services. Within each category, we subcategorized the sections and assessed proportions and a year-over-year trend. As a result, we observed an increase in the number of projects in an average of ~170% per year, with the most frequent types of companies collaborated being the domestic pharmaceutical companies. Among the projects, ~72% involved modeling and simulation using population pharmacokinetic (PK) models, and the other included non-compartmental analysis (NCA), drug-drug interaction (DDI) prediction, and interpretation of the modeling results. The most sought-after purpose in PMx analysis was first-in-human (FIH) dose prediction followed by PK analysis, next clinical trial prediction, and scenario-based simulation. Oncology has been the top therapeutic area of interest every year consisting of ~38% of total projects, followed by Neurology (~13%). From this review, we were able to characterize the PMx service needs and spot the trend of current PMx practices in Korea.


Subject(s)
Drug Discovery , Drug Industry , Financial Management , Investments , Korea , Neurology
15.
Article in English | WPRIM | ID: wpr-728030

ABSTRACT

Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, Wnt/β-catenin and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.


Subject(s)
Adenosine Triphosphatases , Chronic Pain , Cyclic Nucleotide-Gated Cation Channels , Drug Discovery , Endoplasmic Reticulum Stress , Ephrins , Histone Deacetylases , Humans , Models, Animal , Nervous System , Neuralgia , Oxidoreductases , Receptors, Eph Family , Receptors, sigma
16.
Article in English | WPRIM | ID: wpr-788771

ABSTRACT

Epilepsy has been known to humankind since antiquity. The surgical treatment of epilepsy began in the early days of neurosurgery and has developed greatly. Many surgical procedures have stood the test of time. However, clinicians treating epilepsy patients are now witnessing a huge tide of change. In 2017, the classification system for seizure and epilepsy types was revised nearly 36 years after the previous scheme was released. The actual difference between these systems may not be large, but there have been many conceptual changes, and clinicians must bid farewell to old terminology. Paradigms in drug discovery are changing, and novel antiseizure drugs have been introduced for clinical use. In particular, drugs that target genetic changes harbor greater therapeutic potential than previous screening-based compounds. The concept of focal epilepsy has been challenged, and now epilepsy is regarded as a network disorder. With this novel concept, stereotactic electroencephalography (SEEG) is becoming increasingly popular for the evaluation of dysfunctioning neuronal networks. Minimally invasive ablative therapies using SEEG electrodes and neuromodulatory therapies such as deep brain stimulation and vagus nerve stimulation are widely applied to remedy dysfunctional epilepsy networks. The use of responsive neurostimulation is currently off-label in children with intractable epilepsy.


Subject(s)
Child , Classification , Deep Brain Stimulation , Drug Discovery , Drug Resistant Epilepsy , Electrodes , Electroencephalography , Epilepsies, Partial , Epilepsy , Humans , Neurons , Neurosurgery , Seizures , Vagus Nerve Stimulation
17.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01002, 2018. graf
Article in English | LILACS | ID: biblio-974426

ABSTRACT

Few Zika virus (ZIKV) outbreaks had been reported since its first detection in 1947, until the recent epidemics occurred in South America (2014/2015) and expeditiously became a global public health emergency. This arbovirus reached 0.5-1.3 million cases of ZIKV infection in Brazil in 2015 and rapidly spread in new geographic areas such as the Americas. Despite the mild symptoms of the Zika fever, the major concern is related to the related severe neurological disorders, especially microcephaly in newborns. Advances in ZIKV drug discovery have been made recently and constitute promising approaches to ZIKV treatment. In this review, we summarize current computational drug discovery efforts and their applicability to discovery of anti-ZIKV drugs. Lastly, we present successful examples of the use of computational approaches to ZIKV drug discovery.


Subject(s)
Computer-Aided Design/statistics & numerical data , Drug Discovery/instrumentation , Zika Virus , Antiviral Agents/pharmacology , Triage/methods , Computing Methodologies , Flavivirus
18.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01004, 2018. tab, graf
Article in English | LILACS | ID: biblio-974430

ABSTRACT

Natural products (NPs) are an excellent source of biologically active molecules that provide many biologically biased features that enable innovative designing of synthetic compounds. NPs are characterized by high content of sp3-hybridized carbon atoms; oxygen; spiro, bridged, and linked systems; and stereogenic centers, with high structural diversity. To date, several approaches have been implemented for mapping and navigating into the chemical space of NPs to explore the different aspects of chemical space. The approaches providing novel opportunities to synthesize NP-inspired compound libraries involve NP-based fragments and ring distortion strategies. These methodologies allow access to areas of chemical space that are less explored, and consequently help to overcome the limitations in the use of NPs in drug discovery, such as lack of accessibility and synthetic intractability. In this review, we describe how NPs have recently been used as a platform for the development of diverse compounds with high structural and stereochemical complexity. In addition, we show developed strategies aiming to reengineer NPs toward the expansion of NP-based chemical space by fragment-based approaches and chemical degradation to yield novel compounds to enable drug discovery


Subject(s)
Biological Products/analysis , Health Strategies , Drug Discovery/instrumentation , Libraries/classification
19.
São Paulo; s.n; s.n; 2018. 90 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-906084

ABSTRACT

A tuberculose (TB) é uma das maiores causas de morte por infecção no mundo, sendo que, em 2015, registraram-se 10,4 milhões de novos casos. O agente etiológico da doença, o Mycobacterium tuberculosis (Mtb), apresenta altos níveis de resistência frente aos quimioterápicos disponíveis para o tratamento da TB. Além disso, a terapia atual da doença explora poucos alvos essenciais ao Mtb. Neste sentido, explorar novos alvos, essenciais ao crescimento e sobrevivência da micobactéria é de grande interesse e poderia gerar fármacos mais efetivos, eficazes contra cepas resistentes e a forma latente da TB. Para este fim, o presente trabalho propôs o desenvolvimento de inibidores da enzima fosfopanteteína adenililtransferase (PPAT), a qual possui caráter regulatório na via de biossíntese da Coenzima A (CoA) da micobactéria. Inicialmente, propuseram-se 50 estruturas de potenciais inibidores da PPAT de M. tuberculosis (MtPPAT), baseando-se na estrutura de seu substrato, a fosfopanteteína, e na estrutura do sítio ativo da enzima. Em seguida, propuseram-se outros 28 ligantes. A fim de se prever as potenciais complementaridades entre os 78 inibidores propostos e o sítio ativo da MtPPAT, empregou-se a estratégia de docking. Posteriormente, realizaram-se cálculos semi-empíricos, com os complexos dos ligantes que se mostraram mais interessantes nas simulações de docking, a fim de se obter informações sobre a entalpia de interação dos ligantes com o sítio ativo da MtPPAT. A partir dos resultados obtidos nos estudos computacionais, selecionaram-se os inibidores que se mostraram mais promissores. A síntese destes ligantes e a de seus fragmentos foi realizada. Avaliaram-se a atividade microbiológica in vitro, bem como a citotoxicidade dos ligantes sintetizados. Alguns dos compostos sintetizados apresentaram atividade frente às cepas sensíveis e resistentes do Mtb na casa de micromolar. Todos os compostos ativos não foram considerados citotóxicos. A fim de validar o planejamento e o alvo dos possíveis inibidores, verificando a atividade inibitória desses frente à enzima MtPPAT, realizou-se a produção e purificação da enzima. Por fim, realizaram-se ensaios de inibição enzimática frente à MtPPAT, os quais permitiram a identificação dos primeiros inibidores da enzima já descritos, com atividade na casa de micromolar, validando-se o alvo em questão


Tuberculosis is one of the major causes of death by infection worldwide. In 2015, 10.4 thousand new cases of the disease were registered. The tuberculosis' causing agent Mycobacterium tuberculosis presents high levels of resistance for the available chemotherapy. Thereof, exploit new M. tuberculosis targets is of utmost importance to overcome drug resistant tuberculosis. In this sense, the enzyme phosphopantetheine adenylyltransferase (PPAT) generates scientific interest since it displays a regulatory role in the M. tuberculosis coenzyme A (CoA) biosynthesis. Therefore, the purpose of the present study was the development of M. tuberculosis PPAT (MtPPAT) inhibitors. Initially, 50 potentially MtPPAT inhibitors were designed based on MtPPAT's substrate and the enzyme's active site. After preliminary results, more 28 compounds were designed. Docking simulations were performed with the 78 compounds synthesized, leading to the prediction of the interaction between the proposed inhibitors and MtPPAT active site. Latelly, semi-empirical calculations were performed with the most promising compounds. These calculations were carried out to obtain information about the enthalpy interactions between compounds and MtPPAT active site. Computational studies led to the selection of the most promising inhibitors. Those compounds and some of their fragments were synthesized, purified, and characterized. The synthesized compounds had their in vitro microbiological activity and cytotoxicity evaluated. Some of the synthesized compounds showed activity against the Mtb sensitive and resistant strains in micromolar range. Besides that, the active compounds were not considered cytotoxic. To validate the potential inhibitors' design and evaluate their capacity to inhibit MtPPAT, the enzyme was produced and purified. MtPPAT inhibitory assays were performed, leading to the first inhibitors of the enzyme, with activity in micromolar range, validating the target


Subject(s)
Enzyme Inhibitors/analysis , Tuberculosis/prevention & control , Chemistry, Pharmaceutical/classification , Coenzyme A , Drug Compounding , Drug Discovery , Mycobacterium tuberculosis/metabolism
20.
São Paulo; s.n; s.n; 2018. 95 p. ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-915566

ABSTRACT

Doenças causadas por agentes infecciosos e parasitários são chamadas negligenciadas por não despertarem interesse das indústrias farmacêuticas para o desenvolvimento de novas alternativas terapêuticas. Essas doenças são responsáveis por levar milhões de pessoas à morte todos os anos e afetam principalmente os países pobres e em desenvolvimento. Dentre estas, a doença de Chagas e as leishmanioses, parasitoses causadas por parasitas flagelados pertencentes à família Trypanosomatidae, T. cruzi e Leishmaina sp., respectivamente, se apresentam como um sério problema de saúde pública mundial. Endêmicas em vários países e causando milhões de mortes anualmente, ainda hoje não existem fármacos eficientes e seguros para o tratamento dessas doenças. Este panorama torna eminente a necessidade de pesquisa e desenvolvimento de novos fármacos para essas parasitoses. A busca por agentes quimioterápicos envolve a seleção de vias metabólicas essenciais à sobrevivência dos parasitas. Dentre estas, destacamse cisteíno-proteases presentes nesses tripanossomatídeos, deste modo a cruzaína no T. cruzi, e a CPB2.8 na Leishmania mexicana, se mostram como alvos bioquímicos promissores. A disponibilidade de estruturas cristalográficas da cruzaína e do sequenciamento genômico da CPB2.8, nos permite utilizar estratégias de planejamento de fármacos baseado no receptor (SBDD) na identificação de candidatos a fármacos para essas doenças. Entre as técnicas modernas de SBDD utilizadas, a triagem virtual possibilita identificar promissores candidatos a novos fármacos. Assim neste trabalho, obteve-se por meio da técnica de modelagem comparativa o modelo da enzima CPB2.8 de L. mexicana, visto a indisponibilidade da estrutura cristalográfica no Protein Data Bank (PDB). De modo a refinar o modelo construído realizou-se a simulação por dinâmica molecular de 100ns, apresentando estabilização a partir de 80ns. A simulação por dinâmica molecular foi validada por meio do gráfico de Ramachandran, gráfico de raio de giro, RMSD, gráfico de superfície hidrofóbica. Foram calculados os mapas de interação molecular no programa GRID das seguintes proteínas: cruzaína, CPB2.8, catepsina B e catepsina L, e, posteriormente, foi construído um modelo farmacofórico baseado no sítio ativo das enzimas cruzaína e CPB2.8. O modelo farmacofórico da cruzaína foi validado por curva ROC apresentando valor de AUC 61%. A triagem virtual foi realizada para ambas as proteínas e foram obtidos 369 compostos para a cuzaína e 225 compostos para a CPB2.8. Foi realizado o ancoramento molecular desses compostos obtidos pela triagem virtual a fim de diminuir a quantidade de compostos a serem avaliados experimentalmente


Neglected diseases are caused by parasites and infectious agents and affect mainly people in poor areas being prevalent in 149 countries and causing 534,000 deaths per year. Among neglected diseases we can highlight Chagas Disease and Leishmaniasis, both have a high rate of morbidity and mortality and both are addressed in this project in the search of new drugs against a NTD. Nowadays, the search for new drugs involves the selection of biological pathways essential for parasite survival, in this class of parasites we can suggest the cysteine proteases, a proteases family present in Trypanosoma cruzi and and Leishmania ssp. In order to obtain a new agent against Neglected Disease in this work was obtained the model of the enzyme CPB2.8 of L. mexicana using the comparative modeling technique, due to the unavailability of the crystallographic structure in the Protein Data Bank (PDB). In order to refine the constructed model was performed the molecular dynamics simulation of 100ns, stabilization was achieved from 80ns. Molecular dynamics simulation was validated using the Ramachandran graph, radius of rotation graph, RMSD, hydrophobic surface area graph. The molecular interaction fields were calculated in the GRID program to cruzain, CPB2.8, cathepsin B and cathepsin L. Based on molecular interaction fields generated pharmacophoric models were constructed using information about the active site of the enzymes cruzain and CPB2.8. The pharmacophoric model of cruzain was validated by ROC curve presenting AUC value of 61%. Virtual screening was performed for both proteins and 369 compounds were obtained for cuzain and 225 compounds for CPB2.8. Docking studies of these compounds was performed in order to decrease the amount of compounds to be evaluated experimentally


Subject(s)
Cysteine Proteases/analysis , Neglected Diseases/prevention & control , Triage/statistics & numerical data , Trypanosoma cruzi/classification , Drug Discovery , Leishmania/classification , Pharmaceutical Preparations , Trypanosomatina/classification
SELECTION OF CITATIONS
SEARCH DETAIL