ABSTRACT
O presente estudo teve como objetivo avaliar o desempenho de quatro resinas bulk fill (Filtek Bulk Fill (FBF), Opus Bulk Fill (OBF), Sonicfill (SF) e Tetric N-Ceram Bulk Fill (TNBF)) e uma resina convencional (Charisma Diamond (CD)) quanto às seguintes propriedades: resistência à flexão (RF), módulo de elasticidade (ME) e dureza Knoop (KHN) em função da profundidade e após a realização de um envelhecimento acelerado. Corpos de prova em formato de barra foram confeccionados simultaneamente em diferentes profundidades (1, 2, 3, 4 e 5 mm) para realização dos testes de resistência à flexão (n=10), módulo de elasticidade (n=10) e dureza Knoop (n=3). Os testes foram realizados em dois momentos, previamente e após a realização de um envelhecimento acelerado, que consistiu na realização de uma termociclagem com banhos alternados em água a 5 e 55ºC, com 1 min de imersão em cada, por 2000 ciclos. Os resultados para o teste de RF e ME mostraram que os valores para estas duas propriedades diminuíram em função da profundidade e após a realização da termociclagem para todas as resinas estudadas. Apenas a resina TNBF não apresentou diferença estatística para valores de ME após o envelhecimento acelerado. Quanto à dureza, os valores também diminuíram em função da profundidade, porém aumentaram após a realização do envelhecimento acelerado. Apenas a resina SF não apresentou diferença estatística entre os valores de dureza antes e após o envelhecimento. A resina convencional CD após a ciclagem térmica foi a única que apresentou relação base/topo (2 mm) acima de 80%. Nenhuma das resinas do tipo bulk fill apresentou uma relação base/topo acima de 80% para a dureza quando avaliadas na espessura máxima recomendada. Com base nos resultados obtidos, pode-se afirmar que, quando fotoativadas na espessura máxima recomendada, apenas a resina convencional CD apresentou resultados condizentes com a homogeneidade esperada em todas as condições deste estudo. Entretanto, para as resinas do tipo bulk fill, pode-se observar que as propriedades estudadas, de modo geral, sofreram uma diminuição significativa em função da profundidade. Para o envelhecimento, a dureza, diferentemente dos outros parâmetros, mostrou uma tendência de aumento.
Subject(s)
Aging , Composite Resins , Elastic Modulus , HardnessABSTRACT
SUMMARY: Biomechanical factors are important factors in inducing intervertebral disc degeneration, in this paper, the nonlinear viscoelastic mechanical properties of degenerated intervertebral discs were analyzed experimentally. Firstly, the loading and unloading curves of intervertebral discs before and after degeneration at different strain rates were compared to analyze the changes of their apparent viscoelastic mechanical properties; The internal stress/strain distribution of the disc before and after degeneration was then tested by combining digital image technology and fiber grating technology. The results show that the intervertebral disc is strain-rate- dependent whether before or after degeneration; The modulus of elasticity and peak stress of the degenerated disc are significantly reduced, with the modulus of elasticity dropping to 50 % of the normal value and the peak stress decreasing by about 55 %; Degeneration will not change the distribution of the overall internal displacement of the intervertebral disc, but has a greater impact on the superficial and middle AF; The stress in the center of the nucleus pulposus decreases, and the stress in the outer AF increases after degeneration. Degeneration has a great impact on the nonlinear viscoelastic mechanical properties of intervertebral disc, which has reference value for the mechanism, treatment and prevention of clinical degenerative diseases.
RESUMEN: Los factores biomecánicos son importantes en la inducción de la degeneración del disco intervertebral. En este estudio se analizaron experimentalmente las propiedades mecánicas viscoelásticas no lineales de los discos intervertebrales degenerados. En primer lugar se compararon las curvas de carga y descarga de los discos intervertebrales, antes y después de la degeneración, a diferentes velocidades de deformación para analizar los cambios aparentes de sus propiedades mecánicas viscoelásticas. La distribución interna de tensión/deformación del disco antes y después de la degeneración se probó luego combinando tecnología de imagen digital y tecnología de rejilla de fibra. Los resultados mostraron que el disco intervertebral depende de la velocidad de deformación antes o después de la degeneración; El módulo de elasticidad y la tensión máxima del disco degenerado se reducen significativamente, cayendo el módulo de elasticidad al 50 % del valor normal y la tensión máxima disminuyendo en aproximadamente un 55 %; La degeneración no cambiará la distribución del desplazamiento interno general del disco intervertebral, pero tiene un mayor impacto en la FA superficial y media; El estrés en el centro del núcleo pulposo disminuye y el estrés en el FA externo aumenta después de la degeneración. La degeneración tiene un gran impacto en las propiedades mecánicas viscoelásticas no lineales del disco intervertebral, que tiene valor de referencia para el mecanismo, tratamiento y prevención de enfermedades clínicas degenerativas.
Subject(s)
Stress, Mechanical , Viscosity , Nonlinear Dynamics , Intervertebral Disc Degeneration , Biomechanical Phenomena , Elastic Modulus , Models, BiologicalABSTRACT
Objective: To evaluate the influence of the incorporation of a polymerization catalyst to a light-cured pulp capping material on mechanical behavior and physicochemical characteristics. Material and Methods: Different percentages (2 wt%, and 4 wt%) of diphenyliodonium hexafluorophosphate (DPI) were incorporated into the Ultra-Blend Plus, a resin-modified calcium-based cement. The material without incorporation of DPI (0 wt%) served as control. Degree of Conversion (DC), Flexural Strength (FS), Elastic Modulus (EM), Water Sorption (WSp), Solubility (Sl), and pH of eluate at 24-h, 72-h, and 7-day storage times were measured. One-way ANOVA/Tukey posthoc tests were used to analyze the data (p <0.05). Results: For DC, FS, and EM, materials with different % of DPI showed statistically significant differences, so that 0% provided the lowest values and 2% the highest values. Materials with 0% and 2% of DPI provided statistically the lowest WSp, whilst material with 0% of DPI showed statistically the highest Sl. Conclusion: All materials provided statistically similar pH to eluates regardless of storage time, although only materials with DPI at 2% and 4% maintained pH of eluates statistically similar from 72 h to 7 days storage times.(AU)
Objetivo: avaliar a influência nas propriedades mecânicas e físico-químicas da incorporação de um catalisador de polimerização a um protetor pulpar fotoativável. Material e Métodos: foram adicionadas diferentes porcentagens em massa (2% e 4%) de hexafluorofosfato de difeniliodônio (DPI) ao Ultra-Blend Plus, um cimento à base de hidróxido de cálcio modificado por resina. O material sem a adição do DPI (0%) serviu como controle. Foram avaliados: Grau de Conversão (DC), Resistência Flexural (FS), Módulo de Elasticidade (EM), Sorção (WSp), Solubilidade (SI) e o pH do eluato nos tempos de 24h, 72h e 7 dias de armazenamento. ANOVA 1-way com pós-teste de Tukey (p <0.05). Foi utilizado para avaliar os resultados estatisticamente. Resultados: Os materiais com diferentes % de DPI apresentaram diferenças significativas para os testes de DC, FS e EM. A porcentagem em massa de 0% de DPI mostrou valores inferiores a todos os testados e os materiais com adição 2% apresentaram a melhor performance. Materiais com 0% e 2% de DPI apresentaram valores inferiores de WSp; a porcentagem de 0% proporcionou valores estatisticamente maiores para SI. Conclusão: Todos os materiais testados apresentaram pH semelhante nos eluatos independente do tempo de armazenamento, contudo, apenas os materiais com 2% e 4% mantiveram o pH dos eluatos estatisticamente similares nos tempos de estocagem de 72h a 7 dias.(AU)
Subject(s)
Dental Pulp Capping , Elastic Modulus , Polymerization , SolubilityABSTRACT
Osteoporosis is one of the common metabolic diseases, which can easily lead to osteoporotic fractures. Accurate prediction of bone biomechanical properties is of great significance for the early prevention and diagnosis of osteoporosis. Bone mineral density measurement is currently used clinically as the gold standard for assessing bone strength and diagnosing osteoporosis, but studies have shown that bone mineral density can only explain 60% to 70% of bone strength changes, and trabecular bone microstructure is an important factor affecting bone strength. In order to establish the connection between trabecular bone microstructure and bone strength, this paper proposes a prediction method of trabecular bone modulus based on SE-DenseVoxNet. This method takes three-dimensional binary images of trabecular bone as input and predicts its elastic modulus in the z-axis direction. Experiments show that the error and bias between the predicted value of the method and the true value of the sample are small and have good consistency.
Subject(s)
Biomechanical Phenomena , Bone Density , Cancellous Bone/diagnostic imaging , Elastic Modulus , Humans , Osteoporosis/diagnostic imagingABSTRACT
Abstract The composition of infiltrants can influence their physical properties, viscosity and depth of penetration (DP). Strategies are used to increase the DP, such as the addition of diluents or the use of heat. This study aimed to evaluate the effect of preheating and composition on physical properties and DP of infiltrants in demineralized enamel. The groups were assigned, and the following experimental formulations were made: 25%BisEMA +75%TEGDMA; 25%BisEMA +65%TEGDMA +10%ethanol; 25%BisEMA +65%TEGDMA +10%HEMA; 100%TEGDMA; 90%TEGDMA +10%ethanol; 90%TEGDMA +10%HEMA. The samples were photoactivated at two temperatures (25°C and 55°C). Degree of conversion (DC) was performed using an infrared spectrophotometer. Elastic modulus (E), flexural strength (FS) and contact angle (CA) tests were also performed. The DP of an infiltrant in demineralized enamel was determined by confocal laser scanning microscopy (CLSM) using an indirect labeling technique. The data were analyzed by two-way ANOVA and Tukey's test. DC increased after preheating in all the groups; however, 90%TEGDMA+10%ethanol showed the lowest DC for both temperatures, and the lowest E. Preheating did not influence E or FS. The CA increased at 55°C for most groups, but decreased for groups containing HEMA. Temperature did not seem to influence DP, and Icon showed the lowest DP values. The 100%TEGDMA composition showed more homogeneous penetration, whereas Icon showed heterogeneous and superficial penetration. The preheating technique does not improve all properties in all the material compositions. The composition of a material can influence and improve its properties.
Subject(s)
Dental Enamel , Polyethylene Glycols , Polymethacrylic Acids , Viscosity , Materials Testing , Bisphenol A-Glycidyl Methacrylate , Composite Resins , Elastic Modulus , MethacrylatesABSTRACT
OBJECTIVE: Imaging diagnosis of cervical lymphadenopathy has conventionally used ultrasonography. Shear wave elastography (SWE) is a recent ultrasound technological advancement that has shown promise in the important medical problem of differentiating between benign and malignant cervical lymph nodes based on quantitative measurements of elasticity modulus. However, widely varying elasticity modulus metrics and regions-of-interest (ROIs) were used in existing studies, leading to inconsistent findings and results that are hard to compare with each other. METHODS: Using a large dataset of 264 cervical lymph nodes from 200 patients, we designed a study comparing three elasticity modulus metrics (Emax, Emean, and standard deviation-SD) with three different ROIs to evaluate the effect of such selections. The metric values were compared between the benign and malignant node groups. The different ROI and metric selections were also compared through receiver operating characteristics curve analysis. RESULTS: For all ROIs, all metric values were significantly different between the two groups, indicting their diagnostic potential. This was confirmed by the ≥0.80 area under the curve (AUC) values achieved with these metrics. Different ROIs had no effect on Emax, whereas all ROIs achieved high performance at 0.88 AUC. For Emean, the smallest ROI focusing on the area of the highest elasticity achieved the best diagnostic performance. In contrast, the larger ROIs achieved higher performances for SD. CONCLUSIONS: This study illustrated the effect of elasticity modulus and ROI selection on the diagnostic performance of SWE on cervical lymphadenopathy. These new findings help guide relevant future studies and clinical applications of this important quantitative imaging modality.
Subject(s)
Humans , Breast Neoplasms , Elasticity Imaging Techniques , Reproducibility of Results , Ultrasonography , Sensitivity and Specificity , Diagnosis, Differential , Elastic Modulus , Lymph Nodes/diagnostic imaging , Neck/diagnostic imagingABSTRACT
Abstract Objective To evaluate the influence of three levels of dental structure loss on stress distribution and bite load in root canal-treated young molar teeth that were filled with bulk-fill resin composite, using finite element analysis (FEA) to predict clinical failure. Methodology Three first mandibular molars with extensive caries lesions were selected in teenager patients. The habitual occlusion bite force was measured using gnathodynamometer before and after endodontic/restoration procedures. The recorded bite forces were used as input for patient-specific FEA models, generated from cone-beam computed tomographic (CT) scans of the teeth before and after treatment. Loads were simulated using the contact loading of the antagonist molars selected based on the CT scans and clinical evaluation. Pre and post treatment bite forces (N) in the 3 patients were 30.1/136.6, 34.3/133.4, and 47.9/124.1. Results Bite force increased 260% (from 36.7±11.6 to 131.9±17.8 N) after endodontic and direct restoration. Before endodontic intervention, the stress concentration was located in coronal tooth structure; after rehabilitation, the stresses were located in root dentin, regardless of the level of tooth structure loss. The bite force used on molar teeth after pulp removal during endodontic treatment resulted in high stress concentrations in weakened tooth areas and at the furcation. Conclusion Extensive caries negatively affected the bite force. After pulp removal and endodontic treatment, stress and strain concentrations were higher in the weakened dental structure. Root canal treatment associated with direct resin composite restorative procedure could restore the stress-strain conditions in permanent young molar teeth.
Subject(s)
Humans , Child , Bite Force , Composite Resins/chemistry , Tooth, Nonvital/therapy , Dental Restoration, Permanent/methods , Molar , Reference Values , Tensile Strength , Reproducibility of Results , Treatment Outcome , Composite Resins/therapeutic use , Tooth, Nonvital/diagnostic imaging , Compressive Strength , Finite Element Analysis , Dental Stress Analysis , Cone-Beam Computed Tomography , Elastic Modulus , Patient-Specific ModelingABSTRACT
This study aimed to explore changes in nanoscale elastic modulus of the synovium using atomic force microscopy (AFM) in addition to investigate changes in synovial histomorphology and secretory function in osteoarthritis (OA) in a rat anterior cruciate ligament transection (ACLT) model. Sprague-Dawley rats were randomly assigned to sham control and ACLT OA groups. All right knee joints were harvested at 4, 8, or 12 weeks (W) after surgery for histological assessment of cartilage damage and synovitis in both the anterior and posterior capsules. AFM imaging and nanoscale biomechanical testing were conducted to measure the elastic modulus of the synovial collagen fibrils. Immunohistochemistry was used to visualize the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-3 (MMP-3) in the synovium. The OA groups exhibited progressive development of disease in the cartilage and synovium. Histopathological scores of the synovium in the OA groups increased gradually. Significant differences were observed between all OA groups except for the posterior 4W group. The synovial fibril arrangement in all OA groups was significantly disordered. The synovial fibrils in all ACLT OA groups at each time point were stiffer than those in the sham controls. OA rats displayed a significantly higher expression of IL-1β and MMP3 in the anterior capsule. In summary, synovial stiffening was closely associated with joint degeneration and might be a factor contributing to synovitis and increased production of proinflammatory mediators. Our data provided insights into the role of synovitis, particularly stiffening of the synovium, in OA pathogenesis.
Subject(s)
Animals , Male , Rats , Osteoarthritis , Cartilage, Articular , Synovial Membrane , Anterior Cruciate Ligament , Rats, Sprague-Dawley , Microscopy, Atomic Force , Elastic ModulusABSTRACT
To explore the value of conventional ultrasound combined with shear-wave elastography in the quantitative evaluation of sciatic nerve crush injury in rabbit models. Forty healthy male New Zealand white rabbits were randomly divided into four groups (=10 in each group):three crush injury (CI) groups (2,4,and 8 weeks after crush) and control group (without injury). The thickness and stiffness of the crushed sciatic nerves and denervated triceps surae muscles were measured at different time points and compared with histopathologic parameters. Inter-reader variability was assessed with intraclass correlation coefficients. Compared with the control group,the inner diameters of the sciatic nerves significantly increased in the 2-week CI group [(1.65±0.34) mm (0.97±0.15) mm,=0.00] but recovered to the nearly normal level in the 8-week CI group [(1.12±0.18) mm (0.97±0.15) mm,=0.06];however,compared with control group [(8.75±1.02)kPa],the elastic modulus of the nerves increased significantly in all the CI groups [2-week:(14.77±2.53) kPa;4-week:(19.12±3.46) kPa;and 8-week:(28.39±5.26) kPa;all =0.00];pathologically,massive hyperplasia of collagen fibers were found in the nerve tissues. The thickness of denervated triceps surae muscle decreased gradually,and the elastic modulus decreased 2 weeks after injury but increased gradually in the following 6 weeks;pathologically,massive hyperplasia of collagen fibers and adipocytes infiltration were visible,along with decreased muscle wet-weight ratio and muscle fiber cross-sectional area. The inter-reader agreements were good. Conventional ultrasound combined with shear-wave elastography is feasible for the quantitative evaluation of the morphological and mechanical properties of crushed nerves and denervated muscles.
Subject(s)
Animals , Crush Injuries , Diagnostic Imaging , Elastic Modulus , Elasticity Imaging Techniques , Male , Muscle, Skeletal , Pathology , Rabbits , Random Allocation , Sciatic Nerve , Wounds and Injuries , UltrasonographyABSTRACT
Abstract Bulk-fill composites were introduced in dentistry to accelerate clinical procedures while providing adequate outcomes. Concerns regarding the use of bigger composite increments rely on the polymerization shrinkage and shrinkage stress, which may generate gaps on the adhesive interface and result in a reduced success rate. Objective: To evaluate the polymerization shrinkage stress of different bulk-fill resin composites and their elastic modulus. Materials and Methods: Fourteen specimens were made for each of the nine different resin composites (seven with 12 mm3 and seven with 24 mm3): Surefill SDR flow (SDR), X-tra Base (XB), Filtek Bulk Fill Flowable (FBF), Filtek Z350XT Flow (Z3F); Tetric Evo Ceram Bulk Fill (TBF), X-tra Fil (XF), Filtek Bulk Fill (FBP), Admira Xtra Fusion (ADM) and Filtek Z350 XT (Z3XT). Linear shrinkage stress was evaluated for 300 s with the aid of a linear shrinkage device adapted to a Universal Testing Machine. For each composite group, seven additional specimens (2x2x25 mm) were made and Young's modulus was evaluated with a 3-point bending device adapted in a Universal Testing Machine with 0.5 mm/min crosshead speed and 50 KgF loading cell. Results: For 12 mm3 specimens, three-way ANOVA showed that only SDR and TBF generated lower stress after 20 s. Considering 300 s, TBF, SDR, and XF generated the lowest stress, followed by ADM, FBP, XB, and FBF, which were similar to Z3XT. Z3F generated the highest stress values for all time points. Considering 24 mm3 specimens after 20 s, all bulk fill composites generated lower stress than Z3XT, except XB. After 300 s, SDR, FBP, and ADM generated the lowest stress, followed by TBF and XF. For elastic modulus, one-way ANOVA showed that FBF, SDR, Z3F, and ADM presented the lowest values, followed by XB and TBF. FBP, Z3XT, and XF presented the highest elastic modulus among the evaluated composites. Conclusions: Bulk-fill resin composites presented equal to lower shrinkage stress generation when compared to conventional composites, especially when bigger increments were evaluated. Bulk-fill composites showed a wide range of elastic modulus values, but usually similar to "regular" composites.
Subject(s)
Stress, Mechanical , Composite Resins/chemistry , Elastic Modulus , Polymerization , Reference Values , Siloxanes/chemistry , Surface Properties , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Dental Stress Analysis , Methacrylates/chemistryABSTRACT
Abstract Objective The aim of this study was to compare two in vitro erosion protocols, in which one simulates in vivo conditions experienced by patients with gastroesophageal disorders or bulimia (HCl-pepsin protocol), and the other simulates the diet of an individual who consumes a high volume of erosive beverages (citric acid protocol). In addition, the mechanical properties and surface gloss of eroded human dentin were compared with those of sound human dentin. Materials and Methods Blocks of cervical dentin were used: sound human dentin (n=10), human dentin with erosive lesions (n=10), and bovine dentin (n=30). Twenty bovine blocks were subjected to either of two erosion protocols (n=10/protocol). In the first protocol, samples were demineralized using HCl-pepsin solution, then treated with trypsin solution. In the second protocol, samples were demineralized with 2% citric acid. Toothbrushing was performed in both protocols using a toothbrushing machine (15 s with a 150 g load). Ten bovine dentin blocks were not subjected to any erosive treatment. All samples of bovine and human dentin were analyzed to obtain Martens hardness values (MH), elastic modulus (Eit*) and surface gloss. One-way ANOVA and Tukey's test were performed to analyze the data (α=0.05). Results Sound human and eroded human dentin groups showed similar MH and Eit* values (p>0.05); however, sound human dentin showed a higher surface gloss value when compared to eroded human dentin (p<0.05). Sound bovine dentin and HCl-pepsin-treated bovine dentin treatments resulted in similar values for both MH and Eit* (p>0.05), but HCl-pepsin-treated bovine dentin and citric acid-treated bovine dentin resulted in lower surface gloss than sound bovine dentin (p<0.05). Conclusions The HCl-pepsin protocol modified bovine dentin properties that could be similar to those that occur on human dentin surfaces with erosive lesions.
Subject(s)
Humans , Animals , Cattle , In Vitro Techniques/methods , Dentin/drug effects , Reference Values , Surface Properties/drug effects , Tooth Erosion/etiology , Reproducibility of Results , Analysis of Variance , Pepsin A/chemistry , Statistics, Nonparametric , Citric Acid/chemistry , Dentin/chemistry , Elastic Modulus , Hardness TestsABSTRACT
Abstract Radiation-related caries are one the most undesired reactions manifested during or after head and neck radiotherapy. Fluoride application is an important strategy to reduce demineralization and enhance remineralizaton. Objective: To evaluate the effect of the topical application of fluoride during irradiation on dental enamel demineralization. Material and Methods: Thirty molars were randomly divided into three groups: Non-irradiated (NI), Irradiated (I), Irradiated with fluoride (IF). Each group was subdivided according to the presence or absence of pH-cycling (n=5). In the irradiated groups, the teeth received 70 Gy. The enamel's chemical composition was measured using Fourier Transform Infrared Spectrometry (organic matrix/mineral ratio - M/M and relative carbonate content - RCC). Vickers microhardness (VHN) and elastic modulus (E) were evaluated at three depths (surface, middle and deep enamel). Scanning electron microscopy (SEM) was used to assess the enamel's morphology. Results: The FTIR analysis (M/M and RCC) showed significant differences for irradiation, pH-cycling and the interaction between factors (p<0.001). Without pH-cycling, IF had the lowest organic matrix/mineral ratio and relative carbonate content. With pH-cycling, the organic matrix/mineral ratio increased and the relative carbonate content decreased, except for IF. VHN was influenced only by pH-cycling (p<0.001), which generated higher VHN values. ANOVA detected significant differences in E for irradiation (p<0.001), pH-cycling (p<0.001) and for the interaction between irradiation and pH-cycling (p<0.001). Increased E was found for group I without pH-cycling. With pH-cycling, groups I and IF were similar, and showed higher values than NI. The SEM images showed no morphological changes without pH-cycling. With pH-cycling, fluoride helped to maintain the outer enamel's morphology. Conclusions: Fluoride reduced mineral loss and maintained the outer morphology of irradiated and cycled enamel. However, it was not as effective in preserving the mechanical properties of enamel. Radiotherapy altered the enamel's elastic modulus and its chemical composition.
Subject(s)
Humans , Cariostatic Agents/pharmacology , Fluorides, Topical/pharmacology , Tooth Demineralization/prevention & control , Dental Enamel/drug effects , Radiotherapy/adverse effects , Reference Values , Surface Properties , Microscopy, Electron, Scanning , Cariostatic Agents/radiation effects , Cariostatic Agents/chemistry , Random Allocation , Fluorides, Topical/radiation effects , Fluorides, Topical/chemistry , Reproducibility of Results , Analysis of Variance , Tooth Demineralization/etiology , Spectroscopy, Fourier Transform Infrared , Dental Enamel/radiation effects , Elastic Modulus , Hardness Tests , Hydrogen-Ion ConcentrationABSTRACT
Abstract Several anti-proteolytic dentin therapies are being exhaustively studied in an attempt to reduce dentin bond degradation and improve clinical performance and longevity of adhesive restorations. Objectives This study assessed the effect of epigallocatechin-3-gallate (EGCG) on long-term bond strength when incorporated into adhesives. Material and Methods Adhesive systems were formulated with EGCG concentrations of 0 wt%: (no EGCG; control); 0.5 wt% EGCG; 1.0 wt% EGCG, and 1.5 wt% EGCG. Flexural strength (FS), modulus of elasticity (ME), modulus of resilience (MR), compressive strength (CS), degree of conversion (DC), polymerization shrinkage (PS), percentage of water sorption (%WS), percentage of water solubility (%WL) and cytotoxicity properties were tested. Dentin microtensile bond strength (µTBS) was evaluated after 24 h and again after 6 months of water storage. The adhesive interface was analyzed using scanning electron microscopy (SEM). Results No significant differences were found among the groups in terms of FS, ME, MR, CS and PS. EGCG-doped adhesives increased the DC relative to the control group. EGCG concentrations of 1.0 wt% and 0.5 wt% decreased the WS of adhesives. WL decreased in all cases in which EGCG was added to adhesives, regardless of the concentration. EGCG concentrations of 1.0 wt% and 0.5 wt% reduced cytotoxicity. EGCG concentrations of 1.0 wt% and 0.5 wt% preserved µTBS after 6 months of storage, while 1.5 wt% EGCG significantly decreased µTBS. SEM: the integrity of the hybrid layer was maintained in the 0.5 wt% and 1.0 wt% EGCG groups. Conclusion EGCG concentrations of 1.0 wt% and 0.5 wt% showed better biological and mechanical performance, preserved bond strength and adhesive interface, and reduced cytotoxicity.
Subject(s)
Humans , Catechin/analogs & derivatives , Dentin-Bonding Agents/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Methacrylates/chemistry , Reference Values , Solubility , Surface Properties , Tensile Strength , Time Factors , Materials Testing , Camphor/analogs & derivatives , Camphor/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Catechin/toxicity , Catechin/chemistry , Cell Line , Cell Survival/drug effects , Reproducibility of Results , Analysis of Variance , Dentin-Bonding Agents/toxicity , Bisphenol A-Glycidyl Methacrylate/toxicity , Compressive Strength , Dentin/drug effects , Dentin/chemistry , Elastic Modulus , Polymerization , Fibroblasts/drug effects , Flexural Strength , Methacrylates/toxicityABSTRACT
Abstract Resinous infiltrants are indicated in the treatment of incipient carious lesions, and further development of these materials may contribute to greater control of these lesions. The aim of this study was to analyze the physical and antibacterial properties of experimental infiltrants containing iodonium salt and chitosan. Nine experimental infiltrants were formulated by varying the concentration of the diphenyliodonium salt (DPI) at 0, 0.5 and 1 mol%; and chitosan at 0, 0.12 and 0.25 g%. The infiltrants contained the monomeric base of triethylene glycol dimethacrylate and bisphenol-A dimethacrylate ethoxylate in a 75 and 25% proportion by weight, respectively; 0.5 mol% camphorquinone and 1 mol% ethyl 4-dimethylaminobenzoate. The degree of conversion was evaluated using Fourier transformer infrared spectroscopy, and the flexural strength and elastic modulus using the three-point bending test. Sorption and solubility in water, and antibacterial analysis (minimum inhibitory concentration and minimum bactericidal concentration) were also analyzed. Data was analyzed statistically by two-way ANOVA and Tukey's test (p<0.05), with the exception of the antibacterial test, which was evaluated by visual inspection. In general, the infiltrant group containing 0.5% DPI and 0.12% chitosan showed high values of degree of conversion, higher values of elastic modulus and flexural strength, and lower sorption values in relation to the other groups. Antibacterial activity was observed in all the groups with DPI, regardless of the concentration of chitosan. The addition of DPI and chitosan to experimental infiltrants represents a valid option for producing infiltrants with desirable physical and antibacterial characteristics.
Subject(s)
Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Salts/chemistry , Composite Resins/chemistry , Chitosan/chemistry , Elastic Modulus , Methacrylates/chemistry , Anti-Bacterial Agents/chemistry , Polyethylene Glycols/pharmacology , Polymethacrylic Acids/pharmacology , Reference Values , Salts/pharmacology , Solubility , Streptococcus mutans/drug effects , Materials Testing , Microbial Sensitivity Tests , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Composite Resins/pharmacology , Chitosan/pharmacology , Light-Curing of Dental Adhesives , Flexural Strength , Lactobacillus acidophilus/drug effects , Methacrylates/pharmacology , Anti-Bacterial Agents/pharmacologyABSTRACT
Dentes bovinos têm sido utilizados como substitutos aos humanos em pesquisas odontológicas. Entretanto, faltam dados que suportem o uso da dentina radicular bovina, sobretudo, que analisem o efeito da idade nas propriedades do substrato. Assim, analisou-se o efeito da idade nos aspectos morfológicos, químicos e físicos das dentinas radiculares humana e bovina, em função dos terços da raiz. Trata-se de um estudo experimental, in vitro, aprovado pelo Comitê de Ética em Pesquisa (COEP-UFMG 1.803.933) e pela Comissão de Ética no Uso de Animais (CEUAUFMG 372/2016). A amostra foi composta por dentes unirradiculares, cujas dentinas radiculares foram categorizadas em: humana jovem (HJ, 20-30 anos); humana madura (HM, acima de 60 anos); bovina jovem (BJ, 24-36 meses); e bovina adulta (BA, acima de 48 meses). Os dentes foram seccionados abaixo da junção amelocementária e ao longo eixo da raiz, para a obtenção de hemisecções. Uma hemisecção foi escolhida e cortes foram feitos para a obtenção dos espécimes, conforme cada método de análise. Para as análises dos aspectos morfológicos número, diâmetro e área dos túbulos dentinários os espécimes foram analisados em Microscópio Eletrônico de Varredura. A composição química foi analisada por Espectroscopia de Raios X por Dispersão em Energia, Espectroscopia por Comprimento de Onda Dispersivo e Espectroscopia Raman por Transformada de Fourier. Na análise das propriedades mecânicas, os espécimes foram submetidos aos testes de nanoindentação, resistência à flexão em três pontos e compressão. Para a análise da resistência ao cisalhamento por extrusão, as raízes receberam tratamento endodôntico e foram fixados pinos de fibra de vidro com cimentos resinosos (dual convencional e autoadesivo). As raízes foram seccionadas nos terços radiculares e os espécimes testados em máquina universal de ensaios. Adicionalmente, avaliou-se o grau de conversão dos cimentos resinosos. Os dados foram analisados em software estatístico, nível de significância de 5%. A HM apresentou os menores valores para número, diâmetro e área de túbulos dentinários (p<0,05). A HM apresentou maiores valores de cálcio, razão Ca/P e concentração mineral relativa, com diminuição na organização e qualidade do colágeno (p<0,05). A HM apresentou os maiores valores de nanodureza, módulo de elasticidade e resistência à compressão, mas os menores valores de resistência à flexão e módulo de elasticidade à flexão (p<0,05). A HM apresentou os menores valores de resistência de união, com diferenças entre os terços radiculares (p<0,05). O grau de conversão dos cimentos apresentou uma diminuição ao longo dos terços radiculares (p<0,05). Concluiu-se que a idade possui um efeito nos aspectos morfológicos, químicos e físicos da dentina radicular humana, sem efeito na dentina bovina. Assim, quando da necessidade de substituição da dentina radicular humana pela bovina em pesquisas, é necessário considerar o efeito da idade nos desfechos analisados.
Bovine teeth have been used as a substitute for human teeth in dental research. However, there is a lack of data that support the use of bovine root dentin, mainly, that analyze the effect of age on the properties of the substrate. Thus, the effect of age on the morphological, chemical and physical aspects of human and bovine root dentin was analyzed, in function of the root thirds. This is an in vitro experimental study, approved by the Research Ethics Committee (protocol number: 1.803.933) and the Ethics Committee on the Use of Animals (protocol number: 372/2016). The sample was composed of single-rooted teeth and root dentin was categorized into: young human (YH, 20-30 years); old human (OH, above 60 years); young bovine (YB, 24-36 months); and adult bovine (AB, over 48 months). The roots were sectioned below the cement-enamel and longitudinally to produce two hemi-sections. One hemi-section was chosen and sections were made to obtain the specimens, according to each method of analysis. For the analyzes of the morphological aspects - number, diameter and area of the dentinal tubules - the specimens were analyzed in Scanning Electron Microscope. The chemical composition was analysed by Energy Dispersive Spectroscopy, Wavelength Dispersive Spectroscopy and Fourier Transformed Raman Spectroscopy. In the analysis of the mechanical properties, the specimens were submitted to nano-indentation, three-point flexural and compression tests. For the analysis of the push-out bond strength test, the roots received endodontic treatment and fiber post with resin cements (conventional and selfadhesive dual) were fixed. The roots were sectioned in the root thirds and the specimens tested in a universal testing machine. Additionally, the degree of conversion of the resin cements was evaluated. The data were analyzed in statistical software, level of significance of 5%. The OH presented the lowest values for number, diameter and area of dentinal tubules (p<0.05). OH showed higher values of calcium, Ca/P ratio and relative mineral concentration, with decrease in the organization and quality of the collagen (p<0.05). The OH showed the highest values of nano-hardness, elastic modulus and compressive strength, but the lowest values of flexural strength and flexural modulus (p<0.05). The OH presented the lowest values of bond strength, with differences among the root thirds (p<0.05). The degree of conversion of the cements showed a decrease along the root thirds (p<0.05). It was concluded that age has an effect on the morphological, chemical and physical aspects of human root dentin, with no effect on bovine dentin. Thus, when it is necessary to replace the human root dentin by the bovine in research, it is necessary to consider the effect of age on the analysed outcomes.
Subject(s)
Tooth Root , Resin Cements , Dental Pins , Dentin , Fractures, Compression , Elastic Modulus , Flexural Strength , Hardness Tests , MicroscopyABSTRACT
OBJECTIVES: To evaluate and compare the magnitude and distribution of stresses generated on implants, abutments and first molar metal-ceramic crowns using finite element analysis. METHODS: Preliminary three-dimensional models were created using the computer-aided design software SolidWorks. Stress and strain values were observed for two distinct virtual models: model 1 - Morse taper and solid abutment; model 2 - Morse taper and abutment with screw. A load (250 N) was applied to a single point of the occlusal surface at 15° to the implant long axis. Von Mises stresses were recorded for both groups at four main points: 1) abutment-retaining screws; 2) abutment neck; 3) cervical bone area; 4) implant neck. RESULTS AND CONCLUSION: Model 1 showed a higher stress value (1477.5 MPa) at the abutment-retaining screw area than the stresses found in model 2 (1091.1 MPa for the same area). The cervical bone strain values did not exceed 105 µm for either model.
Subject(s)
Humans , Dental Implants , Dental Prosthesis Design/instrumentation , Finite Element Analysis , Dental Stress Analysis , Dental Implant-Abutment Design/instrumentation , Stress, Mechanical , Dental Prosthesis Design/methods , Computer-Aided Design , Crowns , Elastic Modulus , Dental Implant-Abutment Design/methods , Mandible/diagnostic imaging , Models, AnatomicABSTRACT
PURPOSE: The purpose of this study was to investigate the feasibility of shear wave ultrasound elastography for differentiating superficial benign soft tissue masses through a comparison of their shear moduli. METHODS: We retrospectively analyzed 48 masses from 46 patients from February 2014 to May 2016. Surgical excision, fine-needle aspiration, and clinical findings were used for the differential diagnosis. The ultrasonographic examinations were conducted by a single musculoskeletal radiologist, and the ultrasonographic findings were reviewed by two other radiologists who were blinded to the final diagnosis. Conventional ultrasonographic features and the median shear modulus were evaluated. We compared the median shear moduli of epidermoid cysts, ganglion cysts, and lipomatous tumors using the Kruskal-Wallis test. Additionally, the Mann-Whitney U test was used to compare two distinct groups. RESULTS: Significant differences were found in the median shear moduli of epidermoid cysts, ganglion cysts, and lipomatous tumors (23.7, 5.8, and 9.2 kPa, respectively; P=0.019). Epidermoid cysts showed a greater median shear modulus than ganglion cysts (P=0.014) and lipomatous tumors (P=0.049). CONCLUSION: Shear wave elastography may contribute to the differential diagnosis of superficial benign soft tissue masses through a direct quantitative analysis.
Subject(s)
Biopsy, Fine-Needle , Diagnosis , Diagnosis, Differential , Elastic Modulus , Elasticity Imaging Techniques , Epidermal Cyst , Ganglion Cysts , Humans , Lipoma , Retrospective Studies , Shear Strength , UltrasonographyABSTRACT
The mechanical properties of the aorta tissue is not only important for maintaining the cardiovascular health, but also is closely related to the development of cardiovascular diseases. There are obvious differences between the ventral and dorsal tissues of the descending aorta. However, the cause of the difference is still unclear. In this study, a biaxial tensile approach was used to determine the parameters of porcine descending aorta by analyzing the stress-strain curves. The strain energy functions Gasser-Ogden-Holzapfel was adopted to characterize the orthotropic parameters of mechanical properties. Elastic Van Gieson (EVG) and Sirius red stain were used to observe the microarchitecture of elastic and collagen fibers, respectively. Our results showed that the tissue of descending aorta had more orthotropic and higher elastic modulus in the dorsal region compared to the ventral region in the circumferential direction. No significant difference was found in hyperelastic constitutive parameters between the dorsal and ventral regions, but the angle of collagen fiber was smaller than 0.785 rad (45°) in both dorsal and ventral regions. The arrangement of fiber was inclined to be circumferential. EVG and Sirius red stain showed that in outer-middle membrane of the descending aorta, the density of elastic fibrous layer of the ventral region was higher than that of the dorsal region; the amount of collagen fibers in dorsal region was more than that of the ventral region. The results suggested that the difference of mechanical properties between the dorsal and ventral tissues in the descending aorta was related to the microstructure of the outer membrane of the aorta. In the relatively small strain range, the difference in mechanical properties between the ventral and dorsal tissues of the descending aorta can be ignored; when the strain is higher, it needs to be treated differently. The results of this study provide data for the etiology of arterial disease (such as arterial dissection) and the design of artificial blood vessel.