Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
Article in English | WPRIM | ID: wpr-929017

ABSTRACT

OBJECTIVES@#Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer, with highmorbidity and mortality rate. Nove drug development for NSCLC is urgently needed.This study aims to investigate the activity of lathyrol derivatives and the mechanism for its inhibitory effect on the growth of NSCLC cells.@*METHODS@#Three lathyrol derivatives were synthesized from lathyrol and their structures were verified by nuclear magnetic resonance. MTT assay was used to detect the effects of the lathyrol derivatives on the proliferation activity of NSCLC cells (A549 and H1299 cells), and the compound with the best activity was selected for subsequent experiments. Colony forming assay, wound-healing assay, and transwell assay were applied to detect in vitro cell proliferation, migration and invasion ability in A549 and H1299 cells, respectively. Quantitative real-time RT-PCR and Western blotting were performed to detect mRNA and protein levels of E-cadherin, N-cadherin, β-catenin, and MMP2 in A549 cells, respectively.@*RESULTS@#Three lathyrol derivatives inhibited the growth of A549 and H1299 cells in a dose-dependent manner, and they showed a weak inhibitory effect on normal cells Beas-2B and 16HBE, indicating that they possessed certain selective toxic effects. Therefore, C-5 benzoylated lathyrol with the best activity was selected as the ideal drug for the subsequent experiments. Compared with the control group, the number and size of cell clusters in the treatment group of A549 and H1299 cells were significantly decreased, the relative mobility were significantly decreased, and the number of invaded cells were significantly decreased (all P<0.05), indicating that the in vitro cell proliferation, migration and invasion ability were decreased. The mRNA levels of integrin α2, integrin β1, MMP2, MMP9, β-catenin, and N-cadherin were decreased, while the expression of E-cadherin was increased (all P<0.05). The protein levels of N-cadherin, β-catenin, MMP2, and integrin αV were decreased, while the expression of E-cadherin was increased (all P<0.05).@*CONCLUSIONS@#The lathyrol derivatives synthesized in this study possess good inhibitory activity against NSCLC. Among them, C-5 benzoylated lathyrol significantly inhibits the proliferation, migration, and invasion ability of NSCLC cells in vitro through regulating the process of epithelial-mesenchymal transition.


Subject(s)
Cadherins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Humans , Lung Neoplasms/drug therapy , Matrix Metalloproteinase 2/genetics , RNA, Messenger , beta Catenin/genetics
2.
Article in English | WPRIM | ID: wpr-927682

ABSTRACT

Objective@#miR-663a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1. The goal of this study was to explore the role of miR-663a during radiation-induced Epithelium-to-mesenchymal transition (EMT).@*Methods@#TGF-β1 or IR was used to induce EMT. After miR-663a transfection, cell migration and cell morphological changes were detected and the expression levels of miR-663a, TGF-β1, and EMT-related factors were quantified.@*Results@#Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by miR-663a. Furthermore, both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of miR-663a, while the silencing of TGF-β1 by miR-663a reversed the EMT process after radiation.@*Conclusion@#Our findings demonstrate an EMT-suppressing effect by miR-663a via TGF-β1 in radiation-induced EMT.


Subject(s)
Down-Regulation , Epithelial-Mesenchymal Transition , Epithelium/metabolism , MicroRNAs/metabolism , Transforming Growth Factor beta1/pharmacology
3.
Arq. bras. med. vet. zootec. (Online) ; 73(5): 1111-1116, Sept.-Oct. 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1345263

ABSTRACT

Pulmonary adenocarcinoma is a malignant epithelial neoplasia that usually arises from conducting airways or alveolar parenchyma. It has rarely been described in wild felids, with no previous reports in ocelots. In domestic cats it is a very aggressive neoplasm with a high metastatic rate that usually evolves to death. This report aimed to describe a pulmonary adenocarcinoma in a captive and senile ocelot (Leopardus pardalis), with a thorough morphologic and immunophenotypically characterization, evidencing the epithelial-mesenchymal transition (EMT) phenomenon in a high metastatic carcinoma, an important feature rarely described in veterinary medicine, even in domestic cats.(AU)


O adenocarcinoma pulmonar é uma neoplasia epitelial maligna originada do epitélio respiratório das vias aéreas inferiores e do parênquima alveolar. É uma neoplasia raramente descrita em felinos selvagens, sem nenhum relato em jaguatiricas. Em gatos domésticos, é uma neoplasia muito agressiva, com alta taxa de metástase, e geralmente evolui para o óbito do paciente. O presente relato objetiva descrever um adenocarcinoma pulmonar em uma jaguatirica (Leopardus pardalis) senil de cativeiro, com detalhada caracterização morfológica e imunofenotípica, evidenciando o fenômeno de transição epitelial-mesenquial (TEM) em um carcinoma altamente metastático, uma característica importante, com escassos relatos na medicina veterinária, mesmo em gatos domésticos.(AU)


Subject(s)
Felidae , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/veterinary , Lung Neoplasms , Epithelial-Mesenchymal Transition , Animals, Zoo
5.
Braz. j. med. biol. res ; 54(5): e9700, 2021. tab, graf
Article in English | LILACS | ID: biblio-1180737

ABSTRACT

Lung adenocarcinomas are usually sensitive to radiation therapy, but some develop resistance. Radiation resistance can lead to poor patient prognosis. Studies have shown that lung adenocarcinoma cells (H1299 cells) can develop radioresistance through epithelial-mesenchymal transition (EMT), and this process is regulated by miRNAs. However, it is unclear which miRNAs are involved in the process of EMT. In our present study, we found that miR-183 expression was increased in a radioresistant lung adenocarcinoma cell line (H1299R cells). We then explored the regulatory mechanism of miR-183 and found that it may be involved in the regulation of zinc finger E-box-binding homeobox 1 (ZEB1) expression and mediate EMT in lung adenocarcinoma cells. qPCR results showed that miR-183, ZEB1, and vimentin were highly expressed in H1299R cells, whereas no difference was observed in E-cadherin expression. Western blot results showed that ZEB1 and vimentin were highly expressed in H1299R cells, while E-cadherin expression was decreased. When miR-183 expression was inhibited in H1299R cells, radiation resistance, proliferation, and cell migration were decreased. The expression of ZEB1 and vimentin in H1299R cells was decreased, while the expression of E-cadherin was increased. Moreover, miR-183 overexpression in H1299 cells enhanced radiation resistance, proliferative capacity, and cell migration ability. The expression of ZEB1 and vimentin in H1299 cells was increased, while that of E-cadherin was decreased. In conclusion, miR-183 may promote EMT and radioresistance in H1299 cells, and targeting the miR-183-ZEB1 signaling pathway may be a promising approach for lung cancer treatment.


Subject(s)
Humans , MicroRNAs/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Gene Expression Regulation, Neoplastic , Cell Movement , Cell Line, Tumor , Epithelial-Mesenchymal Transition
6.
Braz. j. med. biol. res ; 54(3): e9206, 2021. graf
Article in English | LILACS | ID: biblio-1153519

ABSTRACT

Renal fibrosis is one of the most significant pathological changes after ureteral obstruction. Transforming growth factor-β (TGF-β) signaling pathway plays essential roles in kidney fibrosis regulation. The aims of the present study were to investigate effects of microRNA-302b (miR-302b) on renal fibrosis, and interaction between miR-302b and TGF-β signaling pathway in murine unilateral ureteral obstruction (UUO) model. Microarray dataset GSE42716 was downloaded by retrieving Gene Expression Omnibus database. In accordance with bioinformatics analysis results, miR-302b was significantly down-regulated in UUO mouse kidney tissue and TGF-β1-treated HK-2 cells. Masson's trichrome staining showed that miR-302b mimics decreased renal fibrosis induced by UUO. The increased mRNA expression of collagen I and α-smooth muscle actin (α-SMA) and decreased expression of E-cadherin were reversed by miR-302b mimics. In addition, miR-302b up-regulation also inhibited TGF-β1-induced epithelial mesenchymal transition (EMT) of HK-2 cells by restoring E-cadherin expression and decreasing α-SMA expression. miR-302b mimics suppressed both luciferase activity and protein expression of TGF-βR2. However, miR-302b inhibitor increased TGF-βR2 luciferase activity and protein expression. Meanwhile, miR-302b mimics inhibited TGF-βR2 mRNA expression and decreased Smad2 and Smad3 phosphorylation in vivo and in vitro. Furthermore, over-expression of TGF-βR2 restored the miR-302b-induced decrease of collagen I and α-SMA expression. In conclusion, this study demonstrated that miR-302b attenuated renal fibrosis by targeting TGF-βR2 to suppress TGF-β/Smad signaling activation. Our findings showed that elevating renal miR-302b levels may be a novel therapeutic strategy for preventing renal fibrosis.


Subject(s)
Humans , Animals , Rats , Ureteral Obstruction/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism , MicroRNAs/genetics , Smad Proteins , Kidney Diseases/genetics , Fibrosis , Cell Line , Epithelial-Mesenchymal Transition , Kidney/pathology , Kidney Diseases/pathology
7.
Frontiers of Medicine ; (4): 313-329, 2021.
Article in English | WPRIM | ID: wpr-880974

ABSTRACT

The medical fungus Hirsutella sinensis has been used as a Chinese folk health supplement because of its immunomodulatory properties. Our previous studies established the antifibrotic action of Hirsutella sinensis mycelium (HSM) in the lung. The epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis. The present study investigates the role of HSM in mediating EMT during the development of pulmonary fibrosis. HSM significantly inhibits bleomycin (BLM)-induced pulmonary fibrosis by blocking the EMT. In addition, the expression levels of midkine are increased in the lungs of the BLM-induced group. Further analysis of the results indicates that the mRNA level of midkine correlated positively with EMT. HSM markedly abrogates the transforming growth factor β-induced EMT-like phenotype and behavior in vitro. The activation of midkine related signaling pathway is ameliorated following HSM treatment, whereas this extract also caused an effective attenuation of the induction of EMT (caused by midkine overexpression) in vitro. Results further confirm that oral medication of HSM disrupted the midkine pathway in vivo. Overall, findings suggest that the midkine pathway and the regulation of the EMT may be considered novel candidate therapeutic targets for the antifibrotic effects caused by HSM.


Subject(s)
Bleomycin , Epithelial-Mesenchymal Transition , Humans , Midkine , Mycelium , Pulmonary Fibrosis/drug therapy
8.
Protein & Cell ; (12): 29-38, 2021.
Article in English | WPRIM | ID: wpr-880916

ABSTRACT

Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.


Subject(s)
Amino Acid Sequence , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Humans , Male , Mutation , Prostate/pathology , Prostatic Neoplasms/pathology , Protein Binding , Protein Processing, Post-Translational , Receptors, Androgen/metabolism , Signal Transduction , Transcription, Genetic
9.
Article in English | WPRIM | ID: wpr-880860

ABSTRACT

Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial-mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.


Subject(s)
Animals , Carcinoma, Squamous Cell , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Fibroblast Growth Factor 8 , Head and Neck Neoplasms , Humans , Mice , Mouth Neoplasms , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck
10.
Article in Chinese | WPRIM | ID: wpr-878923

ABSTRACT

This study aimed to assess whether chrysin(ChR) can inhibit epithelial-mesenchymal transition(EMT) of type Ⅱ alveolar epithelial cell and produce anti-pulmonary fibrosis effect by regulating the NF-κB/Twist 1 signaling pathway. Sixty rats were randomly divided into the control group, the bleomycin(BLC) group, BLC+ChR(50 mg·kg~(-1)) group and BLC+ChR(100 mg·kg~(-1)) group, with 15 rats in each group. The pulmonary fibrosis model was induced by intratracheal injection of BLC(7 500 U·kg~(-1)). Rats were orally administered with different doses of ChR after BLC injection for 28 days. The cells were divided into control group, TGF-β1 group(5 ng·mL~(-1)), and TGF-β1+ChR(1, 10, 100 μmol·L~(-1)) groups. The type Ⅱ alveolar epithelial cells were treated with TGF-β1 for 24 h, and then treated with TGF-β1 for 48 h in the presence or absence of different doses of ChR(1, 10 and 100 μmol·L~(-1)). The morphological changes and collagen deposition in lung tissues were analyzed by HE staining, Masson staining and immunohistochemistry. The mRNA and protein expression levels of collagen Ⅰ, E-cadherin, zonula occludens-1(ZO-1), vimentin, alpha smooth muscle actin(α-SMA), inhibitor of nuclear factor kappa B alpha(IκBα), nuclear factor-kappa B p65(NF-κB p65), phospho-NF-κB p65(p-p65) and Twist 1 in lung tissues and cells were detected by qPCR and Western blot, respectively. The animal experiment results showed that as compared with the BLC group, after administration of ChR for 28 days, bleomycin-induced pulmonary fibrosis in rats was significantly relieved, collagen Ⅰ expression in lung tissues was significantly reduced(P<0.05 or P<0.01), and EMT of alveolar epithelial cells was obviously inhibited [the expression levels of E-cadherin and ZO-1 were increased and the expression levels of vimentin and α-SMA were decreased(P<0.05 or P<0.01)], concomitantly with significantly reduced IκBα and p65 phosphorylation level in cytoplasm and decreased NF-κB p65 and Twist 1 expression in nucleus(P<0.05 or P<0.01). The cell experiment results showed that different doses of ChR(1, 10 and 100 μmol·L~(-1)) significantly reduced TGF-β1-induced collagen Ⅰ expression(P<0.05 or P<0.01), significantly inhibited EMT of type Ⅱ alveolar epithelial cells[the expression levels of E-cadherin and ZO-1 were increased and the expression levels of vimentin and α-SMA were decreased(P<0.05 or P<0.01)], and inhibited IκBα and p65 phosphorylation in cytoplasm and down-regulated NF-κB p65 and Twist 1 expression in nucleus induced by TGF-β1(P<0.05 or P<0.01). The results suggest that ChR can reverse EMT of type Ⅱ alveolar epithelial cell and alleviate pulmonary fibrosis in rats, and its mechanism may be associated with reducing IκBα phosphorylation and inhibiting NF-κB p65 phosphorylation and nuclear transfer, thus down-regulating Twist 1 expression.


Subject(s)
Alveolar Epithelial Cells/metabolism , Animals , Epithelial-Mesenchymal Transition , Flavonoids , NF-kappa B/metabolism , Rats , Signal Transduction , Transforming Growth Factor beta1/genetics
11.
Article in Chinese | WPRIM | ID: wpr-878729

ABSTRACT

Targeted therapy is an important therapeutic method for advanced non-small cell lung cancer with driver gene alteration.However,resistance to targeted therapy will inevitably happen in clinical practice,which has become a major issue demanding prompt solution.Studies have demonstrated that bypass resistance mediated by the activation of hepatocyte growth factor(HGF)/mesenchymal-epithelial transition factor(MET)signaling pathway is a common cause of resistance to targeted therapy.Presently,relevant studies have accumulated rich experience in the specific mechanisms.To be brief,HGF/MET is an important target for overcoming the resistance to targeted therapy and promises to be a leading biomarker for judging and observing the occurrence of resistance.This paper introduces the recent studies concerning the effects and mechanisms of HGF/MET signaling pathway on resistance to targeted therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Epithelial-Mesenchymal Transition , Hepatocyte Growth Factor , Humans , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction
12.
Article in English | WPRIM | ID: wpr-878413

ABSTRACT

OBJECTIVES@#A study was conducted to investigate the molecular mechanism of chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) influencing the invasion and metastasis of tongue squamous cell carcinoma and to provide a new target for clinical inhibition of invasion and metastasis of tongue squamous cell carcinoma.@*METHODS@#Ualcan website was used to analyze the expression of CHD1L in normal epithelial tissue and primary head and neck squamous cell carcinoma and to analyze the effect of lymph node metastasis on the expression of CHD1L in tissues with head and neck squamous cell carcinoma. The relationship between CHD1L expression and the survival rate of patients with head and neck squamous cell carcinoma was tested by the GEPIA website. Western blot was used to quantify the levels of CHD1L protein in human tongue squamous cell carcinoma CAL27 and immortalized human skin keratinocyte cell HaCaT. After knocking down CAL27 in human tongue squamous cell carcinoma cells with an RNA interference plasmid, the cells were designated as SiCHD1L/CAL27 and Scr/CAL27. Western blot was utilized to detect the expression of CHD1L in each group of cells. The change in CAL27 cell proliferation ability was tested by EdU proliferation test after CHD1L knockdown. The change of cell migration ability of each group cells was tested through the wound healing assay. Western blot was used to detect epithelial-mesenchymal transition (EMT) marker E-cadherin and Vimentin protein expression levels.@*RESULTS@#Ualcan database showed that the expression of CHD1L in primary head and neck squamous cell carcinoma tissues was higher than in normal epithelial tissues and in head and neck squamous cell carcinoma tissues with lymph node metastasis. GEPIA website analysis showed that the overall survival rate of patients with head and neck squamous cell carcinoma with high expression of CHD1L was significantly lower than that of patients with low expression. Western blot results showed that CHD1L expression in human tongue squamous carcinoma cells CAL27 was higher than that of human normal skin cells HaCaT. CHD1L expression in SiCHD1L/CAL27 cells was much lower than that in Scr/CAL27 cells. Results of EdU proliferation experiments showed the significant reduction in the cell proliferation ability of the SiCHD1L/CAL27 cells. Results of the wound healing experiments showed the reduction in the migration capacity of the SiCHD1L/CAL27 cells. The expression of E-cadherin increased, whereas that of Vimentin decreased, in SiCHD1L/CAL27 cells.@*CONCLUSIONS@#CHD1L promoted the EMT, proliferation, migration, and invasion ability of tongue squamous cell carcinoma cells.


Subject(s)
Adenosine Triphosphatases , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA Helicases , DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Humans , Neoplasm Invasiveness/genetics , Tongue , Tongue Neoplasms/genetics
13.
Article in English | WPRIM | ID: wpr-878412

ABSTRACT

OBJECTIVES@#This study aimed to explore the effect of sex determining region Y-box 9 (SOX9) on the microtubule formation and epithelial-mesenchymal transition (EMT) of human oral squamous cell carcinoma (OSCC) CAL27 and the underlying mechanism.@*METHODS@#SOX9-shRNA1 and SOX9-shRNA2 were designed and synthesized and then transfected into CAL27 cells. The expression of SOX9 was detected by quantitative real-time polymerase chain reaction. Microtubule formation assay was used to detect the change in the number of microtubule nodules after interfering with SOX9. Immunofluorescence was used to detect the Vimentin content. Western blot was used to detect the protein expression of EMT marker molecules and Wnt/β-catenin pathway-related proteins, such as E-cadherin, N-cadherin, Fibronectin, Wnt, β-catenin, T-cell factor-4 (TCF-4).@*RESULTS@#The expression level of SOX9 significantly decreased after transfection with SOX9-shRNA1 and SOX9-shRNA2 in CAL27 cells (@*CONCLUSIONS@#Interference with SOX9 decreased Vimentin content and inhibited the microtubule formation and protein expression of EMT marker molecules, as well as the expression of proteins related to the Wnt/β-catenin pathway. Thus, SOX9 can induce microtubule formation and EMT in CAL27, which was related to the inhibition of the Wnt/β-catenin pathway activation.


Subject(s)
Carcinoma, Squamous Cell , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms , Humans , Microtubules/metabolism , Mouth Neoplasms , SOX9 Transcription Factor/metabolism , Squamous Cell Carcinoma of Head and Neck , Wnt Signaling Pathway , beta Catenin/metabolism
14.
Article in English | WPRIM | ID: wpr-878331

ABSTRACT

Objective@#The underlying mechanism of Ezrin in ovarian cancer (OVCA) is far from being understood. Therefore, this study aimed to assess the role of Ezrin in OVCA cells (SKOV3 and CaOV3) and investigate the associated molecular mechanisms.@*Methods@#We performed Western blotting, reverse transcription-quantitative polymerase chain reaction, MTT, cell colony, cell wound healing, transwell migration and invasion, RhoA and Rac active pull down assays, and confocal immunofluorescence experiments to evaluate the functions and molecular mechanisms of Ezrin overexpression or knockdown in the proliferation and metastasis of OVCA cells.@*Results@#The ectopic expression of Ezrin significantly increased cell proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) in OVCA cells. By contrast, the knockdown of endogenous Ezrin prevented OVCA cell proliferation, invasiveness, and EMT. Lastly, we observed that Ezrin can positively regulate the active forms of RhoA rather than Rac-1 in OVCA cells, thereby promoting robust stress fiber formation.@*Conclusion@#Our results indicated that Ezrin regulates OVCA cell proliferation and invasiveness by modulating EMT and induces actin stress fiber formation by regulating Rho-GTPase activity, which provides novel insights into the treatment of the OVCA.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Cytoskeletal Proteins/metabolism , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Ovarian Neoplasms/pathology , Stress Fibers/metabolism , rhoA GTP-Binding Protein/metabolism
15.
Acta Physiologica Sinica ; (6): 233-243, 2021.
Article in English | WPRIM | ID: wpr-878252

ABSTRACT

There is increasing evidence that long non-coding RNA (lncRNA) plays critical roles in cancer progression. However, the role of long non-coding RNA 00665 (LINC00665) in most cancers is poorly understood. The purpose of the present study was to reveal the functional role of LINC00665 in cervical cancer cells. HeLa cells were subjected to LINC00665 short hairpin RNA (shRNA) or control shRNA treatment to investigate the metastasis and proliferation phenotype of cervical cancer cells in vitro and in vivo. Transcriptome sequencing experiments of HeLa cells in LINC00665 silencing or control group were conducted, and the differentially expressed genes (DEGs) were screened. The DEGs were subjected to Metascape database functional analysis and gene set enrichment analysis. Epithelial-mesenchymal transition (EMT) related markers and a key element of WNT/β‑catenin pathway, CTNNB1 (catenin beta 1), were detected by Western blot and immunofluorescence assay. The results showed that silencing LINC00665 reduced cell viability of Hela cells, up-regulated protein expression level of E-cadherin, down-regulated protein expression levels of N-cadherin, Vimentin and CTNNB1, and inhibited cell migration and invasion of HeLa cells. Bioinformatics analysis results showed that LINC00665 might promote EMT by activating WNT-CTNNB1/β‑catenin signaling pathway. These results indicate that LINC00665 has functions in transcriptional EMT regulation via WNT-CTNNB1/β‑catenin signaling pathway and therefore can be developed as a therapeutic target for cervical cancer.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Wnt Signaling Pathway , beta Catenin/metabolism
16.
Acta Physiologica Sinica ; (6): 197-207, 2021.
Article in English | WPRIM | ID: wpr-878248

ABSTRACT

Pancreatic cancer (PC) is a devastating malignant tumor with high incidence and mortality rate worldwide. Meanwhile, the surgical approaches and drugs of this disease remain challenging. In recent years, reactive oxygen species (ROSs) study has become a hotspot in the field of PC research. ROSs may regulate tumor mic roenvironment (TME), cancer stem cells (CSCs) renewal and epithelial-mesenchymal transition (EMT), which result in drug-resistance and recurrence of the PC. Currently, TME that includes immune infiltrates, fibroblasts, vascular vessels and extracellular matrix has become a hotspot in the cancer research. Meanwhile, numerous researches have shown that ROSs-mediated TME plays a central role in the occurrence and development of PC. Targeting ROSs may be promising therapeutic treatments for the PC patients. Therefore, the purposes of the review were manifold: (1) to summarize the regulations of ROSs in tumorigenesis and drug-resistance of PC; (2) to investigate the modulation of ROSs in signaling cascades in PC; (3) to study the effects of ROSs in stromal cells in PC; (4) to generalize the potent therapies targeting ROSs in PC. Overall, this review summarized the current status of ROSs in PC research and suggested some potential anti-PC drugs that may target ROSs.


Subject(s)
Epithelial-Mesenchymal Transition , Humans , Neoplastic Stem Cells , Pancreatic Neoplasms , Reactive Oxygen Species , Tumor Microenvironment
17.
Chinese Medical Journal ; (24): 1345-1355, 2021.
Article in English | WPRIM | ID: wpr-878149

ABSTRACT

BACKGROUND@#Although increasing abnormal expression of circular RNAs (circRNAs) has been revealed in various cancers, there were a small number of studies about circRNAs in gastric cancer (GC). Here, we explored the expression and function of a novel circRNA, circ_0049447, in GC.@*METHODS@#A total of 80 GC tissues and non-tumorous tissues were collected from the First Affiliated Hospital of China Medical University. And all cells were cultured with 10% fetal bovine serum and incubated at 37°C and 5% CO2. The expression of circ_0049447 was quantified by real-time polymerase chain reaction. The biological function of circ_0049447 on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) was evaluated by cell counting kit-8 (CCK-8), colony formation assay, transwell migration and invasion assay, and Western blotting. Luciferase report assay was used to verify the direct binding between circ_0049447 and predicted microRNA (miRNA). Furthermore, a xenograft mouse model was used to validate the function of circ_0049447 in vivo.@*RESULTS@#We demonstrated that circ_0049447 was downregulated in GC (P < 0.001). The area under the receiver operating characteristic curve reached 0.838, while sensitivity was 82.3% and specificity was 77.2%. CCK-8 and colony formation assay showed that overexpression of circ_0049447 could inhibit the proliferation (P < 0.05). Transwell migration and invasion assay showed upregulated circ_0049447 could impede migration in GC cells (P < 0.05). In addition, overexpression of circ_0049447 could impede GC cell EMT. Upregulation of miR-324-5p in GC specimens and direct binding between miR-324-5p with circ_0049447 proven by luciferase reporter assay indicated that circ_0049447 may inhibit GC by sponging certain miRNA.@*CONCLUSION@#Circ_0049447 acts as a tumor suppressor in GC through reducing proliferation, migration, invasion, and EMT, and it is a promising biomarker for diagnosis.


Subject(s)
Animals , Cell Line, Tumor , Cell Proliferation/genetics , China , Epithelial-Mesenchymal Transition/genetics , Mice , Stomach Neoplasms/genetics
18.
Journal of Integrative Medicine ; (12): 469-477, 2021.
Article in English | WPRIM | ID: wpr-922522

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant cancers worldwide. Epithelial-mesenchymal transition (EMT), which endows epithelial cells with mesenchymal properties, plays an important role in the early stages of metastasis. Conventional cancer therapies have promising effects, but issues remain, such as high rates of metastasis and drug resistance. Thus, exploring and evaluating new therapies is an urgent need. Traditional Chinese medicines (TCMs) have been acknowledged for their multi-target and coordinated intervention effects against HCC. Accumulating evidence indicates that TCM can inhibit the malignancy of cells and the progression of EMT in HCC. However, studies on the effects of TCM on EMT in HCC are scarce. In this review, we summarized recent developments in anti-EMT TCMs and formulae, focusing on their underlying pharmacological mechanisms, to provide a foundation for further research on the exact mechanisms through which TCM affects EMT in HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Epithelial-Mesenchymal Transition , Humans , Liver Neoplasms/drug therapy , Medicine, Chinese Traditional
19.
Protein & Cell ; (12): 788-809, 2021.
Article in English | WPRIM | ID: wpr-922475

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.


Subject(s)
Adult , Aged , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Neoplasm Staging , Prognosis , Protein Binding , RNA, Small Interfering/metabolism , Survival Analysis , Tumor Burden , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/metabolism
20.
Article in English | WPRIM | ID: wpr-922261

ABSTRACT

To investigate the molecular mechanism of resveratrol inhibiting the metastasis of liver cancer . HepG2 and Huh7 cells were treated with different concentrations of resveratrol, and the cell viability was determined by CCK-8 assay to determine the optimal concentration of resveratrol for subsequent experiments. The expressions of miR-186-5p in liver cancer tissues and liver cancer cells were determined by quantitative real-time RT-PCR. The migration and invasion of HepG2 and Huh7 cells were detected by wound healing assay and Transwell assay, and the expression levels of epithelial-mesenchymal transition (EMT) related proteins were determined by Western blotting. Resveratrol with concentration of had no effect on the viability of HepG2 and Huh7 cells, so the concentration of resveratrol in subsequent experiments was 6.25 μmol/L. Resveratrol inhibited the wound healing and invasion of liver cancer cells; increased the expression of E-cadherin, and decreased the expression of vimentin and Twist1. The expression of miR-186-5p was significantly down-regulated in liver cancer tissues and cells compared with the adjacent tissues and normal liver cells (both <0.05). Furthermore, resveratrol induced the expression of miR-186-5p in liver cancer cells (both <0.01). Overexpression of miR-186-5p suppressed the migration, invasion and EMT of liver cancer cells. Knockdown of miR-186-5p blocked the inhibition effects of resveratrol on the migration, invasion and EMT of liver cancer cells. Resveratrol could inhibit the metastasis of liver cancer , which might be associated with up-regulating miR-186-5p.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Resveratrol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL