ABSTRACT
A growing number of studies have identified sex differences in response to general anesthesia; however, the underlying neural mechanisms are unclear. The medial preoptic area (MPA), an important sexually dimorphic structure and a critical hub for regulating consciousness transition, is enriched with estrogen receptor alpha (ERα), particularly in neuronal clusters that participate in regulating sleep. We found that male mice were more sensitive to sevoflurane. Pharmacological inhibition of ERα in the MPA abolished the sex differences in sevoflurane anesthesia, in particular by extending the induction time and facilitating emergence in males but not in females. Suppression of ERα in vitro inhibited GABAergic and glutamatergic neurons of the MPA in males but not in females. Furthermore, ERα knockdown in GABAergic neurons of the male MPA was sufficient to eliminate sex differences during sevoflurane anesthesia. Collectively, MPA ERα positively regulates the activity of MPA GABAergic neurons in males but not in females, which contributes to the sex difference of mice in sevoflurane anesthesia.
Subject(s)
Animals , Female , Male , Mice , Anesthesia , Estrogen Receptor alpha/metabolism , Preoptic Area , Sevoflurane/pharmacology , Sex CharacteristicsABSTRACT
ERα-36 is a novel subtype of estrogen receptor α which promotes tumor cell proliferation, invasion and drug resistance, and it serves as a therapeutic target. However, only small-molecule compounds targeting ERα-36 are under development as anticancer drugs at present. Gene therapy approach targeting ERα-36 can be explored using recombinant adenovirus armed with decoy receptor. The recombinant shuttle plasmid pDC316-Ig κ-ERα-36-Fc-GFP was constructed via genetic engineering to express an Ig κ-signaling peptide-leading secretory recombinant fusion protein ERα-36-Fc. The recombinant adenovirus Ad-ERα-36-Fc-GFP was subsequently packaged, characterized and amplified using AdMaxTM adenovirus packaging system. The expression of fusion protein and functional outcome of Ad-ERα-36-Fc-GFP transduction were further analyzed with triple-negative breast cancer MDA-MB-231 cells. Results showed that the recombinant adenovirus Ad-ERα-36-Fc-GFP was successfully generated. The virus effectively infected MDA-MB-231 cells which resulted in expression and secretion of the recombinant fusion protein ERα-36-Fc, leading to significant inhibition of EGFR/ERK signaling pathway. Preparation of the recombinant adenovirus Ad-ERα-36-Fc-GFP provides a basis for further investigation on cancer gene therapy targeting ERα-36.
Subject(s)
Adenoviridae/genetics , Cell Proliferation , Estrogen Receptor alpha/metabolism , Recombinant Proteins , TransfectionABSTRACT
OBJECTIVES@#To study the effects of 17β-estradiol (E2) on the regulation of the proliferation of condylar chondrocytes and provide a preliminary discussion on the role of phosphorylate-mammalian target of rapamycin (p-mTOR) in this regulatory process.@*METHODS@#Condylar chondrocytes were isolated from 6-week-old female rats for primary culture. Drug treatment with different concentrations of E2 and/or rapamycin (RAPA) was carried out on second-generation cells. Cell Counting Kit 8 was used to measure the cell viability of condylar chondrocytes after culture for 24, 48, or 72 h, and reverse transcription-polymerase chain reaction (RT-PCR) was applied to detect the relative gene expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), collagen type Ⅱ (COLⅡ), autophagy-related gene 6 (Beclin-1), and autophagy-related gene 5 (ATG-5). Western blot was employed to determine the relative protein expression of ERα, ERβ, Beclin-1, lipid-modified light chain 3B (LC3-Ⅱ), and p-mTOR.@*RESULTS@#E2 could significantly promote the proliferation of chondrocytes cultured @*CONCLUSIONS@#At a concentration of 10
Subject(s)
Animals , Female , Rats , Autophagy , Cell Proliferation , Chondrocytes , Estradiol , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta , PhosphorylationABSTRACT
Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.
Subject(s)
Humans , Female , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Ovarian Neoplasms/metabolism , Semaphorins/metabolism , Biomarkers, Tumor/metabolism , Cell Proliferation , Down-Regulation , Semaphorins/geneticsABSTRACT
La asociación de factores genéticos, nutricionales y ambientales afecta directamente la fertilidad de las ovejas sin embargo en condiciones de similitud ambiental, la raza es un factor determinante existiendo razas de alta fertilidad como por ejemplo Texel y Suffolk y otras de fertilidad estándar tales como Romney y Criolla Araucana. La fertilidad es modulada por las hormonas sexuales que actúan mediante la unión a receptores específicos. En ovinos el receptor de estrógeno alfa (ER-a) esta ampliamente distribuido en el sistema reproductivo y es responsable de la modulación de varios mecanismos asociados con la función del sistema reproductivo. Un factor posiblemente relacionado con la diferencia en la fertilidad entre razas de ovinos, es el nivel de expresión diferencial de estos receptores en el sistema reproductivo. En el presente estudio se realizo una comparación cuantitativa de la expresión inmunohistoquímica de ER-a se llevó en el endometrio de ovejas prepúberes de ovejas de alta fertilidad (Texel) y de fertilidad estándar (Araucana), mediante la medición de la densidad óptica integrada de la señal inmunohistoquímica en áreas específicas del endometrio. Los resultados indican una diferencia significativa entre la expresión del ER-a a favor de ovejas de raza Texel en todas las áreas de la raza del endometrio de ovejas prepúberes evaluadas. Esta expresión diferencial sugiere una posible relación entre la intensidad de la expresión de ER-a y la fertilidad en las razas ovinas estudiadas en este trabajo.
In breeding sheep high fertility rate is an important consideration factor. The association of genetic, nutritional and environmental conditions directly affects the fertility of ewes. There are high fertility sheep breeds (Texel, Suffolk) and other standard fertility breeds as (Romney, Criolla Araucana). Animal reproduction is modulated by sex hormones that act by binding to specific receptors. In sheep, alpha (ER-a) estrogen receptor is widely distributed in the reproductive system, modulating several mechanisms associated with reproductive system function. One factor possibly related to the difference in fertility between sheep breeds, is the differential expression level of these receptors in the reproductive system. In the present study a quantitative comparison of the immunohistochemical expression of ER-a was carried out in prepubertal sheep endometrium in high fertility (Texel) breed versus standard fertility (Araucana) breed, by measuring the integrated optical density in specific areas of the endometrium. Results indicate a significant difference between ER-a expression in endometrium off Texel breed ewes and Araucana breed ewes, and registered higher levels in all areas of evaluated Texel breed prepubertal ewes. This differential expression suggests a possible link between ER-a expression intensity and fertility in the breeds studied in this work.
Subject(s)
Animals , Female , Sheep , Estrogen Receptor alpha/metabolism , Endometrium/metabolism , Immunohistochemistry , FertilityABSTRACT
Gender difference in the incidence of colorectal cancer is well known and has been supported by various epidemiologic studies. In Korea, women have lower incidence of colorectal cancer and adenoma, and the incidence in men has recently increased. Hormone replacement therapy in menopausal women is preventive of colorectal cancer but can cause cardiovascular diseases and breast cancer. Estrogen exerts diverse effects through estrogen receptors, ERalpha and ERbeta. ERbeta is associated with anti-proliferation and apoptosis. The ratio of ERalpha/ERbeta is important in the protection and tumorigenesis of colorectal cancer. Therefore ERbeta modulation has been investigated for preventing or treating colorectal cancer and avoiding adverse effects of estrogen at the same time. In addition, the gender-difference in the incidence of colorectal cancer should be taken into account when making guidelines on colorectal surveillance for Korean population.
Subject(s)
Humans , Adenoma/diagnosis , Colorectal Neoplasms/diagnosis , Estradiol Dehydrogenases/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Sex FactorsABSTRACT
This study was designed to investigate the potential estrogenic effects of perinatal dietary phytoestrogens on the rat uterus. Pregnant rats were divided to three groups provided the following diets: (1) rat chow, (2) rat chow with 7.5% Trifolium (T.) pratense, or (3) rat chow supplemented with 17beta-estradiol (0.5 mg/kg). The dams in each group were kept on the same diet during pregnancy and lactation. Female offspring were euthanized on day 21 at which time body and organ weights were recorded and tissue samples were taken for histology. Immunohistochemistry was performed to detect estrogen receptor alpha (ERalpha) and progesterone receptor (PR) levels. Our results revealed estrogen-like biological effects of perinatal T. pratense exposure. Relative uterus and ovary weights in the experimental groups were increased compared to control. The number of uterine glands and luminal epithelium heights were also increased. However, there were no statistically significant changes detected in the immunostaining intensity of ERalpha and PR between the groups.
Subject(s)
Animals , Female , Pregnancy , Rats , Animals, Suckling , Body Weight/drug effects , Estrogen Receptor alpha/metabolism , Immunohistochemistry , Isoflavones/pharmacology , Lactation , Maternal Exposure , Organ Size/drug effects , Phytoestrogens/pharmacology , Plant Components, Aerial/chemistry , Rats, Wistar , Receptors, Progesterone/metabolism , Trifolium/chemistry , Uterus/drug effectsABSTRACT
The present study was planned to demonstrate the detailed immunoreactive (IR) distribution pattern of estrogen receptors (ER) in hippocampus of 15 female rats, adult, female Wistar rats in estrous phase. 30 µm thick setions of hippocampal region fixed (4 percent buffered paraformaldehyde) were obtained with cryostat. The sections were processed free- floating for immunolocalization of ER using, mouse monoclonal anti-ER-a antibody with PAP technique. The results showed presence of ER immunoreactive neurons in all the subfields of hippocampus with some variations. In cornua ammonis (CA) maximum ER positive (+ve) neurons were localized in CA3 region. Layer analysis showed maximum localization in the stratum oriens (SO) region. In other subfields and layers of CA the IR neurons were comparatively less in number. The morphological characters of all ER +ve neurons showed them to be interneurons both in CA as well as in Dentate gyrus (DG).
El estudio fue diseñado para demostrar el patrón de distribución inmunorreactivo (IR) detallado de los receptores estrogénicos (RE) en el hipocampo de 15 ratas Wistar, hembras, adultas, en fase de estro. Fueron obtenidas secciones 30 µm de grosor con un crióstato, de la región del hipocampo fijadas por perfusión (4 por ciento de paraformaldehído tamponado). Las secciones fueron procesadas, por libre flotación, para la inmunolocalización de RE utilizando anticuerpo monoclonal de ratón anti-ER-a con la técnica de PAP. Los resultados mostraron la presencia de neuronas inmunorreactivas ER en todos los subcampos del hipocampo con algunas variaciones. En el cuerno ventral (CA) la mayor zona RE positiva (+ ve) de las neuronas se localizaron en la región CA3. El análisis de las capas mostró la localización máxima en la región del estrato oriens (SO). En otros subcampos y capas de la CA las neuronas IR fueron comparativamente menores en número. Las características morfológicas de todas las neuronas RE + ve resultaron ser interneuronas tanto en el CA como en el giro dentado (DG).
Subject(s)
Animals , Female , Rats , Hippocampus/anatomy & histology , Hippocampus/metabolism , Receptors, Estrogen/metabolism , Hippocampus/ultrastructure , Immunohistochemistry , Interneurons/metabolism , Rats, Wistar , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolismABSTRACT
Variations in the estrogenic activity of the phytoestrogen-rich plant, Pueraria mirifica, were determined with yeast estrogen screen (YES) consisting of human estrogen receptors (hER) hERá and hERâ and human transcriptional intermediary factor 2 (hTIF2) or human steroid receptor coactivator 1 (hSRC1), respectively, together with the â-galactosidase expression cassette. Relative estrogenic potency was expressed by determining the â-galactosidase activity (EC50) of the tuber extracts in relation to 17â-estradiol. Twenty-four and 22 of the plant tuber ethanolic extracts interacted with hERá and hERâ, respectively, with a higher relative estrogenic potency with hERâ than with hERá. Antiestrogenic activity of the plant extracts was also determined by incubation of plant extracts with 17â-estradiol prior to YES assay. The plant extracts tested exhibited antiestrogenic activity. Both the estrogenic and the antiestrogenic activity of the tuber extracts were metabolically activated with the rat liver S9-fraction prior to the assay indicating the positive influence of liver enzymes. Correlation analysis between estrogenic potency and the five major isoflavonoid contents within the previously HPLC-analyzed tuberous samples namely puerarin, daidzin, genistin, daidzein, and genistein revealed a negative result.
Subject(s)
Animals , Rats , Estrogen Receptor alpha/analysis , Estrogen Receptor beta/analysis , Liver/drug effects , Plant Extracts/pharmacology , Pueraria/chemistry , Biological Assay , Chromatography, High Pressure Liquid , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Isoflavones/analysis , Isoflavones/metabolism , Liver/metabolism , Nuclear Receptor Coactivator 1/metabolism , /metabolism , beta-Galactosidase/analysis , beta-Galactosidase/antagonists & inhibitorsABSTRACT
Peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) may be implicated in cholesterol metabolism since PGC-1alpha co-activates estrogen receptor alpha (ERalpha) transactivity and estrogen/ERalpha induces the transcription of LDL receptor (LDLR). Here, we show that overexpression of PGC-1alpha in HepG2 cells represses the gene expression of LDLR and does not affect the ERalpha-induced LDLR expression. PGC-1alpha suppressed the LDLR promoter-luciferase (pLR1563-luc) activity regardless of cholesterol or functional sterol-regulatory element-1. Serial deletions of the LDLR promoter revealed that the inhibition by PGC-1alpha required the LDLR promoter regions between -650 bp and -974 bp. Phosphorylation of PGC-1alpha may not affect the suppression of LDLR expression because treatment of SB202190, a p38 MAP kinase inhibitor, did not reverse the LDLR down-regulation by PGC-1alpha. This may be the first report showing the repressive function of PGC-1alpha on gene expression. PGC-1alpha might be a novel modulator of LDLR gene expression in a sterol-independent manner, and implicated in atherogenesis.
Subject(s)
Humans , Base Sequence , Cell Line, Tumor , Cholesterol/metabolism , Estrogen Receptor alpha/metabolism , Gene Expression Regulation , Heat-Shock Proteins/genetics , Molecular Sequence Data , Promoter Regions, Genetic , RNA, Messenger/genetics , Receptors, LDL/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Transcription Factors/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitorsABSTRACT
We performed an immunohistochemical study on the estrogen receptor alpha (ER-alpha) distribution in the cerebellum of a human neonate with multiple congenital anomalies, that had been acquired during autopsy. Although the exact pathology in the brain was not clearly elucidated in this study, an unidentified stressful condition might have induced the astrocytes into reactive states. In this immunohistochemical study on the neonatal cerebellum with multiple congenital anomalies, intense ER-alpha immunoreactivities (IRs) were localized mainly within the white matter even though ER-alpha IRs were known to be mainly localized in neurons. Double immunohistochemical staining showed that ER-alpha IR cells were reactive astrocytes, but not neurons. Interestingly, there were differences in the process length among the reactive astrocytes showing ER-alpha IRs. Our quantitative data confirmed that among the glial fibrillary acidic protein (GFAP)-expressing reactive astrocytes, the cells exhibiting intense ER-alpha IRs have much longer cytoplasmic processes and relatively weaker GFAP IRs. Taken together, the elongated processes of reactive astrocytes might be due to decreased expression of GFAP, which might be induced by elevated expression of ER-alpha even though the elucidation of the exact mechanism needs further studies.