ABSTRACT
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Subject(s)
Female , Humans , Uterine Cervical Neoplasms/pathology , HeLa Cells , Fibronectins/metabolism , Culture Media, Conditioned , Carcinoma, Squamous Cell/metabolism , Adenocarcinoma , Cadherins/metabolism , RNA, Messenger/metabolism , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Proliferation , S100 Calcium Binding Protein A7/metabolismABSTRACT
OBJECTIVE@#To investigate whether the Runx2 gene can induce the differentiation of human amniotic mesenchymal stem cells (hAMSCs) to ligament fibroblasts in vitro and promote the tendon-bone healing in rabbits.@*METHODS@#hAMSCs were isolated from the placentas voluntarily donated from healthy parturients and passaged, and then identified by flow cytometric identification. Adenoviral vectors carrying Runx2 gene (Ad-Runx2) and empty vector adenovirus (Ad-NC) were constructed and viral titer assay; then, the 3rd generation hAMSCs were transfected with Ad-Runx2 (Ad-Runx2 group) or Ad-NC (Ad-NC group). The real-time fluorescence quantitative PCR and Western blot were used to detect Runx2 gene and protein expression to verify the effectiveness of Ad-Runx2 transfection of hAMSCs; and at 3 and 7 days after transfection, real-time fluorescence quantitative PCR was further used to detect the expressions of ligament fibroblast-related genes [vascular endothelial growth factor (VEGF), collagen type Ⅰ, Fibronectin, and Tenascin-C]. The hAMSCs were used as a blank control group. The hAMSCs, hAMSCs transfected with Ad-NC, and hAMSCs were mixed with Matrigel according to the ratio of 1 : 1 and 1 : 2 to construct the cell-scaffold compound. Cell proliferation was detected by cell counting kit 8 (CCK-8) assay, and the corresponding cell-scaffold compound with better proliferation were taken for subsequent animal experiments. Twelve New Zealand white rabbits were randomly divided into 4 groups of sham operation group (Sham group), anterior cruciate ligament reconstruction group (ACLR group), anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-NC-scaffold compound group (Ad-NC group), and anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-Runx2-scaffold compound group (Ad-Runx2 group), with 3 rabbits in each group. After preparing the ACL reconstruction model, the Ad-NC group and the Ad-Runx2 group injected the optimal hAMSCs-Matrigel compunds into the bone channel correspondingly. The samples were taken for gross, histological (HE staining and sirius red staining), and immunofluorescence staining observation at 1 month after operation to evaluate the inflammatory cell infiltration as well as collagen and Tenascin-C content in the ligament tissues.@*RESULTS@#Flow cytometric identification of the isolated cells conformed to the phenotypic characteristics of MSCs. The Runx2 gene was successfully transfected into hAMSCs. Compared with the Ad-NC group, the relative expressions of VEGF and collagen type Ⅰ genes in the Ad-Runx2 group significantly increased at 3 and 7 days after transfection ( P<0.05), Fibronectin significantly increased at 3 days ( P<0.05), and Tenascin-C significantly increased at 3 days and decreased at 7 days ( P<0.05). CCK-8 detection showed that there was no significant difference ( P>0.05) in the cell proliferation between groups and between different time points after mixed culture of two ratios. So the cell-scaffold compound constructed in the ratio of 1∶1 was selected for subsequent experiments. Animal experiments showed that at 1 month after operation, the continuity of the grafted tendon was complete in all groups; HE staining showed that the tissue repair in the Ad-Runx2 group was better and there were fewer inflammatory cells when compared with the ACLR group and the Ad-NC group; sirius red staining and immunofluorescence staining showed that the Ad-Runx2 group had more collagen typeⅠ and Ⅲ fibers, tending to form a normal ACL structure. However, the fluorescence intensity of Tenascin-C protein was weakening when compared to the ACLR and Ad-NC groups.@*CONCLUSION@#Runx2 gene transfection of hAMSCs induces directed differentiation to ligament fibroblasts and promotes tendon-bone healing in reconstructed anterior cruciate ligament in rabbits.
Subject(s)
Pregnancy , Female , Humans , Rabbits , Animals , Vascular Endothelial Growth Factor A/metabolism , Fibronectins/metabolism , Collagen Type I/genetics , Tenascin/metabolism , Collagen/metabolism , Anterior Cruciate Ligament/surgery , Mesenchymal Stem Cells , Tendons/metabolism , Fibroblasts/metabolismABSTRACT
This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.
Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Epimedium/metabolism , Fibronectins/metabolism , Matrix Metalloproteinase 7/therapeutic use , Matrix Metalloproteinase 8/therapeutic use , Vimentin/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Lung , Collagen/metabolism , Bleomycin/toxicity , RNA, Messenger/metabolism , Cadherins/metabolismABSTRACT
This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.
Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/chemically induced , NF-E2-Related Factor 2/metabolism , Fibronectins/metabolism , Vimentin/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Oxidative Stress , Superoxide Dismutase/metabolism , RNA, Messenger/metabolismABSTRACT
Carious lesions are bacteria-caused destructions of the mineralised dental tissues, marked by the simultaneous activation of immune responses and regenerative events within the soft dental pulp tissue. While major molecular players in tooth decay have been uncovered during the past years, a detailed map of the molecular and cellular landscape of the diseased pulp is still missing. In this study we used single-cell RNA sequencing analysis, supplemented with immunostaining, to generate a comprehensive single-cell atlas of the pulp of carious human teeth. Our data demonstrated modifications in the various cell clusters within the pulp of carious teeth, such as immune cells, mesenchymal stem cells (MSC) and fibroblasts, when compared to the pulp of healthy human teeth. Active immune response in the carious pulp tissue is accompanied by specific changes in the fibroblast and MSC clusters. These changes include the upregulation of genes encoding extracellular matrix (ECM) components, including COL1A1 and Fibronectin (FN1), and the enrichment of the fibroblast cluster with myofibroblasts. The incremental changes in the ECM composition of carious pulp tissues were further confirmed by immunostaining analyses. Assessment of the Fibronectin fibres under mechanical strain conditions showed a significant tension reduction in carious pulp tissues, compared to the healthy ones. The present data demonstrate molecular, cellular and biomechanical alterations in the pulp of human carious teeth, indicative of extensive ECM remodelling, reminiscent of fibrosis observed in other organs. This comprehensive atlas of carious human teeth can facilitate future studies of dental pathologies and enable comparative analyses across diseased organs.
Subject(s)
Humans , Dental Pulp , Fibronectins , Extracellular Matrix/pathology , Dental Caries , Sequence Analysis, RNAABSTRACT
OBJECTIVES@#Long-term elevated blood pressure may lead to kidney damage, yet the pathogenesis of hypertensive kidney damage is still unclear. This study aims to explore the role and significance of leucine-rich alpha-2-glycoprotein-1 (LRG-1) in hypertensive renal damage through detecting the levels of LRG-1 in the serum and kidney of mice with hypertensive renal damage and its relationship with related indexes.@*METHODS@#C57BL/6 mice were used in this study and randomly divided into a control group, an angiotensin II (Ang II) group, and an Ang II+irbesartan group. The control group was gavaged with physiological saline. The Ang II group was pumped subcutaneously at a rate of 1.5 mg/(kg·d) for 28 days to establish the hypertensive renal damage model in mice, and then gavaged with equivalent physiological saline. The Ang II+irbesartan group used the same method to establish the hypertensive renal damage model, and then was gavaged with irbesartan. Immunohistochemistry and Western blotting were used to detect the expression of LRG-1 and fibrosis-related indicators (collagen I and fibronectin) in renal tissues. ELISA was used to evaluate the level of serum LRG-1 and inflammatory cytokines in mice. The urinary protein-creatinine ratio and renal function were determined, and correlation analysis was conducted.@*RESULTS@#Compared with the control group, the levels of serum LRG-1, the expression of LRG-1 protein, collagen I, and fibronectin in kidney in the Ang II group were increased (all P<0.01). After treating with irbesartan, renal damage of hypertensive mice was alleviated, while the levels of LRG-1 in serum and kidney were decreased, and the expression of collagen I and fibronectin was down-regulated (all P<0.01). Correlation analysis showed that the level of serum LRG-1 was positively correlated with urinary protein-creatinine ratio, blood urea nitrogen, and blood creatinine level in hypertensive kidney damage mice. Serum level of LRG-1 was also positively correlated with serum inflammatory factors including TNF-α, IL-1β, and IL-6.@*CONCLUSIONS@#Hypertensive renal damage mice display elevated expression of LRG-1 in serum and kidney, and irbesartan can reduce the expression of LRG-1 while alleviating renal damage. The level of serum LRG-1 is positively correlated with the degree of hypertensive renal damage, suggesting that it may participate in the occurrence and development of hypertensive renal damage.
Subject(s)
Animals , Mice , Mice, Inbred C57BL , Fibronectins , Irbesartan , Creatinine , Kidney/physiology , Hypertension/complications , Angiotensin II , Collagen Type IABSTRACT
Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-β1 (TGF-β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin-1β (IL-1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-κB (NF-κB) and hypoxia‑inducible factor‑1α (HIF-1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-κB.
Subject(s)
Animals , Rats , Anti-Inflammatory Agents , Bleomycin/toxicity , Fibronectins/metabolism , Fibrosis , Inflammasomes/metabolism , Ivermectin/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/drug therapyABSTRACT
ABSTRACT Background: Hematopoietic stem/progenitor cell transplantation is the main treatment option for hematological malignancies and disorders. One strategy to solve the problem of low stem cell doses used in transplantation is pre-transplant expansion. We hypothesized that using fibronectin-coated microfluidic channels would expand HSPCs and keep self-renewal potential in a three-dimensional environment, compared to the conventional method. We also compared stem cell homing factors expression in microfluidic to conventional cultures. Materials and methods: A microfluidic device was created and characterized by scanning electron microscopy. The CD133+ cells were collected from cord blood and purified. They were subsequently cultured in 24-well plates and microfluidic bioreactor systems using the StemSpan serum-free medium. Eventually, we analyzed cell surface expression levels of the CXCR4 molecule and CXCR4 mRNA expression in CD133+ cells cultured in different systems. Results: The expansion results showed significant improvement in CD133+ cell expansion in the microfluidic system than the conventional method. The median expression of the CXCR4 in the expanded cell was lower in the conventional system than in the microfluidic system. The CXCR4 gene expression up-regulated in the microfluidic system. Conclusion: Utilizing microfluidic systems to expand desired cells effectively is the next step in cell culture. Comparative gene expression profiling provides a glimpse of the effects of culture microenvironments on the genetic program of HSCs grown in different systems.
Subject(s)
Fibronectins , Hematologic Diseases , Neoplastic Stem Cells , Hematopoietic Stem Cells , Hematologic Neoplasms , Bioreactors , Receptors, CXCR4 , Fetal BloodABSTRACT
OBJECTIVE@#To investigate the effect of metformin on the proliferation and apoptosis of HER-2-positive breast cancer cell line SKBR3 and explore the possible mechanism of its action.@*METHODS@#SKBR3 cells were treated with different concentrations (20-120 μmol/L) of metformin, and the changes in cell proliferation and colony formation ability were assessed using CCK-8 assay and crystal violet staining, respectively. Flow cytometry was performed to analyze cell apoptosis and cell cycle changes. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect mRNA expressions of YAP, TAZ, EGFR, CTGF, CYR61, E-cadherin, N-cadherin, vimentin and fibronectin in the treated cells, and the protein expressions of YAP and TAZ were detected using Western blotting; immunofluorescence assay was used to observe YAP/TAZ nuclear translocation in the cells.@*RESULTS@#Metformin treatment significantly inhibited the proliferation of SKBR3 cells (P < 0.05) in a concentration- and time-dependent manner. The results of flow cytometry showed that metformin significantly promoted apoptosis and caused cell cycle arrest at G1 phase in SKBR3 cells. Metformin treatment significantly down-regulated the mRNA expressions of YAP, TAZ, EGFR, CTGF and CYR61, N-cadherin, vimentin and fibronectin (P < 0.05) and up-regulated the expression of E-cadherin (P < 0.05); Western blotting results showed that YAP and TAZ protein expressions were significantly down-regulated in the cells after metformin treatment (P < 0.05). Immunofluorescence assay revealed that metformin treatment caused the concentration of YAP and TAZ in the cytoplasm, and significantly reduced their amount in the cell nucleus.@*CONCLUSION@#Metformin can inhibit proliferation and promote apoptosis and epithelal-mesenchymal transition of HER-2 positive breast cancer cells possibly by that inhibing YAP and TAZ expression and their nuclear localization.
Subject(s)
Apoptosis , Cadherins , Cell Proliferation , ErbB Receptors , Fibronectins , Metformin/pharmacology , Neoplasms , Protein Serine-Threonine Kinases , RNA, Messenger , Transcription Factors/metabolism , VimentinABSTRACT
The purpose of this study was to investigate the effect of Geniposide on hepatic fibrosis and activation of hepatic stellate cells (HSCs) and to explore possible underlying mechanism. Human HSCs (LX-2) were treated with 5 ng/mL transforming growth factor-β1 (TGF-β1), followed by co-culture with Geniposide at various concentrations (0, 1, 2.5, 5, 10, 20, 40, 60, 80, 100 μmol/L). Cell viability was determined by MTT assay. Then, LX-2 cells were divided into control, TGF-β1 (5 ng/mL) and TGF-β1 + Geniposide (20 μmol/L) groups, and the gene and protein expression of collagen I, fibronectin, α-smooth muscle actin (α-SMA), p-Smad2 and p-Smad3 was detected by qPCR and Western blot, respectively. BALB/c mice were treated with CCl4 (25%, 1 mL/kg) to generate a model of hepatic fibrosis (CCl4 group), and the control group and CCl4 + Geniposide group were administered with olive oil and CCl4 + 40 mg/kg Geniposide, respectively. After 4 weeks of treatment, the liver function and serum hepatic fibrosis indexes of mice were detected, histological observation was performed by HE and Masson staining, and α-SMA expression in the tissue was analyzed by immunohistochemistry. Western blot was utilized for the determination of the protein expression of α-SMA, TGF-β1, p-Smad2 and p-Smad3. The results showed that Geniposide inhibited LX-2 cell proliferation. In addition, Geniposide significantly downregulated the gene and protein expression of collagen I, fibronectin and α-SMA and the expression of TGF-β1/Smad signaling-related proteins induced by TGF-β1 in vitro. Histological observations showed that Geniposide significantly inhibited CCl4-induced hepatic fibrosis, HSC activation and expression of TGF-β1/Smad signaling-related proteins in mice. In summary, Geniposide prevents the hepatic fibrosis and HSC activation possibly through the inhibition of the TGF-β1/Smad signaling pathway.
Subject(s)
Animals , Mice , Collagen Type I/metabolism , Fibronectins , Hepatic Stellate Cells/pathology , Iridoids , Liver Cirrhosis/pathology , Signal Transduction , Smad Proteins/pharmacology , Transforming Growth Factor beta1/metabolismABSTRACT
ABSTRACT Objective: Some experimental and clinical studies suggest a possible role of irisin in central and peripheral regulation of blood pressure. The purpose of the study was to assess the associations between serum irisin levels, total and visceral fat, metabolic parameters, and blood pressure pattern during 24-h monitoring (ABPM). Materials and methods: In 206 patients with essential hypertension receiving standard antihypertensive treatments, we assessed anthropometric indices; serum irisin, blood lipids (total cholesterol, LDL-C, HDL-C, and triglycerides), glucose and insulin; body composition including lean mass and total, visceral, android and gynoid fat using a dual-energy x-ray absorptiometry; ABPM; and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Results: Baseline irisin levels were within normal reference ranges and comparable between the genders. There were no significant correlations of irisin with age, anthropometric variables, lipids, HOMA-IR, body composition, as well as 24-h blood pressure and dipping status. In univariate analysis, age, fat mass and distribution, lipids and glucose, HOMA-IR, and nocturnal blood pressure fall were poor predictors of irisin levels. These neutral associations were not affected by age, gender, and treatment modality. Conclusions: In young adult hypertensives, serum concentration of irisin was within a normal range and not associated with total and regional fat, blood lipids, insulin resistance, as well as 24-h blood pressure and the magnitude of its nocturnal fall.
Subject(s)
Humans , Male , Female , Young Adult , Insulin Resistance , Fibronectins/blood , Intra-Abdominal Fat , Hypertension/diagnosis , Triglycerides , Blood Pressure , Body Mass IndexABSTRACT
ABSTRACT Objective: There are discrepancies about the relationship of IL-6, clusterin and irisin with obesity and obesity associated insulin resistance and also about their sexual dimorphism. This study aimed at evaluating the circulating levels of IL-6, clusterin and irisin in obese subjects of both sexes who had different grades of obesity and examining their sexual dimorphism and their association with insulin resistance. Subjects and methods: This study included 176 non-diabetic subjects of both sexes who were classified according to their sex into two groups; the male and the female groups. The male group (88 men) was classified according to BMI into; group 1 (22 lean men), group 2 (22 class I obese men), group 3 (22 class II obese men) and group 4 (22 class III obese men). The female group (88 women) was classified according to BMI exactly as the male group. Metabolic parameters, IL-6, clusterin, and irisin levels were measured. Data were analyzed by ANOVA test, post hoc Tukey's test and independent t-test. Pearson correlation was used to assess the association between variables. Results: In obese subjects of both sexes, circulating IL-6, clusterin and irisin levels were significantly elevated and positively correlated with HOMA-IR. Obese males showed significantly higher HOMA-IR, IL-6, clusterin and irisin levels than obese females. Conclusion: Obesity in both sexes, especially in males was associated with high levels of IL-6, clusterin and irisin and worsened the metabolic pattern. Circulating IL-6, clusterin and irisin may represent possible therapeutic targets for insulin resistance in obese subjects.
Subject(s)
Humans , Male , Female , Insulin Resistance , Fibronectins/blood , Interleukin-6/blood , Sex Characteristics , Clusterin/blood , Obesity/blood , Body Mass Index , Obesity/classificationABSTRACT
SUMMARY OBJECTIVE: Epilepsy is a common disorder that affects the nervous systems of 1% of worldwide population. In epilepsy, one-third of patients are unresponsive to current drug therapies and develop drug-resistant epilepsy. Alterations in ghrelin, nesfatin-1, and irisin levels with epilepsy were reported in previous studies. Vasoactive intestinal peptide is among the most common neuropeptides in the hippocampus, which is the focus of the seizures in temporal lobe epilepsy. However, there is also lack of evidence of whether these four neuropeptide levels are altered with drug resistant temporal lobe epilepsy or not. The aim herein was the evaluation of the serum levels of nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide in drug-resistant temporal lobe epilepsy patients and temporal lobe epilepsy (TLE) without drug resistance, and to compare them to healthy controls. METHODS: This cross-sectional study group included 58 temporal lobe epilepsy patients (24 with drug resistant temporal lobe epilepsy and 34 with temporal lobe epilepsy who were not drug-resistant) and 28 healthy subjects. Nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide serum levels were determined using enzyme-linked immunosorbent assay. RESULTS: The serum ghrelin levels of patients with drug resistant temporal lobe epilepsy were seen to have significantly decreased when compared to those of the control group (p<0.05). Serum nesfatin-1, vasoactive intestinal peptide, and irisin levels were seen to have decreased in the drug resistant temporal lobe epilepsy group when compared to those of the control and temporal lobe epilepsy groups; however, the difference was non-significant (p>0.05). CONCLUSIONS: The results herein suggested that ghrelin might contribute to the pathophysiology of drug resistant temporal lobe epilepsy. However, further studies are needed to confirm this hypothesis.
Subject(s)
Humans , Vasoactive Intestinal Peptide , Fibronectins , Epilepsy, Temporal Lobe/drug therapy , Ghrelin , Nucleobindins , Drug Resistance , Cross-Sectional StudiesABSTRACT
This study explored the molecular mechanism underlying the Gegen Qinlian Decoction(GQD) promoting the differentiation of brown adipose tissue(BAT) to improve glucose and lipid metabolism disorders in diabetic rats. After the hypoglycemic effect of GQD on diabetic rats induced by high-fat diet combined with a low dose of streptozotocin was confirmed, the total RNA of rat BAT around scapula was extracted. Nuclear transcription genes Prdm16, Pparγc1α, Pparα, Pparγ and Sirt1, BAT marker genes Ucp1, Cidea and Dio2, energy expenditure gene Ampkα2 as well as BAT secretion factors Adpn, Fndc5, Angptl8, IL-6 and Rbp4 were detected by qPCR, then were analyzed by IPA software. Afterward, the total protein from rat BAT was extracted, and PRDM16, PGC1α, PPARγ, PPARα, SIRT1, ChREBP, AMPKα, UCP1, ADPN, NRG4, GLUT1 and GLUT4 were detected by Western blot. The mRNA expression levels of Pparγc1α, Pparα, Pparγ, Ucp1, Cidea, Ampkα2, Dio2, Fndc5, Rbp4 and Angptl8 were significantly increased(P<0.05) and those of Adpn and IL-6 were significantly decreased(P<0.05) in the GQD group compared with the diabetic group. In addition, Sirt1 showed a downward trend(P=0.104), whereas Prdm16 tended to be up-regulated(P=0.182) in the GQD group. IPA canonical pathway analysis and diseases-and-functions analysis suggested that GQD activated PPARα/RXRα and SIRT1 signaling pathways to promote the differentiation of BAT and reduce the excessive lipid accumulation. Moreover, the protein expression levels of PRDM16, PGC1α, PPARα, PPARγ, SIRT1, ChREBP, AMPKα, UCP1, GLUT1, GLUT4 and NRG4 were significantly decreased in the diabetic group(P<0.01), which were elevated after GQD intervention(P<0.05). Unexpectedly, the expression of ADPN protein in the diabetic group was up-regulated(P<0.01) as compared with the control group, which was down-regulated after the administration with GQD(P<0.01). This study indicated that GQD promoted BAT differentiation and maturity to increase energy consumption, which reduced the glucose and lipid metabolism disorders and thereby improved diabetes symptoms.
Subject(s)
Animals , Rats , Adipose Tissue, Brown , Diabetes Mellitus, Experimental/genetics , Drugs, Chinese Herbal , Fibronectins , Glucose , Lipid Metabolism , Lipid Metabolism DisordersABSTRACT
Abstract Potent signaling agents stimulate and guide pulp tissue regeneration, especially in endodontic treatment of teeth with incomplete root formation. Objective This study evaluated the bioactive properties of low concentrations of extracellular matrix proteins on human apical papilla cells (hAPCs). Methodology Different concentrations (1, 5, and 10 µg/mL) of fibronectin (FN), laminin (LM), and type I collagen (COL) were applied to the bottom of non-treated wells of sterilized 96-well plates. Non-treated and pre-treated wells were used as negative (NC) and positive (PC) controls. After seeding the hAPCs (5×103 cells/well) on the different substrates, we assessed the following parameters: adhesion, proliferation, spreading, total collagen/type I collagen synthesis and gene expression (ITGA5, ITGAV, COL1A1, COL3A1) (ANOVA/Tukey; α=0.05). Results We observed greater attachment potential for cells on the FN substrate, with the effect depending on concentration. Concentrations of 5 and 10 µg/mL of FN yielded the highest cell proliferation, spreading and collagen synthesis values with 10 µg/mL concentration increasing the ITGA5, ITGAV, and COL1A1 expression compared with PC. LM (5 and 10 µg/mL) showed higher bioactivity values than NC, but those were lower than PC, and COL showed no bioactivity at all. Conclusion We conclude that FN at 10 µg/mL concentration exerted the most intense bioactive effects on hAPCs.
Subject(s)
Humans , Extracellular Matrix Proteins , Fibronectins , Cell Adhesion , Cells, Cultured , Laminin , Collagen Type I , Extracellular MatrixABSTRACT
ABSTRACT Purpose: To measure humor heat-shock protein 70, periostin, and irisin levels in patients with pseudoexfoliation syndrome and cataract (without glaucoma), and compare them with those of patients with cataract but without pseudoexfoliation. Methods: We examined 31 eyes of 31 patients with pseudoexfoliation and cataract (without glaucoma) and 30 eyes of 30 patients with cataract. We collected aqueous humor samples from all patients at the time of cataract surgery through a limbal paracentesis via a 25-gauge cannula mounted on a tuberculin syringe that received 100 to 150 µL of aqueous humor. We measured levels of aqueous humor Heat shock protein 70, periostin, and irisin using enzyme-linked immunosorbent assay methods. Results: The age (p=0.221) and gender (p=0.530) means were similar between the pseudoexfoliation and control groups. The mean Heat shock protein 70 level (29.22 ± 9.46 ng/mL; 17.88-74.46) in the pseudoexfoliation group was significantly higher than that in the control group (19.03 ± 7.05 ng/mL; 9.93-35.52; p<0.0001). The mean periostin level was significantly higher (6017.32 ± 1271.79 pg/mL; 3787.50-10803.57) in the pseu doexfoliation group than that in the control group (4073.63 ± 1422.79 pg/mL; 2110.44-7490.64; p<0.0001). The mean irisin level (53.77 ± 10.19 ng/mL; 29.46-71.16) was significantly higher than that in the control group (39.29 ± 13.58 ng/mL; 19.41-70.56; p<0.0001). Conclusions: Heat shock protein 70, periostin, and irisin levels increase in the aqueous humor of patients with pseudoexfoliation without glaucoma.
RESUMO Objetivo: Comparar os níveis de proteína de choque térmico 70, de periostina e de irisina no humor aquoso de pacientes com pseudoexfoliação com catarata sem glaucoma e compará-los com pacientes com catarata sem pseudoexfoliação. Métodos: Trinta e um olhos de 31 pacientes com pseudoexfoliação com catarata sem glaucoma e 30 olhos de 30 indivíduos com catarata foram incluídos neste estudo. Amostras de humor aquoso foram coletadas de todos os pacientes no momento da cirurgia de catarata e obtidas através de uma paracentese límbica por meio de uma cânula de calibre 25 acoplada a uma seringa com tuberculina. Foram coletados 100 a 150 µL de humor aquoso. Os níveis de proteína de choque térmico 70, de periostina e de irisina no humor aquoso foram medidos usando o método de ensaio imunossorvente ligado a enzima. Resultados: A média da idade (p=0,221) e sexo (p=0,530) foram semelhantes entre os grupos pseudoexfoliação e controle. Os níveis médios de proteína de choque térmico 70 foram 29,22 ± 9,46 ng/mL (17,88-74,46) e 19,03 ± 7,05 ng/ mL (9,93-35,52) nos grupos pseudoexfoliação e controle, respectivamente. Os níveis de proteína de choque térmico 70 foram maiores no grupo pseudoexfoliação (p<0,0001). O nível médio de periostina foi de 6017,32 ± 1271,79 pg/mL (3787,50-10803,57) no grupo pseudoexfoliação e 4073,63 ± 1422,79 pg/mL (2110,44-7490,64) no grupo controle. O nível médio de periostina também foi maior no grupo pseudoexfoliação (p<0,0001). Os níveis médios de irisina foram 53,77 ± 10,19 ng/mL (29,46-71,16) e 39,29 ± 13,58 ng/mL (19,41-70,56) nos grupos pseudoexfoliação e controle, respectivamente. O nível médio de irisina foi maior no grupo pseudoexfoliação do que no grupo controle (p<0,0001). Conclusões: Os níveis de proteína de choque térmico 70, de periostina e de irisina aumentam no humor aquoso de pacientes com pseudoexfoliação sem glaucoma.
Subject(s)
Humans , Aqueous Humor , Cataract , Cell Adhesion Molecules , Glaucoma , Fibronectins , Exfoliation Syndrome , HSP70 Heat-Shock Proteins , Enzyme-Linked Immunosorbent Assay , Cell Adhesion Molecules/metabolism , Fibronectins/metabolism , Exfoliation Syndrome/metabolism , HSP70 Heat-Shock Proteins/metabolismABSTRACT
ABSTRACT Objective Autonomic nervous system, especially the sympathetic nervous system, may stimulate the expression of peroxisome proliferator-activated receptor γ coactivator-1α, which regulates irisin. This study aimed to explore whether there was any association between autonomic function as assessed by heart rate related indices and irisin release following acute exercise. Subjects and methods Seventeen healthy adults were asked to perform an incremental exhaustive cycling as well as an incremental exhaustive running separately on different days. Heart rate was monitored, and blood samples were collected before, immediately, 10-, and 60-minutes post-exercise. Serum irisin was measured using ELISA kit. Results Markers for autonomic function, such as heart rate at rest, peak, or recovery, heart rate reserve, heart rate recovery, and chronotropic index, were comparable between cycling and running (all P > 0.10). Irisin was increased immediately following both exercise. No significant association was observed between heart rate at rest, peak, or recovery and irisin level at the corresponding time-point, as well as between heart rate reserve, heart rate recovery, or chronotropic index and exercise induced irisin release, with or without controlling for age, body mass index, and glucose (all P > 0.10). Conclusions Autonomic function might not be associated with irisin release in healthy adults. Arch Endocrinol Metab. 2020;64(3):201-4
Subject(s)
Humans , Male , Female , Adult , Young Adult , Running/physiology , Autonomic Nervous System/physiology , Autonomic Nervous System/blood supply , Fibronectins/blood , Heart Rate/physiology , Enzyme-Linked Immunosorbent Assay , Random Allocation , Cross-Over StudiesABSTRACT
ABSTRACT Background: Renal replacement therapy continues to be related to high hospitalization rates and poor quality of life. All-cause morbidity and mortality in renal replacement therapy in greater than 20% per year, being 44 times greater when diabetes is present, and over 10 times that of the general population. Regardless of treatment, the 5-year survival is 40%, surpassing many types of cancers. Irisin is a hormone that converts white adipose tissue into beige adipose tissue, aggregating positive effects like fat mass control, glucose tolerance, insulin resistance, prevention of muscle loss, and reduction in systemic inflammation. Objectives: To determine the serum levels of troponin I in hemodialysis patients submitted to remote ischemic preconditioning (RIPC) associated with irisin expression. Methods: This was a prospective, randomized, double-blind clinical trial with patients with chronic kidney disease submitted to hemodialysis for a 6-month period. Troponin I, IL-6, urea, TNF-α, and creatinine levels were determined from blood samples. The expressions of irisin, thioredoxin, Nf-kb, GPX4, selenoprotein and GADPH were also evaluated by RT-PCR. Results: Samples from 14 hypertensive patients were analyzed, 9 (64.3%) of whom were type 2 diabetics, aged 44-64 years, and 50% of each sex. The difference between pre- and post-intervention levels of troponin I was not significant. No differences were verified between the RIPC and control groups, except for IL-6, although a significant correlation was observed between irisin and troponin I. Conclusion: Remote ischemic preconditioning did not modify irisin or troponin I expression, independent of the time of collection.
RESUMO Introdução: A terapia de substituição renal continua associada a altas taxas de hospitalização e baixa qualidade de vida. A morbimortalidade por todas as causas na terapia de substituição renal é superior a 20% ao ano, sendo 44 vezes maior quando a diabetes está presente e mais de 10 vezes a da população em geral. Independentemente do tratamento, a sobrevida em 5 anos é de 40%, superando muitos tipos de câncer. A irisina é um hormônio que converte tecido adiposo branco em tecido adiposo bege, agregando efeitos positivos como o controle de massa gorda, tolerância à glicose, resistência à insulina, prevenção de perda muscular e redução da inflamação sistêmica. Objetivos: Determinar os níveis séricos de troponina I em pacientes em hemodiálise submetidos ao pré-condicionamento isquêmico remoto (PCIR) associado à expressão da irisina. Métodos: Estudo clínico prospectivo, randomizado, duplo-cego, com pacientes com doença renal crônica submetidos à hemodiálise por um período de 6 meses. Os níveis de troponina I, IL-6, uréia, TNF-α e creatinina foram determinados a partir de amostras de sangue. As expressões de irisina, tioredoxina, Nf-kb, GPX4, selenoproteína e GADPH foram também avaliadas por RT-PCR. Resultados: Foram analisadas amostras de 14 pacientes hipertensos, 9 (64,3%) dos quais eram diabéticos tipo 2, com idades entre 44 e 64 anos e 50% de cada gênero. A diferença entre os níveis pré e pós-intervenção de troponina I não foi significativa. Não houve diferenças entre os grupos PCIR e controle, exceto pela IL-6, embora tenha sido observada correlação significativa entre irisina e troponina I. Conclusão: O pré-condicionamento isquêmico remoto não modificou a expressão de irisina ou troponina I, independentemente do tempo de coleta.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Renal Dialysis , Fibronectins/blood , Troponin I/blood , Ischemic Preconditioning/adverse effects , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/therapy , Quality of Life , Biomarkers/blood , Pilot Projects , Double-Blind Method , Prospective Studies , Follow-Up Studies , Treatment Outcome , Ischemic Preconditioning/methodsABSTRACT
Epithelial-mesenchymal transition (EMT) is involved in both physiological and pathological processes. EMT plays an essential role in the invasion, migration and metastasis of tumours. Autophagy has been shown to regulate EMT in a variety of cancers but not in head and neck squamous cell carcinoma (HNSCC). Herein, we investigated whether autophagy also regulates EMT in HNSCC. Analyses of clinical data from three public databases revealed that higher expression of fibronectin-1 (FN1) correlated with poorer prognosis and higher tumour pathological grade in HNSCC. Data from SCC-25 cells demonstrated that rapamycin and Earle's balanced salt solution (EBSS) promoted autophagy, leading to increased FN1 degradation, while 3-methyladenine (3-MA), bafilomycin A1 (Baf A1) and chloroquine (CQ) inhibited autophagy, leading to decreased FN1 degradation. On the other hand, autophagic flux was blocked in BECN1 mutant HNSCC Cal-27 cells, and rapamycin did not promote autophagy in Cal-27 cells; also in addition, FN1 degradation was inhibited. Further, we identified FN1 degradation through the lysosome-dependent degradation pathway using the proteasome inhibitor MG132. Data from immunoprecipitation assays also showed that p62/SQSTM1 participated as an autophagy adapter in the autophagy-lysosome pathway of FN1 degradation. Finally, data from immunoprecipitation assays demonstrated that the interaction between p62 and FN1 was abolished in p62 mutant MCF-7 and A2780 cell lines. These results indicate that autophagy significantly promotes the degradation of FN1. Collectively, our findings clearly suggest that FN1, as a marker of EMT, has adverse effects on HNSCC and elucidate the autophagy-lysosome degradation mechanism of FN1.