ABSTRACT
OBJECTIVE@#To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms.@*METHODS@#A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation.@*RESULTS@#FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation.@*CONCLUSION@#BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.
Subject(s)
Humans , Berberine/pharmacology , Cholesterol , Forkhead Box Protein O1/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Sirtuin 1/genetics , Sterol Regulatory Element Binding ProteinsABSTRACT
Physalin B (PB), one of the major active steroidal constituents of Solanaceae Physalis plants, has a wide variety of biological activities. We found that PB significantly down-regulated β-amyloid (Aβ) secretion in N2a/APPsw cells. However, the underlying mechanisms are not well understood. In the current study, we investigated the changes in key enzymes involved in β-amyloid precursor protein (APP) metabolism and other APP metabolites by treating N2a/APPsw cells with PB at different concentrations. The results indicated that PB reduced Aβ secretion, which was caused by down-regulation of β-secretase (BACE1) expression, as indicated at both the protein and mRNA levels. Further research revealed that PB regulated BACE1 expression by inducing the activation of forkhead box O1 (FoxO1) and inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). In addition, the effect of PB on BACE1 expression and Aβ secretion was reversed by treatment with FoxO1 siRNA and STAT3 antagonist S3I-201. In conclusion, these data demonstrated that PB can effectively down-regulate the expression of BACE1 to reduce Aβsecretion by activating the expression of FoxO1 and inhibiting the phosphorylation of STAT3.