ABSTRACT
The GATOR1 complex is located at the upstream of the mTOR signal pathway and can regulate the function of mTORC1. Genetic variants of the GATOR1 complex are closely associated with epilepsy, developmental delay, cerebral cortical malformation and tumor. This article has reviewed the research progress in diseases associated with genetic variants of the GATOR1 complex, with the aim to provide a reference for the diagnosis and treatment of such patients.
Subject(s)
Humans , GTPase-Activating Proteins/metabolism , Signal Transduction/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Epilepsy/genetics , NeoplasmsABSTRACT
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Subject(s)
Animals , Humans , Mice , Apoptosis , Caspase 8/metabolism , GTPase-Activating Proteins/metabolism , HEK293 Cells , Mice, Knockout , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolismABSTRACT
BACKGROUND: Recent studies have confirmed that RASAL1 has an antitumor effect in many cancers, but its functional role and the molecular mechanism underlying in colon cancer has not been investigated. RESULTS: We collected human colon cancer tissues and adjacent non-tumor tissues, human colon cancer cell lines LoVo, CaCo2, SW1116, SW480 and HCT-116, and normal colonic mucosa cell line NCM460. RT-qPCR was used to detect the RASAL1 level in the clinical tissues and cell lines. In LoVo and HCT-116, RASAL1 was artificially overexpressed. Cell viability and proliferation were measured using CCK-8 assays, and cell cycle was detected via PI staining and flow cytometry analysis. RASAL1 significantly inhibited the cell proliferation via inducing cell cycle arrest, suppressed cell cycle associated protein expression, and decreased the lipid content and inhibited the SCD1 expression. Moreover, SCD1 overexpression induced and downregulation repressed cell proliferation by causing cell cycle arrest. Additionally, luciferase reporter assays were performed to confirm the direct binding between SREBP1c, LXRα; and SCD1 promoter, we also demonstrated that RASAL1 inhibit SCD1 3'-UTR activity. RASAL1 inhibited tumor growth in xenograft nude mice models and shows inhibitory effect of SCD1 expression in vivo. CONCLUSION: Taken together, we concluded that RASAL1 inhibited colon cancer cell proliferation via modulating SCD1 activity through LXRα/SREBP1c pathway.
Subject(s)
Humans , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Colonic Neoplasms/pathology , GTPase-Activating Proteins/metabolism , Cell Proliferation/physiology , Sterol Regulatory Element Binding Protein 1/metabolism , Liver X Receptors/metabolism , Stearoyl-CoA Desaturase/genetics , Down-Regulation , GTPase-Activating Proteins/genetics , Cell Line, Tumor , Sterol Regulatory Element Binding Protein 1/genetics , Liver X Receptors/geneticsABSTRACT
To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6 percent, P < 0.05) and at 72 h (34.5 vs 93.5 percent, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.
Subject(s)
Humans , Male , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Prostatic Neoplasms/metabolism , RNA, Small Interfering/pharmacology , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Insulin-Like Growth Factor I/metabolism , Phosphorylation , Prostatic Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolismABSTRACT
The PyAG1 gene, identified by the screening of a Plasmodium yoelii genomic DNA library with a rhoptry-specific Mab, encodes a protein with a zinc finger structure immediately followed by the consensus sequence of the Arf GAP catalytic site. The serum of mice immunized with the recombinant protein recognized specifically the rhoptries of the late infected erythrocytic stages. Blast analysis using the Genbank database gave the highest scores with four proteins presenting an Arf1 GAP activity. If presenting also this activity, the PyAG1 protein could be involved in the regulation of the secreted protein vesicular transport and, consequently, in the rhoptry biogenesis.