Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | Global Index Medicus
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Protein & Cell ; (12): 316-335, 2022.
Article in English | WPRIM | ID: wpr-929165

ABSTRACT

Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.


Subject(s)
Animals , CRISPR-Cas Systems/genetics , DNA/genetics , Embryo, Mammalian/metabolism , Endonucleases/metabolism , Gene Editing , Mammals/metabolism
2.
Article in English | WPRIM | ID: wpr-929068

ABSTRACT

The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)‍-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5'-NRN-3', 5'-NTA-3', and 5'-NCK-3' could be considered as canonical PAMs. 5'-NCA-3' and 5'-NTK-3' may serve as non-priority PAMs. At the same time, PAM of 5'-NYC-3' is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , DNA , Gene Editing/methods , Humans , Streptococcus pyogenes/metabolism
3.
Article in English | WPRIM | ID: wpr-929063

ABSTRACT

Cucurbitaceae is an important family of flowering plants containing multiple species of important food plants, such as melons, cucumbers, squashes, and pumpkins. However, a highly efficient genetic transformation system has not been established for most of these species (Nanasato and Tabei, 2020). Watermelon (Citrullus lanatus), an economically important and globally cultivated fruit crop, is a model species for fruit quality research due to its rich diversity of fruit size, shape, flavor, aroma, texture, peel and flesh color, and nutritional composition (Guo et al., 2019). Through pan-genome sequencing, many candidate loci associated with fruit quality traits have been identified (Guo et al., 2019). However, few of these loci have been validated. The major barrier is the low transformation efficiency of the species, with only few successful cases of genetic transformation reported so far (Tian et al., 2017; Feng et al., 2021; Wang JF et al., 2021; Wang YP et al., 2021). For example, Tian et al. (2017) obtained only 16 transgenic lines from about 960 cotyledon fragments, yielding a transformation efficiency of 1.67%. Therefore, efficient genetic transformation could not only facilitate the functional genomic studies in watermelon as well as other horticultural species, but also speed up the transgenic and genome-editing breeding.


Subject(s)
CRISPR-Cas Systems , Citrullus/genetics , Cucurbitaceae/genetics , Gene Editing , Plant Breeding , Transformation, Genetic
4.
Article in English | WPRIM | ID: wpr-929045

ABSTRACT

Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.


Subject(s)
Alleles , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing/methods , Recombinational DNA Repair
5.
Article in English | WPRIM | ID: wpr-929040

ABSTRACT

Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.


Subject(s)
Animals , CRISPR-Cas Systems , Cell Line , Gene Editing , Oryzias/genetics , /genetics , RNA, Transfer/genetics
6.
Article in Chinese | WPRIM | ID: wpr-928716

ABSTRACT

OBJECTIVE@#Two sgRNAs transfected FLT3-ITD+AML cell line MV411 with different binding sites were introduced into CRISPR/cas9 to obtain MV411 cells with miR-155 gene knockout. To compare the efficiency of miR-155 gene knockout by single and double sgRNA transfection and their effects on cell phenotypes.@*METHODS@#The lentiviral vectors were generated containing either single sgRNA or dual sgRNAs and packaged into lentivirus particles. PCR was conducted to measure gene editing efficiency, and miR-155 expression was evaluated by qPCR. CCK-8 assay was used to evaluate the cell proliferation, and calculate drug sensitivity of cells to adriamycin and quizartinib. Annexin V-APC/7-AAD staining was used to label cell apoptosis induced by adriamycin and quizartinib.@*RESULTS@#In the dual sgRNAs transfected cells, a cleavage band could be observed, meaning the success of gene editing. Compared with the single sgRNA transfected MV411 cells, the expression level of mature miR-155-5p was lower in the dual sgRNA transfected cells. And, dual sgRNA transfected MV411 were more sensitive to adriamycin and quizartinib with lower IC50 and higher apoptosis rate.@*CONCLUSION@#The inhibition rate of miR-155 gene expression transfected by dual sgRNA is higher than that by single sgRNA. Dual sgRNA transfection can inhibit cell proliferation, reverse drug resistance, and induce apoptosis more significantly. Compared with single sgRNA transfection, dual sgRNA transfection is a highly efficient gene editing scheme.


Subject(s)
CRISPR-Cas Systems , Doxorubicin/pharmacology , Drug Resistance , Gene Editing , Humans , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , /genetics , fms-Like Tyrosine Kinase 3/genetics
7.
Asian Journal of Andrology ; (6): 266-272, 2022.
Article in English | WPRIM | ID: wpr-928525

ABSTRACT

Gene expression analyses suggest that more than 1000-2000 genes are expressed predominantly in mouse and human testes. Although functional analyses of hundreds of these genes have been performed, there are still many testis-enriched genes whose functions remain unexplored. Analyzing gene function using knockout (KO) mice is a powerful tool to discern if the gene of interest is essential for sperm formation, function, and male fertility in vivo. In this study, we generated KO mice for 12 testis-enriched genes, 1700057G04Rik, 4921539E11Rik, 4930558C23Rik, Cby2, Ldhal6b, Rasef, Slc25a2, Slc25a41, Smim8, Smim9, Tmem210, and Tomm20l, using the clustered regularly interspaced short palindromic repeats /CRISPR-associated protein 9 (CRISPR/Cas9) system. We designed two gRNAs for each gene to excise almost all the protein-coding regions to ensure that the deletions in these genes result in a null mutation. Mating tests of KO mice reveal that these 12 genes are not essential for male fertility, at least when individually ablated, and not together with other potentially compensatory paralogous genes. Our results could prevent other laboratories from expending duplicative effort generating KO mice, for which no apparent phenotype exists.


Subject(s)
Animals , CRISPR-Cas Systems/genetics , Fertility/genetics , Gene Editing , Humans , Male , Mice , Mice, Knockout , Testis/metabolism
8.
Chinese Journal of Biotechnology ; (12): 1847-1858, 2022.
Article in Chinese | WPRIM | ID: wpr-927822

ABSTRACT

Myostatin gene (MSTN) encodes a negative regulator for controlling skeletal muscle growth in animals. In this study, MSTN-/- homozygous mutants with "double muscle" phenotypic traits and stable inheritance were bred on the basis of MSTN gene editing rabbits, with the aim to establish a method for breeding homozygous progeny from primary MSTN biallelic mutant rabbits. MSTN-/- primary mutant rabbits were generated by CRISPR/Cas9 gene editing technology. The primary mutant rabbits were mated with wild type rabbits to produce F1 rabbits, whereas the F2 generation homozygous rabbits were bred by half-sibling mating or backcrossing with F1 generation rabbits of the same mutant strain. Sequence analysis of PCR products and its T vector cloning were used to screen homozygous rabbits. The MSTN mutant rabbits with 14-19 week-old were weighed and the difference of gluteus maximus tissue sections and muscle fiber cross-sectional area were calculated and analyzed. Five primary rabbits with MSTN gene mutation were obtained, among which three were used for homozygous breeding. A total of 15 homozygous rabbits (5 types of mutants) were obtained (M2-a: 3; M2-b: 2; M3-a: 2; M7-a: 6; M7-b: 2). The body weight of MSTN-/- homozygous mutant rabbits aged 14-19 weeks were significantly higher than that of MSTN+/+ wild-type rabbits of the same age ((2 718±120) g vs. (1 969±53) g, P < 0.01, a 38.0% increase). The mean cross sections of gluteus maximus muscle fiber in homozygous mutant rabbits were not only significantly higher than that of wild type rabbits ((3 512.2±439.2) μm2 vs. (1 274.8±327.3) μm2, P < 0.01), but also significantly higher than that of MSTN+/- hemizygous rabbits ((3 512.2±439.2) μm2 vs. (2 610.4±604.4) μm2, P < 0.05). In summary, five homozygous mutants rabbits of MSTN-/- gene were successfully bred, which showed a clear lean phenotype. The results showed that the primary breeds were non-chimeric mutant rabbits, and the mutant traits could be inherited from the offspring. MSTN-/- homozygous mutant rabbits of F2 generation could be obtained from F1 hemizygous rabbits by inbreeding or backcrossing. The progenies of the primary biallelic mutant rabbits were separated into two single-allelic mutants, both of which showed a "double-muscle" phenotype. Thus, this study has made progress in breeding high-quality livestock breeds with gene editing technology.


Subject(s)
Animals , CRISPR-Cas Systems/genetics , Gene Editing , Muscle, Skeletal/metabolism , Mutation , Myostatin/metabolism , Phenotype , Rabbits
9.
Chinese Journal of Biotechnology ; (12): 1475-1489, 2022.
Article in Chinese | WPRIM | ID: wpr-927794

ABSTRACT

The diverse thermophilic strains of Thermoanaerobacter, serving as unique platforms with a broad range of application in biofuels and chemicals, have received wide attention from scholars and practitioners. Although biochemical experiments and genome sequences have been reported for a variety of Thermoanaerobacter strains, an efficient genetic manipulation system remains to be established for revealing the biosynthetic pathways of Thermoanaerobacter. In line with this demand, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems for editing, regulating and targeting genomes have been well developed in thermophiles. Here, we reviewed and discussed the current status, associated challenges, and future perspectives of the construction of thermostable CRISPR/Cas9 genome editing systems for some representative Thermoanaerobacter species. The establishment, optimization, and application of thermostable CRISPR/Cas genome editing systems would potentially provide a foundation for further genetic modification of thermophilic bacteria.


Subject(s)
Bacteria/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Genome
10.
Chinese Journal of Biotechnology ; (12): 1446-1461, 2022.
Article in Chinese | WPRIM | ID: wpr-927792

ABSTRACT

Gene editing technology can be used to modify the genome of Escherichia coli for the investigation of gene functions, or to change the metabolic pathways for the efficient production of high-value products in engineered strains with genetic stability. A variety of gene editing technologies have been applied in prokaryotes, such as λ-Red homologous recombination and CRISPR/Cas9. As a traditional gene editing technique, λ-Red recombination is widely used. However, it has a few shortcomings, such as the limited integration efficiency by the integrated fragment size, the cumbersome gene editing process, and the FRT scar in the genome after recombination. CRISPR/Cas9 is widely used for genome editing at specific sites, which requires specific DNA segments according to the editing site. As the understanding of the two technologies deepens, a variety of composite gene editing techniques have been developed, such as the application of λ-Red homologous recombination in combination with homing endonucleaseⅠ-SceⅠ or CRISPR/Cas9. In this review, we summarized the basic principles of common gene editing techniques and composite gene editing techniques, as well as their applications in Escherichia coli, which can provide a basis for the selection of gene editing methods in prokaryotes.


Subject(s)
CRISPR-Cas Systems/genetics , Escherichia coli/genetics , Gene Editing , Homologous Recombination , Technology
11.
Chinese Journal of Biotechnology ; (12): 1074-1085, 2022.
Article in Chinese | WPRIM | ID: wpr-927764

ABSTRACT

To investigate the cellular target selectivity of small molecules targeting thioredoxin reductase 1, we reported the construction and functional research of a stable TrxR1 gene (encode thioredoxin reductase 1) knockout HCT-116 cell line. We designed and selected TrxR1 knockout sites according to the TrxR1 gene sequence and CRISPR/Cas9 target designing principles. SgRNA oligos based on the selected TrxR1 knockout sites were obtained. Next, we constructed knockout plasmid by cloning the sgRNA into the pCasCMV-Puro-U6 vector. After transfection of the plasmid into HCT-116 cells, TrxR1 knockout HCT-116 cells were selected using puromycin resistance. The TrxR1 knockout efficiency was identified and verified by DNA sequencing, immunoblotting, TRFS-green fluorescent probe, and cellular TrxR1 enzyme activity detection. Finally, the correlation between TrxR1 expression and cellular effects of drugs specifically targeting TrxR1 was investigated by CCK-8 assay. The results demonstrated that the knockout plasmid expressing the sgRNA effectively knocked-out TrxR1 gene within HCT-116 cells, and no expression of TrxR1 protein could be observed in stable TrxR1 knockout HCT-116 (HCT116-TrxR1-KO) cells. The TrxR1-targeting inhibitor auranofin did not show any inhibitory activity against either cellular TrxR1 enzyme activity or cell proliferation. Based on these results, we conclude that a stable TrxR1 gene knockout HCT-116 cell line was obtained through CRISPR/Cas9 techniques, which may facilitate investigating the role of TrxR1 in various diseases.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Gene Knockout Techniques , HCT116 Cells , Humans , /metabolism
12.
Chinese Journal of Biotechnology ; (12): 780-795, 2022.
Article in Chinese | WPRIM | ID: wpr-927744

ABSTRACT

As a new CRISPR/Cas-derived genome engineering technology, base editing combines the target specificity of CRISPR/Cas and the catalytic activity of nucleobase deaminase to install point mutations at target loci without generating DSBs, requiring exogenous template, or depending on homologous recombination. Recently, researchers have developed a variety of base editing tools in the important industrial strain Corynebacterium glutamicum, and achieved simultaneous editing of two and three genes. However, the multiplex base editing based on CRISPR/Cas9 is still limited by the complexity of multiple sgRNAs, interference of repeated sequence and difficulty of target loci replacement. In this study, multiplex base editing in C. glutamicum was optimized by the following strategies. Firstly, the multiple sgRNA expression cassettes based on individual promoters/terminators was optimized. The target loci can be introduced and replaced rapidly by using a template plasmid and Golden Gate method, which also avoids the interference of repeated sequence. Although the multiple sgRNAs structure is still complicated, the editing efficiency of this strategy is the highest. Then, the multiple gRNA expression cassettes based on Type Ⅱ CRISPR crRNA arrays and tRNA processing were developed. The two strategies only require one single promoter and terminator, and greatly simplify the structure of the expression cassette. Although the editing efficiency has decreased, both methods are still applicable. Taken together, this study provides a powerful addition to the genome editing toolbox of C. glutamicum and facilitates genetic modification of this strain.


Subject(s)
CRISPR-Cas Systems/genetics , Corynebacterium glutamicum/metabolism , Gene Editing , Plasmids , /metabolism
13.
Chinese Journal of Biotechnology ; (12): 719-736, 2022.
Article in Chinese | WPRIM | ID: wpr-927739

ABSTRACT

Gluconobacter oxydans are widely used in industrial due to its ability of oxidizing carbohydrate rapidly. However, the limited gene manipulation methods and less of efficient gene editing tools impose restrictions on its application in industrial production. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been widely used in genome editing and transcriptional regulation which improves the efficiency of genome editing greatly. Here we constructed a CRISPR/dCpf1-mediated gene transcriptional repression system, the expression of a nuclease inactivation Cpf1 protein (dCpf1) in Gluconobacter oxydans together with a 19 nt direct repeats showed effective repression in gene transcription. This system in single gene repression had strong effect and the relative repression level had been increased to 97.9%. While it could be applied in multiplex gene repression which showed strong repression ability at the same time. Furthermore, this system was used in the metabolic pathway of L-sorbose and the regulatory of respiratory chain. The development of CRISPR transcriptional repression system effectively covered the shortage of current gene regulation methods in G. oxydans and provided an efficient gene manipulation tool for metabolic engineering modification in G. oxydans.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Gene Expression , Gluconobacter oxydans/genetics , Metabolic Engineering
14.
Chinese Journal of Biotechnology ; (12): 478-505, 2022.
Article in Chinese | WPRIM | ID: wpr-927723

ABSTRACT

Yarrowia lipolytica, as an important oleaginous yeast, has been widely used in metabolic engineering. Y. lipolytica is considered as an ideal host for the production of natural products such as terpenes, polyketides and flavonoids, due to its ability to utilize a variety of hydrophobic substrates, high stress tolerance to acid and salt, high flux of tricarboxylic acid cycle and the ability in providing abundant the common precursor acetyl-CoA. Recently, more and more tools for genetic editing, gene expression and regulation has been developed in Y. lipolytica, which facilitate the metabolic engineering of Y. lipolytica for bio-manufacturing. In this review, we summarized the recent progresses in developing gene expression and natural product synthesis in Y. lipolytica, and also discussed the challenges and possible solutions in heterologous synthesis of natural products in this yeast.


Subject(s)
Biological Products/metabolism , Gene Editing , Metabolic Engineering , Polyketides/metabolism , Yarrowia/metabolism
15.
Article in Chinese | WPRIM | ID: wpr-927690

ABSTRACT

The CRISPR/Cas9 based prime editing (PE) technique enables all 12 types of base substitutions and precise small DNA deletions or insertions without generating DNA double-strand breaks. Prime editing has been successfully applied in plants and plays important roles in plant precision breeding. Although plant prime editing (PPE) can substantially expand the scope and capabilities of precise genome editing in plants, its editing efficiency still needs to be further improved. Here, we review the development of PPE technique, and introduce structural composition, advantages and limitations of PPE. Strategies to improve the PPE editing efficiency, including the Tm-directed PBS length design, the RT template length, the dual-pegRNA strategy, the PlantPegDesigner website, and the strategies for optimizing the target proteins of PPE, were highlighted. Finally, the prospects of future development and application of PPE were discussed.


Subject(s)
CRISPR-Cas Systems/genetics , DNA , Gene Editing , Genome, Plant/genetics , Plant Breeding , Plants/genetics
16.
Pers. bioet ; 25(2): e2529, jul.-dic. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1386797

ABSTRACT

Resumen El sistema CRISPR-Cas9 es una tecnología de edición genética que, además de ampliar las posibilidades en investigación científica, despierta reflexiones asociadas a la dignidad humana, el control biológico, la terapia y la mejora genética. Se revisaron las discusiones bioéticas asociadas a los desafíos y las repercusiones que suscita su aplicación. Como resultado, los cuestionamientos bioéticos tienden a problematizar la aplicación en organismos no humanos, en la investigación básica y en la línea somática y germinal humana. Para concluir, falta incrementar los niveles de seguridad y efectividad para que los beneficios superen los riesgos y, de esta forma, sea posible disminuir las preocupaciones bioéticas y aumentar la credibilidad en el uso de la técnica.


Abstract The CRISPR-Cas9 system is a genetic editing technology that, in addition to expanding the possibilities for scientific research, promotes reflections associated with human dignity, biological control, therapy, and genetic improvement. Bioethical discussions on the challenges and repercussions of the CRISPR-Cas9 system are reviewed. As a result, bioethical questions tend to problematize the application to non-human organisms, primary research, and the human somatic and germline. In brief, it is necessary to increase the levels of safety and effectiveness so that the benefits outweigh the risks, while reducing bioethical concerns and increasing the credibility of the technique.


Resumo O sistema CRISPR-Cas9 é uma tecnologia de edição de genes que, além de ampliar as possibilidades em pesquisa científica, desperta reflexões associadas com a dignidade humana, o controle biológico, a terapia e o aperfeiçoamento genético. Foram revisadas as discussões bioéticas relacionadas aos desafios e às repercussões que sua aplicação suscita. Como resultado, os questionamentos bioéticos tendem a problematizar a aplicação em organismos não humanos, na pesquisa básica e na linhagem somática e germinativa humana. Para concluir, falta aumentar os níveis de segurança e efetividade para que os benefícios sejam maiores do que os riscos, e assim, seja possível diminuir as preocupações bioéticas e aumentar a credibilidade no uso da técnica.


Subject(s)
Safety , Effectiveness , Risk Assessment , Bioethical Issues , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing
17.
Electron. j. biotechnol ; 52: 59-66, July. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1283592

ABSTRACT

BACKGROUND: Many human genetic diseases arise from point mutations. These genetic diseases can theoretically be corrected through gene therapy. However, gene therapy in clinical application is still far from mature. Nearly half of the pathogenic single-nucleotide polymorphisms (SNPs) are caused by G:C>A:T or T:A>C:G base changes and the ideal approaches to correct these mutations are base editing. These CRISPR-Cas9-mediated base editing does not leave any footprint in genome and does not require donor DNA sequences for homologous recombination. These base editing methods have been successfully applied to cultured mammalian cells with high precision and efficiency, but BE4 has not been confirmed in mice. Animal models are important for dissecting pathogenic mechanism of human genetic diseases and testing of base correction efficacy in vivo. Cytidine base editor BE4 is a newly developed version of cytidine base editing system that converts cytidine (C) to uridine (U). RESULTS: In this study, BE4 system was tested in cells to inactivate GFP gene and in mice to introduce single-base substitution that would lead to a stop codon in tyrosinase gene. High percentage albino coat-colored mice were obtained from black coat-colored donor zygotes after pronuclei microinjection. Sequencing results showed that expected base changes were obtained with high precision and efficiency (56.25%). There are no off-targeting events identified in predicted potential off-target sites. CONCLUSIONS: Results confirm BE4 system can work in vivo with high precision and efficacy, and has great potentials in clinic to repair human genetic mutations.


Subject(s)
Animals , Mice , Adenosine Deaminase , Cytosine , CRISPR-Cas Systems , Gene Editing/methods , Base Sequence , Blotting, Western , Models, Animal , Real-Time Polymerase Chain Reaction , Mutation
18.
Acta bioeth ; 27(1): 49-57, jun. 2021.
Article in English | LILACS-Express | LILACS | ID: biblio-1383244

ABSTRACT

Abstract: 13. In recent years, gene editing is increasingly used as one of the technical means to solve public health problems. The great progress made in the field of life science and gene-editing technology has made it possible for humans to control and alter human physiological characteristics through gene-editing technology and created a broad application prospect for this technology. However, gene-editing technology has faced with many significant ethical risks, and human gene editing experiments have been banned for a long time in the past. Realistic technological breakthroughs and the emergence of real cases force the ethics circle to re-examine this issue. Through the analysis and trade-off of the potential benefits and ethical risks of human gene-editing technology, it can be found that different applications of human gene editing for different purposes are considered to have different acceptability. Among them, human gene editing for medical purposes has no fundamental moral barriers, human gene editing for purposes of enhancement cannot be allowed by ethics and reality in the current social environment, and human gene editing for purposes of transformation fundamentally violates ethical norms. Therefore, gene editing can be allowed if it is only used to solve human medical and public health problems.


Resumen: 17. En años recientes, se usa cada vez más la edición génica como medio técnico para resolver problema de salud pública. El gran progreso realizado en el campo de las ciencias de la vida y la tecnología de edición génica ha hecho posible que el ser humano controle y altere las características fisiológicas humanas, usando esta tecnología y abriéndose una amplia perspectiva de aplicación. Sin embargo, esta tecnología enfrenta problemas éticos significativos, y los experimentos de edición génica en humanos han sido prohibidos por mucho tiempo en el pasado. Los avances tecnológicos realistas y la emergencia de casos reales ejerce presión sobre el círculo de reflexión ética para volver a examinar el tema. Mediante el análisis y balance de los potenciales beneficios y riesgos éticos de la tecnología de edición génica, se puede encontrar que las diferentes aplicaciones de ésta tecnología, para propósitos diferentes, tienen distinta aceptabilidad. Entre ellos, el uso de edición génica para propósitos médicos no tiene barreras morales fundamentales; la edición génica humana para propósitos de mejoramiento no debería permitirse en la realidad social actual, y la edición génica humana para propósitos de transformación viola fundamentalmente las normas éticas. Por lo tanto, la edición génica podría permitirse solamente para resolver problemas médicos y de salud pública en humanos.


Resumo: 21. Em anos recentes, a edição de genes é cada vez mais usada como um recurso técnico para resolver problemas de saúde pública. O grande progresso feito no campo das ciências da vida e da tecnologia de edição de genes tornou possível para os humanos controlarem e alterarem as características fisiológicas humanas através da tecnologia da edição de genes e criou uma ampla perspectiva de aplicação para esta tecnologia. Entretanto, a tecnologia de edição de genes enfrentou muitos riscos éticos significativos e os experimentos de edição de genes humanos foram banidos por muito tempo no passado. Avanços tecnológicos realísticos e a emergência de casos reais forçaram o círculo ético a reexaminar esta questão. Através da análise e do equilíbrio entre os benefícios potenciais e riscos éticos da tecnologia de edição de genes humanos, pode ser encontrado que diferentes aplicações da edição de genes humanos para diferentes propósitos são consideradas ter diferentes aceitações. Dentre elas, a edição de genes humanos com objetivos médicos não tem barreiras morais fundamentais, edição de genes humanos objetivando aprimoramento não pode ser permitida pela ética e realidade do ambiente social atual, e edição de genes humanos objetivando transformação fundamentalmente viola normas éticas. Portanto, edição de genes pode ser permitida somente se usada para resolver problemas médicos humanos e de saúde pública.


Subject(s)
Humans , Bioethics , Technological Development , Public Health , Gene Editing
19.
Article in Chinese | WPRIM | ID: wpr-879256

ABSTRACT

The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA


Subject(s)
Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , /genetics , Swine
20.
Chinese Journal of Biotechnology ; (12): 4342-4350, 2021.
Article in Chinese | WPRIM | ID: wpr-921510

ABSTRACT

The CRISPR/Cas9 gene editing system has been widely used in basic research, gene therapy and genetic engineering due to its high efficiency, fast speed and convenience. Meanwhile, the discovery of novel CRISPR/Cas systems in the microbial community also accelerated the emergence of novel gene editing tools. CRISPR/Cpf1 is the second type (V type) CRISPR system that can edit mammalian genome. Compared with the CRISPR/Cas9, CRISPR/Cpf1 can use 5'T-PAM rich region to increase the genome coverage, and has many advantages, such as sticky end of cleavage site and less homologous recombination repair. Here we constructed three CRISPR/Cpf1 (AsCpf1, FnCpf1 and LbCpf1) expression vectors in silkworm cells. We selected a highly conserved BmHSP60 gene and an ATPase family BmATAD3A gene to design the target gRNA, and constructed gHSP60-266 and gATAD3A-346 knockout vectors. The efficiency for editing the target genes BmATAD3A and BmHSP60 by AsCpf1, FnCpf1 and LbCpf1 were analyzed by T7E1 analysis and T-clone sequencing. Moreover, the effects of target gene knockout by different gene editing systems on the protein translation of BmHSP60 and BmATAD3A were analyzed by Western blotting. We demonstrate the CRISPR/Cpf1 gene editing system developed in this study could effectively edit the silkworm genome, thus providing a novel method for silkworm gene function research, genetic engineering and genetic breeding.


Subject(s)
Animals , Bombyx/metabolism , CRISPR-Cas Systems/genetics , Endonucleases/genetics , Gene Editing , /genetics
SELECTION OF CITATIONS
SEARCH DETAIL