Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Biol. Res ; 53: 18, 2020. tab, graf
Article in English | LILACS | ID: biblio-1124204

ABSTRACT

BACKGROUND: Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. METHODS: DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. RESULTS: We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. CONCLUSIONS: These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation , Apoptosis/drug effects , MicroRNAs/antagonists & inhibitors , Cell Line, Tumor , Gene Knockout Techniques/methods , Sirtuin 1/antagonists & inhibitors , Real-Time Polymerase Chain Reaction , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
2.
Braz. j. med. biol. res ; 52(12): e8934, 2019. graf
Article in English | LILACS | ID: biblio-1055468

ABSTRACT

Baicalein (BAI) is an acknowledged flavonoids compound, which is regarded as a useful therapeutic pharmaceutical for numerous cancers. However, its involvement in melanoma is largely unknown. This study aimed to examine the anti-melanoma function of BAI and unraveled the regulatory mechanism involved. A375 and SK-MEL-28 were treated with BAI for 24 h. Then, CCK-8 assay, flow cytometry, and transwell assay were carried out to investigate cell growth, migration, and invasion. RT-qPCR was applied to detect the expression of colon cancer associated transcript-1 (CCAT1) in melanoma tissues and cells. The functions of CCAT1 in melanoma cells were also evaluated. Western blot was utilized to appraise Wnt/β-catenin or MEK/ERK pathways. BAI restrained cell proliferation and stimulated cell apoptotic capability of melanoma by suppressing cleaved-caspase-3 and cleaved-PARP. Cell migratory and invasive abilities were restrained by BAI via inhibiting MMP-2 and vimentin. CCAT1 was over-expressed in melanoma tissues and down-regulated by BAI in melanoma cells. Overexpressed CCAT1 reversed the BAI-induced anti-growth, anti-migratory, and anti-invasive effects. Furthermore, BAI inhibited Wnt/β-catenin and MEK/ERK pathways-axis via regulating CCAT1. Our study indicated that BAI blocked Wnt/β-catenin and MEK/ERK pathways via regulating CCAT1, thereby inhibiting melanoma cell proliferation, migration, and invasion.


Subject(s)
Humans , Gene Expression Regulation, Neoplastic/drug effects , Flavanones/pharmacology , RNA, Long Noncoding/metabolism , Melanoma/pathology , Down-Regulation/drug effects , Cell Movement/drug effects , Blotting, Western , Reverse Transcriptase Polymerase Chain Reaction , Cell Line, Tumor , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Neoplasm Invasiveness
3.
Braz. j. med. biol. res ; 52(10): e8385, 2019. graf
Article in English | LILACS | ID: biblio-1039242

ABSTRACT

Malignant melanoma (MM) is one of the malignant tumors with highly metastatic and aggressive biological actions. Schizandrin A (SchA) is a bioactive lignin compound with strong anti-oxidant and anti-aging properties, which is stable at room temperature and is often stored in a cool dry place. Hence, we investigated the effects of SchA on MM cell line A375 and its underlying mechanism. A375 cells were used to construct an in vitro MM cell model. Cell viability, proliferation, apoptosis, and migration were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell two-chamber assay, respectively. The cell cycle-related protein cyclin D1 and cell apoptotic proteins (Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9) were analyzed by western blot. Alteration of H19 expression was achieved by transfecting with pEX-H19. PI3K/AKT pathway was measured by detecting phosphorylation of PI3K and AKT. SchA significantly decreased cell viability in a dose-dependent manner. Furthermore, SchA inhibited cell proliferation and cyclin D1 expression. SchA increased cell apoptosis along with the up-regulation of pro-apoptotic proteins (cleaved-caspase-3, cleaved-caspase-9, and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Besides, SchA decreased migration and down-regulated matrix metalloproteinases (MMP)-2 and MMP-9. SchA down-regulated lncRNA H19. Overexpression of H19 blockaded the inhibitory effects of SchA on A375 cells. SchA decreased the phosphorylation of PI3K and AKT while H19 overexpression promoted the phosphorylation of PI3K and AKT. SchA inhibited A375 cell growth, migration, and the PI3K/AKT pathway through down-regulating H19.


Subject(s)
Humans , Polycyclic Compounds/pharmacology , Down-Regulation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Lignans/pharmacology , Cyclooctanes/pharmacology , Cell Proliferation/drug effects , Melanoma/pathology , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Blotting, Western , MicroRNAs/metabolism , Cell Line, Tumor , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding
4.
Braz. j. med. biol. res ; 52(6): e8132, 2019. tab, graf
Article in English | LILACS | ID: biblio-1001537

ABSTRACT

The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-β/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.


Subject(s)
Animals , Female , Rats , Uterine Neoplasms/drug therapy , Plant Extracts/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Curcuma/chemistry , Rhizome/chemistry , Leiomyoma/drug therapy , Transcription Factors , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Radioimmunoassay , Rats, Sprague-Dawley , Oligonucleotide Array Sequence Analysis , Disease Models, Animal , Leiomyoma/genetics , Leiomyoma/metabolism
5.
Biol. Res ; 52: 13, 2019. graf
Article in English | LILACS | ID: biblio-1011415

ABSTRACT

BACKGROUND: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. METHODS: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 µM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 µM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. RESULTS: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. CONCLUSION: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/3-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Carboplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Transcriptome/drug effects , Antineoplastic Agents/pharmacology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Phenotype , Signal Transduction , Cell Death/drug effects , Cell Death/genetics , Sequence Analysis, RNA , Cell Line, Tumor , Transcriptome/genetics
6.
Biol. Res ; 51: 18, 2018. tab, graf
Article in English | LILACS | ID: biblio-950904

ABSTRACT

BACKGROUND: Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS: The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS: Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION: The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.


Subject(s)
Humans , Oxides/pharmacology , Arsenicals/pharmacology , Membrane Glycoproteins/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Receptor, trkB/drug effects , Cell Proliferation/drug effects , Cell Cycle Checkpoints/drug effects , Neuroblastoma/metabolism , Membrane Glycoproteins/metabolism , Receptor, trkB/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Arsenic Trioxide , Neuroblastoma/pathology
7.
Braz. j. med. biol. res ; 50(1): e5794, 2017. graf
Article in English | LILACS | ID: biblio-839241

ABSTRACT

Propofol is a frequently used intravenous anesthetic agent. Recent studies show that propofol exerts a number of non-anesthetic effects. The present study aimed to investigate the effects of propofol on lung cancer cell lines H1299 and H1792 and functional role of microRNA (miR)-486 in these effects. H1299 and/or H1792 cells were treated with or without propofol and transfected or not with miR-486 inhibitor, and then cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry. The expression of miR-486 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) with or without propofol treatment. Western blot was performed to analyze the protein expression of Forkhead box, class O (FOXO) 1 and 3, Bcl-2 interacting mediator of cell death (Bim), and pro- and activated caspases-3. Results showed that propofol significantly increased the miR-486 levels in both H1299 and H1792 cells compared to untreated cells in a dose-dependent manner (P<0.05 or P<0.01). Propofol statistically decreased cell viability but increased the percentages of apoptotic cells and protein expressions of FOXO1, FOXO3, Bim, and pro- and activated caspases-3; however, miR-486 inhibitor reversed the effects of propofol on cell viability, apoptosis, and protein expression (P<0.05 or P<0.01). In conclusion, propofol might be an ideal anesthetic for lung cancer surgery by effectively inhibiting lung cancer cell viability and inducing cell apoptosis. Modulation of miR-486 might contribute to the anti-tumor activity of propofol.


Subject(s)
Humans , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Propofol/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Real-Time Polymerase Chain Reaction
8.
Biol. Res ; 50: 36, 2017. graf
Article in English | LILACS | ID: biblio-950884

ABSTRACT

BACKGROUND: Melanoma took top position among the lethal cancers and, despite there have been some great attempts made to increase the natural life of patients with metastatic disease, long-lasting and complete remissions are few. Piceatannol, owns the similar function as resveratrol, has been defined as an anti-cancer agent playing important role in inhibition of proliferation, migration and metastasis in various cancer. Thus, we aim to investigate the anti-cancer effect and mechanisms of piceatannol in melanoma cells. METHODS: Melanoma cell lines WM266-4 and A2058 were treated either with or without piceatannol. Cell viability and cell apoptosis were assessed by using MTT and Annexin V/PI assay, respectively. Cells were transfected with specific miRNA using Lipfectamine 2000. miRNA bingding ability to 3'-UTR region within specific gene was assed by firefly luciferase analysis. Gene and protein expression was eveluated by qRT-PCR and western blot analysis, respectively. RESULTS: Our study showed that piceatannol inhibited WM266-4 and A2058 cells growth and induced apoptosis. Totally, 16 differentially expressed miRNAs were screened out including 8 up-regulated and 8 down-regulated miRNAs. Expression level of miR-181a is significantly higher in piceatannol-treated cells than normal control and is lower in melanoma cancer tissues than its adjacent normal tissues. Bcl-2 is a target gene of miR-181a. Moreover, silencing of miR-181a reverses the decrease of cell viability induced by piceatannol in WM266-4 and A2058 cells. Taken together, present study uncovered the ability of piceatannol to repress melanoma cell growth and clarified the contribution of miR-181a in the anticancer role of piceatannol. CONCLUSION: The present study proposes that piceatannol can be taken into account to be a hopeful anticancer agent for melanoma.


Subject(s)
Humans , Stilbenes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , MicroRNAs/drug effects , Melanoma/drug therapy , Up-Regulation , Cell Survival , MicroRNAs/metabolism , Cell Line, Tumor , Melanoma/metabolism , Melanoma/pathology
9.
Braz. j. med. biol. res ; 49(12): e5717, 2016. graf
Article in English | LILACS | ID: biblio-828174

ABSTRACT

Propofol is one of the most commonly used intravenous anesthetic agents during cancer resection surgery. A previous study has found that propofol can inhibit invasion and induce apoptosis of ovarian cancer cells. However, the underlying mechanisms are not known. miR-9 has been reported to be little expressed in ovarian cancer cells, which has been related to a poor prognosis in patients with ovarian cancer. Studies have also demonstrated that propofol could induce microRNAs expression and suppress NF-κB activation in some situations. In the present study, we assessed whether propofol inhibits invasion and induces apoptosis of ovarian cancer cells by miR-9/NF-κB signaling. Ovarian cancer ES-2 cells were transfected with anti-miR-9 or p65 cDNA or p65 siRNA for 24 h, after which the cells were treated with different concentrations of propofol (1, 5, and 10 μg/mL) for 24 h. Cell growth and apoptosis were detected using MTT assay and flow cytometry analysis. Cell migration and invasion were detected using Transwell and Wound-healing assay. Western blot and electrophoretic mobility shift assay were used to detect different protein expression and NF-κB activity. Propofol inhibited cell growth and invasion, and induced cell apoptosis in a dose-dependent manner, which was accompanied by miR-9 activation and NF-κB inactivation. Knockdown of miR-9 abrogated propofol-induced NF-κB activation and MMP-9 expression, reversed propofol-induced cell death and invasion of ES-2 cells. Knockdown of p65 inhibited NF-κB activation rescued the miR-9-induced down-regulation of MMP-9. In addition, overexpression of p65 by p65 cDNA transfection increased propofol-induced NF-κB activation and reversed propofol-induced down-regulation of MMP-9. Propofol upregulates miR-9 expression and inhibits NF-κB activation and its downstream MMP-9 expression, leading to the inhibition of cell growth and invasion of ES-2 cells.


Subject(s)
Humans , Female , MicroRNAs/drug effects , Neoplasm Invasiveness/prevention & control , NF-kappa B/drug effects , Ovarian Neoplasms/drug therapy , Propofol/therapeutic use , Protective Agents/therapeutic use , Apoptosis/drug effects , Blotting, Western , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Matrix Metalloproteinase 9/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Polymerase Chain Reaction
10.
Yonsei Medical Journal ; : 557-564, 2016.
Article in English | WPRIM | ID: wpr-52546

ABSTRACT

PURPOSE: Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS: Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION: These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.


Subject(s)
Adenocarcinoma/metabolism , Adrenergic beta-Agonists/pharmacology , Aged , Blotting, Western , Cell Adhesion Molecules/drug effects , Cell Line, Tumor , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Isoproterenol/pharmacology , Male , Neoplasm Staging , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Stomach/metabolism , Stomach Neoplasms/metabolism , Up-Regulation
11.
Yonsei Medical Journal ; : 588-598, 2016.
Article in English | WPRIM | ID: wpr-52542

ABSTRACT

PURPOSE: Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to exhibit antitumor effects in various cancers apart from nasopharyngeal cancer (NPC). NPC exhibits high invasiveness, as well as metastatic potential, and patients continue to suffer from residual, recurrent, or metastatic disease even after chemoradiation therapy. Therefore, new treatment strategies are needed for NPC. In this study, we investigated the efficacy and molecular mechanisms of TA in NPC treatment. MATERIALS AND METHODS: TA-induced cell death was detected by cell viability assay in the NPC cell lines, HNE1 and HONE1. Wound healing assay, invasion assay, and Western blot analysis were used to evaluate the antitumor effects of TA in NPC cell lines. RESULTS: Treatment with TA suppressed the migration and invasion of HNE1 and HONE1 cells. Hepatocyte growth factor enhanced the proliferation, migration, and invasion abilities of NPC cells. This enhancement was successfully inhibited by TA treatment. Treatment with TA increased phosphorylation of p38, and the inhibition of p38 with SB203580 reversed the cytotoxic, anti-invasive, and anti-migratory effects of TA treatment in NPC cell lines. Moreover, inhibition of p38 also reversed the decrease in expression of Slug that was induced by TA treatment. CONCLUSION: In conclusion, the activation of p38 plays a role in mediating TA-induced cytotoxicity and inhibition of invasion and migration via down-regulation of Slug.


Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Down-Regulation , Gastropoda , Gene Expression Regulation, Neoplastic/drug effects , Hepatocyte Growth Factor/metabolism , Humans , Imidazoles , MAP Kinase Signaling System/drug effects , Nasopharyngeal Neoplasms/drug therapy , Neoplasm Invasiveness/prevention & control , Phosphorylation/drug effects , Pyridines , ortho-Aminobenzoates/pharmacology
12.
Yonsei Medical Journal ; : 16-23, 2015.
Article in English | WPRIM | ID: wpr-201315

ABSTRACT

PURPOSE: To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). MATERIALS AND METHODS: The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2x106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. RESULTS: Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. CONCLUSION: This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model.


Subject(s)
Animals , Anthocyanins/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Inbred C57BL , Mice, Nude , NAD/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics
13.
Article in English | WPRIM | ID: wpr-142449

ABSTRACT

MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC cell line SPC-A1 treated with cisplatin, as well as the apoptosis rates of SPC-A1. Second, serum miR-638 expression levels were detected in vivo by using nude mice xenograft models bearing SPC-A1 with and without cisplatin treatment. In the clinic, the serum miR-638 levels of 200 cases of NSCLC patients before and after chemotherapy were determined by quantitative real-time PCR, and the associations of clinicopathological features with miR-638 expression patterns after chemotherapy were analyzed. Our data helped in demonstrating that cisplatin induced apoptosis of the SPC-A1 cells in a dose- and time-dependent manner accompanied by increased miR-638 expression levels in the culture supernatants. In vivo data further revealed that cisplatin induced miR-638 upregulation in the serum derived from mice xenograft models, and in NSCLC patient sera, miR-638 expression patterns after chemotherapy significantly correlated with lymph node metastasis. Moreover, survival analyses revealed that patients who had increased miR-638 levels after chemotherapy showed significantly longer survival time than those who had decreased miR-638 levels. Our findings suggest that serum miR-638 levels are associated with the survival of NSCLC patients and may be considered a potential independent predictor for NSCLC prognosis.


Subject(s)
Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung/drug effects , Lung Neoplasms/blood , Male , Mice , Mice, Nude , MicroRNAs/blood , Middle Aged , Prognosis , Survival Analysis , Treatment Outcome
14.
Article in English | WPRIM | ID: wpr-142448

ABSTRACT

MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC cell line SPC-A1 treated with cisplatin, as well as the apoptosis rates of SPC-A1. Second, serum miR-638 expression levels were detected in vivo by using nude mice xenograft models bearing SPC-A1 with and without cisplatin treatment. In the clinic, the serum miR-638 levels of 200 cases of NSCLC patients before and after chemotherapy were determined by quantitative real-time PCR, and the associations of clinicopathological features with miR-638 expression patterns after chemotherapy were analyzed. Our data helped in demonstrating that cisplatin induced apoptosis of the SPC-A1 cells in a dose- and time-dependent manner accompanied by increased miR-638 expression levels in the culture supernatants. In vivo data further revealed that cisplatin induced miR-638 upregulation in the serum derived from mice xenograft models, and in NSCLC patient sera, miR-638 expression patterns after chemotherapy significantly correlated with lymph node metastasis. Moreover, survival analyses revealed that patients who had increased miR-638 levels after chemotherapy showed significantly longer survival time than those who had decreased miR-638 levels. Our findings suggest that serum miR-638 levels are associated with the survival of NSCLC patients and may be considered a potential independent predictor for NSCLC prognosis.


Subject(s)
Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung/drug effects , Lung Neoplasms/blood , Male , Mice , Mice, Nude , MicroRNAs/blood , Middle Aged , Prognosis , Survival Analysis , Treatment Outcome
15.
J. bras. nefrol ; 36(4): 437-445, Oct-Dec/2014. tab
Article in Portuguese | LILACS | ID: lil-731150

ABSTRACT

Introdução: A nefrolitíase é uma patologia frequente, com alta taxa de prevalência e recorrência, ocorrendo por processo multifatorial e complexo. Objetivo: Analisar as principais características dietéticas e metabólicas de pacientes com nefrolitíase e compará-los com grupo controle. Métodos: Estudo observacional, transversal, com 31 pacientes com nefrolitíase (NE) e 18 saudáveis. Na ingestão dietética, foram verificados sódio, cálcio, proteína, potássio, vitamina C, oxalato e a ingestão hídrica em ambos os grupos. Na avaliação metabólica, foi analisada excreção urinária de citrato e oxalato. Também foi avaliada presença de hipertensão arterial e Índice de Massa Corporal (IMC). Resultados: Quanto ao grupo NE, verificou-se que 45,2% apresentou alta ingestão de sódio e 100% de oxalato. Foi também observada baixa ingestão de cálcio em 93,5%, potássio em 100% e vitamina C em 94,9%. Com relação à proteína, apenas 12,5% apresentou ingestão normoproteica. Quanto à ingestão hídrica, 12,9% apresentou ingestão menor que 1 litro, 54,8% entre 1 a 2 litros, e 32,3% maior que 2 litros. Foi observada hipertensão arterial sistêmica em 64,5% desses pacientes e excreção adequada de citrato e oxalato em 90,5% deles. Não foi verificada diferença estatística significativa na ingestão alimentar, IMC, e excreção de oxalato entre os grupos. No entanto, o grupo NE apresentou maior excreção de citrato. Conclusão: Verificou-se nos dois grupos elevada prevalência de pacientes com sobrepeso, alta ingestão de oxalato e sódio, além de inadequação nas ingestões de cálcio, potássio e vitamina C. No grupo NE, foi observada ...


Introduction: Nephrolithiasis is a common condition with high prevalence and recurrence, occuring by a complex and multifactorial process. Objective: To analyze the main dietary and metabolic characteristics of patients with nephrolithiasis and compare them with a control group. Methods: A crosssectional study with 31 patients with nephrolithiasis (NE) and 18 healthy. By the dietary intake it were observed sodium, calcium, protein, potassium, vitamin C, oxalate and water intake in both groups. Metabolic assessment were analyzed in urinary excretion of oxalate and citrate. The presence of hypertension and body mass index (BMI) was also evaluated. Results: In the NE group, it was found that 45.2% had a high intake of sodium and 100% a high intake of oxalate. It was also observed a low calcium, potassium and vitamin C intake by 93.5%, 100% and 94.9% respectively. Regarding protein, only 12.5% had normal protein intake. Concerning water intake, 12.9% had an ingestion less than 1 liter, 54.8% between 1 and 2 liters and 32.3% higher than 2 liters. Hypertension was observed in 64.5% of patients and adequate excretion of oxalate and citrate in 90.5% of them. There was no statistically difference in food intake, BMI and oxalate excretion between groups. However, the NE group showed higher urinary citrate. Conclusion: It was found in both groups a high prevalence of overweight patients, a high intake of oxalate and sodium, in addition to inadequate intakes of calcium, potassium and vitamin C. The NE group showed high protein intake and increased excretion of citrate. .


Subject(s)
Animals , Rats , Antimetabolites, Antineoplastic/pharmacology , Genes, Homeobox/genetics , Glioma/genetics , Phenylacetates/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glioma/pathology , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects
16.
Braz. j. med. biol. res ; 47(12): 1021-1028, 12/2014. tab, graf
Article in English | LILACS | ID: lil-727663

ABSTRACT

DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.


Subject(s)
Animals , Humans , Male , Antineoplastic Agents/pharmacology , DNA Methylation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , S-Adenosylmethionine/pharmacology , Stomach Neoplasms/drug therapy , Vascular Endothelial Growth Factor C/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Carcinogenesis/drug effects , DNA Methylation/genetics , Flow Cytometry , Gene Expression Regulation, Neoplastic/physiology , Heterografts/drug effects , Immunohistochemistry , Mice, Nude , Oncogenes/drug effects , Promoter Regions, Genetic/drug effects , Real-Time Polymerase Chain Reaction , RNA, Messenger/analysis , Stomach Neoplasms/metabolism , Vascular Endothelial Growth Factor C/drug effects , Vascular Endothelial Growth Factor C/genetics
17.
Salud colect ; 10(3): 365-377, sep.-dic. 2014.
Article in Spanish | LILACS | ID: lil-733296

ABSTRACT

El fenómeno de la transexualidad es un asunto en el que el peso social, en concreto de los colectivos transexuales, ha sido y sigue siendo crucial en muchos aspectos, desde la progresiva eliminación de la discriminación hasta la influencia para que el poder legislativo se pronuncie. En este artículo de investigación se tratará especialmente una de las reivindicaciones clásicas del colectivo, esto es, el tratamiento sanitario integral de la persona transexual dentro del Sistema Nacional de Salud. En este sentido, se observarán los avances en el desarrollo de un sistema sanitario adecuado para este colectivo, su tratamiento por parte de los distintos ordenamientos jurídicos en España, en general, y en alguna de sus comunidades autónomas con legislaciones más destacables (en especial Andalucía como comunidad autónoma pionera, el País Vasco y la Comunidad Foral de Navarra) y los retos pendientes, haciendo una especial investigación en torno a las sustanciales novedades que ha implantado en este ámbito la publicación de la quinta edición del Manual diagnóstico y estadístico de los trastornos mentales.


The social weight of transsexual groups has been and continues to be crucial in many aspects regarding transsexuality, from the progressive elimination of discrimination to influence in the legislative branch. This paper especially discusses a classic demand of these groups, comprehensive medical treatment of transsexual people within the National Health System. Thus, progress in the development of an adequate healthcare system for these groups, their treatment in the legal systems of Spain in general and of some of its autonomous communities with more noteworthy laws (especially in Andalusia, an autonomous community that has been pioneering in this regard, as well as the Basque Country and Navarre) and remaining challenges will be observed in this work. The article will also take particular note of the substantial developments that the publication of the Fifth Edition of the Diagnostic and Statistical Manual of Mental Disorders has established in this area.


Subject(s)
Humans , Proto-Oncogene Proteins c-jun/genetics , Stomach Neoplasms , Vitamin E/analogs & derivatives , Vitamin E/pharmacology , Blotting, Western , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-jun/analysis , RNA, Messenger/analysis , Tocopherols , Tumor Cells, Cultured
18.
Salud colect ; 10(3): 397-406, sep.-dic. 2014.
Article in Spanish | LILACS | ID: lil-733298

ABSTRACT

En el marco de un estudio realizado entre 2003 y 2011 para comprender escenarios de violencia homicida a partir de la percepción del hecho violento y su contexto, se reflexiona sobre el sentido de las "fronteras invisibles" en barrios de Medellín (Colombia). Desde un enfoque cualitativo que combina revisión documental y entrevistas, se analiza la experiencia vivida por ocho participantes. Entre los principales resultados se destaca que el control barrial es ejercido por distintos actores; que las fronteras no son visibles para el común de las personas, sino que son demarcaciones en las que son reclutadas y controladas, y que consolidan estrategias para recaudar recursos económicos de forma ilegal y regular las actividades culturales y sociales de los habitantes, lo cual repercute en la dinámica y los imaginarios sociales. De este modo, se controlan los territorios, las amistades y los afectos de víctimas jóvenes -que no se vinculan a grupos ilegales y/o no tienen "información"- y de adultos mayores indefensos.


As part of a research study undertaken in the period 2003-2011 to understand situations of homicidal violence based in perceptions regarding the act of violence and the surrounding context, we reflect on the meaning of "invisible bourdaries" in the neighborhoods of Medellin (Colombia). Using a qualitative approach that combines documentary sources and interviews, the experiences of 8 participants are analyzed. In the primary results we can see how control over neighborhoods is exercised by different actors through bourdaries not visible to ordinary people. Nevertheless, around these lines people are recruited and controlled and strategies to illegally generate economic resources and to regulate the cultural and social activities of inhabitants are consolidated, thus affecting the social dynamics and imaginary of the neighborhood. In this way, the territories, friendships, and affects of young victims - who are not linked to illegal groups and/or do not have "information" - and of defenseless older adults are controlled.


Subject(s)
Animals , Female , Mice , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Stomach Neoplasms/drug therapy , Cell Division/drug effects , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , /genetics , RNA, Messenger/analysis , /genetics
19.
Article in English | IMSEAR | ID: sea-153786

ABSTRACT

Wide spread use of Di-(2-ethylhexyl) phthalate (DEHP) has made it a ubiquitous contaminant in today’s environment, responsible for possible carcinogenic and endocrine disrupting effects. In the present investigation an integrative toxico-proteomic approach was made to study the estrogenic potential of DEHP. In vitro experiments carried out with DEHP (0.1-100 μM) induced proliferations (E-screen assay) in human estrogen receptors-α (ERα) positive MCF-7 and ERα negative MDA-MB-231 breast cancer cells irrespective of their ERα status. Further, DEHP suppressed tamoxifen (a potent anti-breast cancer drug) induced apoptosis in both cell types as shown by flowcytometric cell cycle analysis. Label-free quantitative proteomics analysis of the cell secretome of both the cell lines indicated a wide array of stress related, structural and receptor binding proteins that were affected due to DEHP exposure. The secretome of DEHP treated MCF-7 cells revealed the down regulation of lactotransferrin, an ERα responsive iron transport protein. The results indicated that toxicological effects of DEHP did not follow an ERα signaling pathway. However, the differential effects in MCF-7 and MDA-MB-231 cell lines indicate that ERα might have an indirect modulating effect on DEHP induced toxicity.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Diethylhexyl Phthalate/toxicity , Environmental Pollutants/toxicity , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/physiology , Estrogens , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lactoferrin/biosynthesis , Lactoferrin/genetics , Lactoferrin/metabolism , MCF-7 Cells/drug effects , MCF-7 Cells/metabolism , Mass Spectrometry/instrumentation , Microchemistry/instrumentation , Neoplasm Proteins/drug effects , Neoplasm Proteins/physiology , Neoplasm Proteins/metabolism , Neoplasms, Hormone-Dependent/pathology , Proteomics , Tamoxifen/antagonists & inhibitors , Tamoxifen/pharmacology
20.
Braz. j. med. biol. res ; 47(7): 548-553, 07/2014. graf
Article in English | LILACS | ID: lil-712965

ABSTRACT

Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.


Subject(s)
Animals , Humans , Apoptosis/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Inhibitor of Apoptosis Proteins/drug effects , Lung Neoplasms/secondary , Neuroblastoma/pathology , RNA, Small Interfering/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Immunohistochemistry , In Situ Nick-End Labeling , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice, Nude , Neoplasm Invasiveness , Neuroblastoma/secondary , Reverse Transcriptase Polymerase Chain Reaction , RNA, Neoplasm/drug effects , RNA, Neoplasm/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL