Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Protein & Cell ; (12): 39-56, 2021.
Article in English | WPRIM | ID: wpr-880896

ABSTRACT

Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.


Subject(s)
Alleles , Animals , CRISPR-Cas Systems , DNA End-Joining Repair , DNA, Circular/metabolism , Embryo, Nonmammalian , Gene Editing/methods , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, Reporter , Genetic Loci , Genotyping Techniques , Green Fluorescent Proteins/metabolism , Integrases/metabolism , Luminescent Proteins/metabolism , Mutagenesis, Insertional , Single-Cell Analysis , Zebrafish/metabolism
2.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-827018

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
3.
Chinese Journal of Biotechnology ; (12): 1138-1149, 2020.
Article in Chinese | WPRIM | ID: wpr-826864

ABSTRACT

Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.


Subject(s)
Fermentation , Gene Knockout Techniques , Gluconobacter oxydans , Genetics , Metabolism , Industrial Microbiology , Methods , Multigene Family , Genetics , Organisms, Genetically Modified , PQQ Cofactor , Genetics , Promoter Regions, Genetic , Genetics
4.
Biol. Res ; 53: 18, 2020. tab, graf
Article in English | LILACS | ID: biblio-1124204

ABSTRACT

BACKGROUND: Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. METHODS: DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. RESULTS: We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. CONCLUSIONS: These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation , Apoptosis/drug effects , MicroRNAs/antagonists & inhibitors , Cell Line, Tumor , Gene Knockout Techniques/methods , Sirtuin 1/antagonists & inhibitors , Real-Time Polymerase Chain Reaction , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
5.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828747

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
6.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828583

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
7.
Chinese Journal of Biotechnology ; (12): 1386-1394, 2020.
Article in Chinese | WPRIM | ID: wpr-826838

ABSTRACT

We used CRISPR/Cas9 to delete plin1 of 3T3-L1 preadipocyte, to observe its effect on lipolysis in adipocytes and to explore regulatory pathways. We cultured 3T3-L1 preadipocytes, and the plin1 knockout vectors were transfected by electroporation. Puromycin culture was used to screen successfully transfected adipocytes, and survival rates were observed after transfection. The optimized "cocktail" method was used to differentiate 3T3-L1 preadipocytes. The glycerol and triglyceride contents were determined by enzymatic methods. The changes in lipid droplet form and size were observed by Oil red O staining. The protein expression of PLIN1, PPARγ, Fsp27, and lipases was measured by Western blotting. RT-PCR was used to measure the expression of PLIN1 and lipases mRNA. After the adipocytes in the control group were induced to differentiate, the quantity of tiny lipid droplets was decreased, and the quantity of unilocular lipid droplets was increased and arranged in a circle around the nucleus. Compared with the control group, the volume of unilocular lipid droplets decreased, and the quantity of tiny lipid droplets increased after induction of adipocytes in the knockout group. The expression of PLIN1 mRNA and protein in the adipocytes was significantly inhibited (P<0.05); glycerol levels increased significantly (0.098 4±0.007 6), TG levels decreased significantly (0.031 0±0.005 3); mRNA and protein expression of HSL and ATGL increased (P<0.05); PPARγ and Fsp27 expression unchanged in adipocytes. The above results indicate that the knockout of plin1 enhances the lipolysis of 3T3-L1 adipocytes by exposing lipids in lipid droplets and up-regulating lipases effects.


Subject(s)
3T3-L1 Cells , Adipocytes , Metabolism , Animals , CRISPR-Cas Systems , Gene Knockout Techniques , Lipase , Metabolism , Lipolysis , Genetics , Mice , Perilipin-1 , Genetics , Metabolism
8.
Chinese Journal of Biotechnology ; (12): 2092-2103, 2020.
Article in Chinese | WPRIM | ID: wpr-878469

ABSTRACT

Clostridium acetobutylicum is an important strain for bio-butanol formation. In recent years, gene-editing technology is widely used for developing the hyper-butanol-production strains. In this study, three genes (cac1251, cac2118 and cac2125) encoding cell division proteins (RodA, DivIVA and DivIB) in C. acetobutylicum were knocked out. The cac2118-knockout strain had changed its cell morphology to spherical-shape during the solventogenesis, and obtained a higher butanol yield of 0.19 g/g, increasing by 5.5%, compared with the wild type strain. The glucose utilization and butanol production of cac1251-knockout strain decreased by 33.9% and 56.3%, compared the with wild type strain, reaching to 47.3 g/L and 5.6 g/L. The cac1251-knockout strain and cac2125-knockout strain exhibited poor cell growth with cell optical density decreased by 40.4% and 38.3%, respectively, compared with that of the wild type strain. The results indicate that cell division protein DivIVA made the differences in the regulation of cell morphology and size. Cell division proteins RodA and DivIB played significant roles in the regulation of cell division, and affected cell growth, as well as solventogenesis metabolism.


Subject(s)
Butanols , Cell Division/genetics , Clostridium acetobutylicum/genetics , Fermentation , Gene Knockout Techniques , Solvents
9.
Chinese Journal of Biotechnology ; (12): 910-918, 2019.
Article in Chinese | WPRIM | ID: wpr-771835

ABSTRACT

Parthenogenetic embryonic stem cells (pESCs) derived from bi-maternal genomes do not have competency of tetraploid complementation, due to lacking of paternal imprinting genes. To make pESCs possess fully development potentials and similar pluripotency to zygote-derived ESCs, we knocked out one allelic gene of the two essential maternal imprinting genes (H19 and IG) in their differentially methylated regions (DMR) via CRISPR/Cas9 system and obtained double knock out (DKO) pESCs. Maternal pESCs had similar morphology, expression levels of pluripotent makers and in vitro neural differentiation potentials to zygotes-derived ESCs. Besides that, DKO pESCs could contribute to full-term fetuses through tetraploid complementation, proving that they held fully development potentials. Derivation of DKO pESCs provided a type of major histocompatibility complex (MHC) matched pluripotent stem cells, which would benefit research in regenerative medicine.


Subject(s)
Animals , Embryonic Stem Cells , Gene Knockout Techniques , Genomic Imprinting , Mice , Parthenogenesis , Pluripotent Stem Cells , Regenerative Medicine , Tetraploidy
10.
Chinese Journal of Biotechnology ; (12): 1247-1255, 2019.
Article in Chinese | WPRIM | ID: wpr-771804

ABSTRACT

L-tyrosine is one of three aromatic amino acids that are widely used in food, pharmaceutical and chemical industries. The transport system engineering provides an important research strategy for the metabolic engineering of Escherichia coli to breed L-tyrosine producing strain. The intracellular transport of L-tyrosine in E. coli is mainly regulated by two distinct permeases encoded by aroP and tyrP genes. The aroP and tyrP gene knockout mutants were constructed by CRISPR-Cas technique on the basis of L-tyrosine producing strain HGXP, and the effects of regulating transport system on L-tyrosine production were investigated by fermentation experiments. The fermentation results showed that the aroP and tyrP knockout mutants produced 3.74 and 3.45 g/L L-tyrosine, respectively, which were 19% and 10% higher than that of the original strain. The optimum induction temperature was determined to be 38 °C. Fed-batch fermentation was carried out on a 3-L fermentor. The L-tyrosine yields of aroP and tyrP knockout mutants were further increased to 44.5 and 35.1 g/L, respectively, which were 57% and 24% higher than that of the original strain. The research results are of great reference value for metabolic engineering of E. coli to produce L-tyrosine.


Subject(s)
Escherichia coli , Escherichia coli Proteins , Gene Knockout Techniques , Metabolic Engineering , Tyrosine
11.
Chinese Journal of Biotechnology ; (12): 1382-1390, 2019.
Article in Chinese | WPRIM | ID: wpr-771791

ABSTRACT

Mitochondrial dynamics, the processes of mitochondrial fusion and fission maintain homeostasis, are precisely regulated by fusion/fission-related proteins, and play an important physiological role in mitochondrial metabolism, quality and function. The aberrant changes of these proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result various disease states. This article focuses on gene knockout technology, and reviews the role and application progress of genes encoding for fusion and fission knockout mice in insulin resistance researches, in order to lay a foundation for future studies on signal transduction mechanism of mitochondrial dynamics imbalance in insulin resistance.


Subject(s)
Animals , Gene Knockout Techniques , Insulin Resistance , Mice , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins
12.
Chinese Journal of Biotechnology ; (12): 784-794, 2019.
Article in Chinese | WPRIM | ID: wpr-771331

ABSTRACT

The establishment and development of gene knockout mice have provided powerful support for the study of gene function and the treatment of human diseases. Gene targeting and gene trap are two techniques for generating gene knockout mice from embryonic stem cells. Gene targeting replaces endogenous knockout gene by homologous recombination. There are two ways to knock out target genes: promoter trap and polyA trap. In recent years, many new gene knockout techniques have been developed, including Cre/loxP system, CRISP/Cas9 system, latest ZFN technology and TALEN technology. This article focuses on the several new knockout mouse techniques.


Subject(s)
Animals , Disease Models, Animal , Embryonic Stem Cells , Gene Knockout Techniques , Gene Targeting , Homologous Recombination , Humans , Mice , Mice, Knockout
13.
Journal of Experimental Hematology ; (6): 1682-1690, 2019.
Article in Chinese | WPRIM | ID: wpr-775665

ABSTRACT

OBJECTIVE@#To knockout ADRB2 gene rapidly and efficiently in human primary T cells by using CRISPR/Cas9 technology and multiple sgRNAs strategy.@*METHODS@#Six paired-sgRNAs, which were designed to target the 5' constitutive coding exons of ADRB2 gene, were cloned into pGL3-U6-sgRNA-PGK-Puro vector separately. The expre-ssion vectors containing the single sgRNAs were constructed and transiently co-transfected into HEK-293T cell line with Cas9 expression vector. The sgRNA-mediated cleavage efficiency was tested by T7EN I digestion assay. Concatenating four highly efficient paired sgRNAs were cloned into pGL3-U6-sgRNA-ccdB-EF1α-Puro expression vector. The reco-mbinant plasmid allows the cells to express 4 sgRNAs, which target different sites on the ADRB2 genomic locus. The cleavage efficiency and mutation model were tested by T7EN I digest assay and T-A cloning technique. Multiple sgRNAs plasmid and Cas9 plasmid was transiently transferred into human primary T cells by electroporation. Flow cytometry (FCM) was used to detect the knockout efficiency of β2 adrenergic receptor (β2-AR).@*RESULTS@#The results of T7EN I digestion and TA cloning sequencing showed that the multiple sgRNAs strategy could obtain more abundant mutation types and higher gene editing efficiency than single sgRNA. In addition to the deletion and insertion of bases, large fragment DNA deletions and inversions could be observed. All of the random 10 TA clones for detection were genetically modified, thus the mutation efficiency was as high as 100%. FCM assay showed that 43.09% of the cells in the control T cells were β2-AR positive, but the proportion of β2-AR positive cells in the multiple sgRNAs electrotransformed T cells decreased to 25.61%.@*CONCLUSION@#A method, which is simple and operable, for knocking out β2-AR in human primary T cells has been established preliminarily. The results are helpful for the further study of the role of β2-AR in human T cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , Humans , RNA, Guide , Receptors, Adrenergic, beta-2 , Genetics , T-Lymphocytes
14.
Mycobiology ; : 207-216, 2019.
Article in English | WPRIM | ID: wpr-760538

ABSTRACT

Talaromyces marneffei is the only dimorphic species in its genus and causes a fatal systemic mycosis named talaromycosis. Our previous study indicated that knockdown of AcuD gene (encodes isocitrate lyase of glyoxylate bypass) of T. marneffei by RNA interference approach attenuated the virulence of T. marneffei, while the virulence of the AcuD knockout strains was not studied. In this study, T. marneffei-zebrafish infection model was successfully established through hindbrain microinjection with different amounts of T. marneffei yeast cells. After co-incubated at 28°C, the increasing T. marneffei inoculum doses result in greater larval mortality; and hyphae generation might be one virulence factor involved in T. marneffei-zebrafish infection. Moreover, the results demonstrated that the virulence of the ΔAcuD was significantly attenuated in this Zebrafish infection model.


Subject(s)
Gene Knockout Techniques , Hyphae , Isocitrate Lyase , Microinjections , Mortality , Rhombencephalon , RNA Interference , Talaromyces , Virulence , Yeasts , Zebrafish
15.
Acta Physiologica Sinica ; (6): 588-596, 2019.
Article in Chinese | WPRIM | ID: wpr-777152

ABSTRACT

The aim of the study was to establish Ace2 (angiotensin-converting enzyme 2) knockout mouse model with CRISPR/Cas9 gene targeting technology. A vector targeting Ace2 gene knockout was constructed with the primers of single-guide RNA (gRNA), and then transcribed gRNA/Cas9 mRNA was micro-injected into the mouse zygote. The deletion of exons 3 to 18 of Ace2 gene in mice was detected and identified by PCR and gene sequencing. The Ace2 gene knock-out mice were bred and copulated. Ace2 protein and mRNA expression were detected by Western blot and qRT-PCR in F3 progeny knock-out male mice. The gRNA expression vector was successfully constructed and transcribed in vitro, and active gRNA and Cas9 mRNA were injected directly into zygote. The deletion of exons 3 to 18 of Ace2 gene in six positive founder mice as the F0 generation were confirmed by PCR and gene sequencing. Six founder mice were mated with wild-type mice, then achieved F1 generation were mated and produced F2 generation. The female positive mouse of F2 was selected to mate with wild-type mice and produce Ace2 mice of F3 generation. Ace2 mRNA and protein were not detected in tissues of these Ace2 mice. In conclusion, a mouse model with Ace2 deficiency has been successfully established with CRISPR/Cas9 technique, which shall lay a foundation for future investigation of Ace2.


Subject(s)
Animals , CRISPR-Cas Systems , Female , Gene Knockout Techniques , Gene Targeting , Male , Mice , Mice, Knockout , RNA, Guide , Genetics
16.
Article in Chinese | WPRIM | ID: wpr-771451

ABSTRACT

OBJECTIVE@#To investigate the role of cathepsin B in hepatic Kupffer cells (KCs) in activating Toll-like receptor 4(TLR- 4)-independent inflammatory pathways in mice with lipopolysaccharide (LPS)-induced sepsis.@*METHODS@#Eighteen wild-type (WT) mice and 18 TLR4-knockout (TLR4) mice were both divided into 3 groups for intraperitoneal injections of a lethal dose (54 mg/kg) of LPS, LPS and CA-074(a cathepsin B inhibitor), or normal saline, and the survival of the mice were observed. Another 36 WT mice and 36 TLR4mice were also divided into 3 groups and subjected to intraperitoneal injections of normal saline, 20 mg/kg LPS, or LPS with CA-074 pretreatment.After the treatments, KCs were collected from the mice for assessing the protein level and activity of cathepsin B.The histopathological changes of the liver were observed with HE staining, and the serum levels of IL-1α, IL-1β, TNF-α and IL-18 were detected.@*RESULTS@#Compared with the WT mice,TLR4mice receiving the lethal dose of LPS had significantly longer survival time (up to 84 h) after the injection,but were still unable to fully resist LPS challenge.CA-074 pretreatment prolonged the survival time of WT mice and TLR4mice to 60 h and 132 h,respectively.In the mouse models of sepsis,20 mg/kg LPS induced significantly enhanced activity of cathepsin B without affecting its expression level in the KCs (<0.05) and increased the serum levels of the inflammatory cytokines.CA-074 pretreatment of the mice obviously lessened the detrimental effects of LPS in TLR4mice by significantly lowering cathepsin B activity in the KCs,alleviating hepatocyte apoptosis and reducing the serum levels of inflammatory cytokines.@*CONCLUSIONS@#Cathepsin B plays an important role in activating TLR4-independent inflammatory pathways in mice with LPS-induced sepsis.


Subject(s)
Animals , Cathepsin B , Physiology , Dipeptides , Pharmacology , Gene Knockout Techniques , Hepatocytes , Inflammation , Metabolism , Interleukin-18 , Blood , Interleukin-1alpha , Blood , Interleukin-1beta , Blood , Kupffer Cells , Metabolism , Lipopolysaccharides , Liver , Pathology , Mice , Sepsis , Metabolism , Toll-Like Receptor 4 , Genetics , Tumor Necrosis Factor-alpha , Blood
17.
Chinese Journal of Lung Cancer ; (12): 358-364, 2018.
Article in Chinese | WPRIM | ID: wpr-776309

ABSTRACT

BACKGROUND@#It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology.@*METHODS@#In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR.@*RESULTS@#The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue.@*CONCLUSIONS@#The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.


Subject(s)
Animals , CRISPR-Cas Systems , Enhancer of Zeste Homolog 2 Protein , Genetics , Metabolism , Female , Gene Knockout Techniques , Gene Targeting , Humans , Lung Neoplasms , Genetics , Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Guide
18.
Article in Chinese | WPRIM | ID: wpr-775263

ABSTRACT

Establishing a suitable animal model is important for studying the mechanism of inflammatory bowel disease (IBD) and exploring new therapeutic approaches. Although a large number of IBD single gene knockout animal models have been established, single knockout of certain genes associated with human IBD susceptibility does not manifest symptoms of IBD or manifest extremely milder symptoms, while composite animal models based on other modeling factors can better simulate the clinical features of IBD. This article mainly introduces three novel composite animal models and elaborates the possible pathogenesis of each composite model:animal models established by gene double knockout have more obvious and earlier symptoms than single-knockout models; single gene knockout model with Helicobacter infection can help to study the role of microbial infections in the pathogenesis of IBD; on the basis of gene knockout, specific deletion of certain immune cells can be used to study the role of the immune cells in the development of IBD. Among the above composite animal models, double knockout mice may be important animal models for IBD study.


Subject(s)
Animals , Disease Models, Animal , Gene Knockout Techniques , Humans , Inflammatory Bowel Diseases , Genetics , Allergy and Immunology , Mice, Knockout , Research
19.
Protein & Cell ; (12): 945-965, 2018.
Article in English | WPRIM | ID: wpr-757939

ABSTRACT

Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.


Subject(s)
Blood Vessels , Cell Biology , Metabolism , CRISPR-Cas Systems , Embryonic Stem Cells , Cell Biology , Gene Knockout Techniques , Homeostasis , Humans , NF-kappa B , Metabolism , Transcription Factor RelA , Metabolism
20.
Protein & Cell ; (12): 365-379, 2018.
Article in English | WPRIM | ID: wpr-756937

ABSTRACT

NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to HO stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to HO-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.


Subject(s)
DNA Damage , DNA Repair , Genetics , DNA Replication , Genetics , DNA-Binding Proteins , Genetics , DNA-Directed DNA Polymerase , Genetics , Endopeptidases , Genetics , Gene Knockout Techniques , Humans , Hydrogen Peroxide , Toxicity , NEDD8 Protein , Genetics , Oxidative Stress , Genetics , Proliferating Cell Nuclear Antigen , Genetics , Ubiquitin-Conjugating Enzymes , Genetics , Ubiquitin-Protein Ligases , Genetics , Ubiquitination , Genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL