Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
1.
Article in English | WPRIM | ID: wpr-929137

ABSTRACT

Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then, micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor's expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.


Subject(s)
Alginates/pharmacology , Animals , Bone Regeneration , Cell Differentiation , Durapatite/pharmacology , Ginsenosides , Osteogenesis , Rats , Silk/pharmacology , Tissue Scaffolds
2.
Article in English | WPRIM | ID: wpr-928959

ABSTRACT

OBJECTIVE@#To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.@*METHODS@#The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.@*RESULTS@#TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).@*CONCLUSION@#TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.


Subject(s)
Animals , Cell Differentiation , Cell Proliferation , Ginsenosides/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Neural Stem Cells/metabolism , Panax , Plant Extracts/pharmacology , Rats , beta Catenin/metabolism
3.
Article in English | WPRIM | ID: wpr-939791

ABSTRACT

OBJECTIVE@#To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs.@*METHODS@#The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined.@*RESULTS@#For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs.@*CONCLUSION@#Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].


Subject(s)
Aconitine/pharmacology , Animals , Apoptosis , Cardiotonic Agents/pharmacology , Cardiotoxicity/drug therapy , Cell Survival , Ginsenosides/pharmacology , Rats
4.
Article in Chinese | WPRIM | ID: wpr-928176

ABSTRACT

This study analyzed the quality markers(Q-markers) of Yuquan Capsules(YQC) based on serum pharmacochemistry of Chinese medicine and detected the components and metabolites of YQC absorbed into the blood by UPLC-Q-TOF-MS and UNIFI systems. As a result, 32 components of YQC were detected, including 17 prototype components and 15 metabolized components. Among them, 12 prototype components(ginsenoside Rh_2, genistein, formononetin, puerarin, daidzein, schizandrin A, schizandrin B, schizandrin C, schizandrol A, schizandrol B, gomisin D, and ononin) and 12 metabolized components(ginsenoside Rg_1, ginsenoside Rg_2, ginsenoside Rg_3, ginsenoside Ro, 3'-methoxypuerarin, daidzin, astragaloside Ⅱ, astragaloside Ⅳ, glycyrrhizic acid, liquiritigenin, isoliquiritin, and verbascoside) showed inhibitory effects and pharmacological activities against diabetes, and these 24 blood-entering components against diabetes were identified as Q-markers of YQC.


Subject(s)
Capsules , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Ginsenosides/analysis , Medicine, Chinese Traditional , Serum/chemistry
5.
Article in Chinese | WPRIM | ID: wpr-928149

ABSTRACT

The methods for determining the characteristic chromatogram and index components content of Xuanfu Daizhe Decoction were established to provide a scientific basis for the quality evaluation of substance benchmarks and preparations. Eighteen batches of Xuanfu Daizhe Decoction were prepared with the decoction pieces of different batches and of the same batch were prepared respectively, and the HPLC characteristic chromatograms of these samples were established. The similarities of the chromatographic fingerprints were analyzed. With liquiritin, glycyrrhizic acid, 6-gingerol, ginsenoside Rg_1, and ginsenoside Re as index components, the high performance liquid chromatography was established for content determination with no more than 70%-130% of the mass average as the limit. The results showed that there were 19 characteristic peaks corresponding to the characteristic chromatograms of 18 batches of Xuanfu Daizhe Decoction, including 8 peaks representing liquiritin, 1,5-O-dicaffeoylqunic acid, ginsenoside Rg_1, ginsenoside Re, 1-O-acetyl britannilactone, ginsenoside Rb_1, glycyrrhizic acid, and 6-gingerol, and the fingerprint similarity was greater than 0.97. The contents of liquiritin, glycyrrhizic acid, 6-gingerol, and ginsenosides Rg_1 + Re in the prepared Xuanfu Daizhe Decoction samples were 0.53%-0.86%, 0.61%-1.2%, 0.023%-0.068%, and 0.33%-0.66%, respectively. Except for several batches, most batches of Xuanfu Daizhe Decoction showed stable contents of index components, with no discrete values. The characteristic chromatograms and index components content characterized the information of Inulae Flos, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens in Xuanfu Daizhe Decoction. This study provides a scientific basis for the further research on the key chemical properties of substance benchmark and preparations of Xuanfu Daizhe Decoction.


Subject(s)
Benchmarking , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Ginsenosides/analysis , Glycyrrhizic Acid/analysis , Quality Control
6.
Article in Chinese | WPRIM | ID: wpr-928071

ABSTRACT

Panacis Quinquefolii Radix is the dry root of Panax quinquefolium, which is a perennial plant of Araliaceae. The plant has a long growth cycle and serious growth barrier problem, which leads to the use of pesticides. As a result, the pesticide residues in Panacis Quinquefolii Radix are arousing great concern. This paper reviews the research findings on the investigation, detection methods, content analysis and risk assessment of pesticide residues in Panacis Quinquefolii Radix since 1993, and compares the pesticide residue limit standards of different countries and regions. The pesticide residues in Panacis Quinquefolii Radix have been changing from organochlorines with high toxicity to triazines and triazoles with low toxicity. The pesticide residues are generally low, while the pollution of pentachloronitrobenzene and other pesticides still exist. The detection method has evolved from chromatography to chromatography-mass spectrometry. There are no reports of health risks caused by pesticide residues of Panacis Quinquefolii Radix. Pesticide residue is a major factor restricting the sound development of Panacis Quinquefolii Radix industry in China. Therefore, we suggest to improve the registration of pesticides applied to the plant, popularize mature ecological planting mode and supporting technology, and strengthen the research on the risk assessment and limit standard of pesticide residue in Panacis Quinquefolii Radix.


Subject(s)
Drugs, Chinese Herbal/chemistry , Ginsenosides/analysis , Mass Spectrometry , Panax/chemistry , Pesticide Residues/analysis
7.
Article in Chinese | WPRIM | ID: wpr-928060

ABSTRACT

This study aims to explore the targets of ginsenosides in brain based on drug affinity responsive target stability(DARTS) technology. Specifically, DARTS technology was combined with label-free liquid chromatography tandem mass spectrometry(LC-MS) to screen out the proteins in the brain that might interact with ginsenosides. Based on the screening results, adenylate kinase 1(AK1) was selected for further confirmation. First, the His-AK1 fusion protein was yielded successively through the construction of recombinant prokaryotic expression vector, expression of target protein, and purification of the fusion protein. Biolayer interferometry(BLI) was employed to detect the direct interaction of Rg_1, Re, Rb_1, Rd, Rh_2, F1, Rh_1, compound K(CK), 25-OH-PPD, protopanaxa-diol(PPD), and protopanaxatriol(PPT) with AK1, thereby screening the ginsenoside monomer or sapogenin that had strong direct interaction with the suspected target protein AK1. Then, the BLI was used to further determine the kinetic parameters for the binding of PPD(strongest interaction with AK1) to His-AK1 fusion protein. Finally, molecular docking technology was applied to analyze the binding properties between the two. With DARTS and LC-MS, multiple differential proteins were screened out, and AK1 was selected based on previous research for target verification. Fusion protein His-AK1 was obtained by prokaryotic expression, and the response(nm) of Re, Rg_1, Rd, Rb_1, Rh_1, Rh_2, F1, PPT, PPD, 25-OH-PPD, and CK with His-AK1 was respectively 0.003 1, 0.001 9, 0.042 8, 0.022 2, 0.013 4, 0.037 3, 0.013 9, 0.030 7, 0.140 2, 0.016 0, and 0.040 8. The K_(on), K_(off), and K_D values of PPD and His-AK1 were determined by the BLI as 1.22×10~2 mol~(-1)·L·s~(-1), 1.04×10~(-2) s~(-1), 8.52×10~(-5) mol·L~(-1). According to the molecular docking result, PPD bound to AK1 with the absolute value of the docking score of 3.438, and hydrogen bonds mainly formed between the two. Thus, AK1 is one of the protein action sites of ginsenosides in the brain. The direct interaction between ginsenoside metabolite PPD and AK1 is the strongest.


Subject(s)
Brain/metabolism , Chromatography, Liquid , Ginsenosides , Molecular Docking Simulation , Technology
8.
Article in Chinese | WPRIM | ID: wpr-927993

ABSTRACT

Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.


Subject(s)
Amyloid beta-Peptides/toxicity , Animals , Ginsenosides/pharmacology , Humans , Mitophagy/physiology , PC12 Cells , Protein Kinases/metabolism , Rats , Ubiquitin-Protein Ligases/metabolism
9.
Article in Chinese | WPRIM | ID: wpr-927992

ABSTRACT

Ginsenoside Rg_1, one of the main active components of precious traditional Chinese medicine Ginseng Radix et Rhizoma, has the anti-oxidative stress, anti-inflammation, anti-aging, neuroprotection, and other pharmacological effects. Diabetic retinopathy(DR), the most common complication of diabetes, is also the main cause of impaired vision and blindness in the middle-aged and the elderly. The latest research shows that ginsenoside Rg_1 can protect patients against DR, but the protection and the mechanism are rarely studied. This study mainly explored the protective effect of ginsenoside Rg_1 against DR in type 2 diabetic mice and the mechanism. High fat diet(HFD) and streptozotocin(STZ) were used to induce type 2 diabetes in mice, and hematoxylin-eosin(HE) staining was employed to observe pathological changes in the retina of mice. The immunohistochemistry was applied to study the localization and expression of nucleotide-binding oligomerization domain-like receptors 3(NLRP3) and vascular endothelial growth factor(VEGF) in retina, and Western blot was used to detect the expression of nuclear factor-kappa B(NF-κB), p-NF-κB, NLRP3, caspase-1, interleukin-1β(IL-1β), transient receptor potential channel protein 6(TRPC6), nuclear factor of activated T-cell 2(NFAT2), and VEGF in retina. The results showed that ginsenoside Rg_1 significantly alleviated the pathological injury of retina in type 2 diabetic mice. Immunohistochemistry results demonstrated that ginsenoside Rg_1 significantly decreased the expression of NLRP3 and VEGF in retinal ganglion cells, middle plexiform layer, and outer plexiform layer in type 2 diabetic mice. According to the Western blot results, ginsenoside Rg_1 significantly lowered the expression of p-NF-κB, NLRP3, caspase-1, IL-1β, TRPC6, NFAT2, and VEGF in retina of type 2 diabetic mice. These findings suggest that ginsenoside Rg_1 can significantly alleviate DR in type 2 diabetic mice, which may be related to inhibition of NLRP3 inflammasome and VEGF. This study provides experimental evidence for the clinical application of ginsenoside Rg_1 in the treatment of DR.


Subject(s)
Aged , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Ginsenosides/pharmacology , Humans , Inflammasomes/metabolism , Mice , Middle Aged , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
10.
Article in Chinese | WPRIM | ID: wpr-927947

ABSTRACT

Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.


Subject(s)
Fermentation , Ginsenosides , Humans , Panax/genetics , Panax notoginseng , Saccharomyces cerevisiae/genetics , Uridine Diphosphate Glucose
11.
Article in Chinese | WPRIM | ID: wpr-927940

ABSTRACT

A content determination method based on ~1H-qNMR was developed for the determination of total ginsenosides in Shenmai Injection. The parameters were optimized with CD_3OD as the solvent, dimethyl terephthalate as the internal standard, the peak at δ 8.11 as the internal standard peak, and the peaks at δ 1.68 and δ 0.79 as quantitative peaks of total ginsenosides. The developed ~1H-qNMR-based method was validated methodologically. The results showed that the method could achieve accurate measurement of total ginsenosides in Shenmai Injection in the range of 0.167 6-3.091 1 mmol·L~(-1). The developed ~1H-qNMR-based method for total ginsenosides is simple in operation, short in analysis time, strong in specificity, independent of accompanying standard curve, and small in sample volume, which can serve as a reliable mean for the quality control of Shenmai Injection. This study is expected to provide new ideas for the development of quantification methods of total ginsenosides.


Subject(s)
Drug Combinations , Drugs, Chinese Herbal , Ginsenosides/analysis , Quality Control
12.
Article in Chinese | WPRIM | ID: wpr-927938

ABSTRACT

The present study established a quality evaluation method for ginsenoside reference substances based on quantitative nuclear magnetic resonance(qNMR) spectroscopy. ~1H-NMR spectra were collected on Bruker Avance Ⅲ 500 MHz NMR spectrometer equipped with a 5 mm BBO probe. The acquire parameters were set up as follows: pulse sequence of 30°, D_1=20 s, probe temperature= 303 K, and the scan number = 32. Dimethyl terephthalate, a high-quality ~1H-qNMR standard, was used as the internal standard and measured by the absolute quantitative method. Methyl peaks of comparatively good sensitivity were selected for quantification, and linear fitting deconvolution was adopted to improve the accuracy of integration results. The qNMR spectroscopy-based method was established and validated, which was then used for the quality evaluation of ginsenoside Rg_1, ginsenoside Re, ginsenoside Rb_1, ginsenoside Rd, and notoginsenoside R_1. The results suggested that the content of these ginsenoside reference standards obtained from the qNMR spectroscopy-based method was lower than that detected by the normalization method in HPLC provided by the manufacturers. In conclusion, the qNMR spectroscopy-based method can ensure the quality of ginsenoside reference substances and provide powerful support for the accurate quality evaluation of Chinese medicine and its preparations. The qNMR spectroscopy-based method is simple, rapid, and accurate, which can be developed for the quantitative assay of Chinese medicine standard references.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ginsenosides/analysis , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy , Reference Standards
13.
Article in Chinese | WPRIM | ID: wpr-927912

ABSTRACT

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Ginsenosides , Panax , Plant Proteins/metabolism , Plant Roots/metabolism , Transcriptome
14.
Article in Chinese | WPRIM | ID: wpr-927909

ABSTRACT

Panax quinquefolium, as a common precious medicinal plant, has complex chemical components and unique pharmacological activities, which can play a healthcare role in the human body. With the deepening of research, the application of P. quinquefolium has become increasingly extensive. This paper summarized the research progress of the saponins isolated and identified from diffe-rent parts of P. quinquefolium, the structural classification and pharmacological activities of the saponins, and the quality control of Panacis Quinquefolii Radix. Further, this paper put forward the urgent problems to be solved in the development of P. quinquefolium. It is hoped to lay a foundation for the further study and provide reference for the research direction of P. quinquefolium.


Subject(s)
Ginsenosides , Humans , Panax/chemistry , Plants, Medicinal/chemistry , Quality Control , Saponins/pharmacology
15.
Braz. J. Pharm. Sci. (Online) ; 58: e19473, 2022. tab, graf
Article in English | LILACS | ID: biblio-1384023

ABSTRACT

Abstract RGX-365 is the main fraction of black ginseng conmprising protopanaxatriol (PPT)-type rare ginsenosides (ginsenosides Rg4, Rg6, Rh4, Rh1, and Rg2). No studies on the antiseptic activity of RGX-365 have been reported. High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. In this study, we examined the effects of RGX-365 on HMGB1-mediated septic responses and survival rate in a mouse sepsis model. RGX-365 was administered to the mice after HMGB1 challenge. The antiseptic activity of RGX-365 was assessed based on the production of HMGB1, measurement of permeability, and septic mouse mortality using a cecal ligation and puncture (CLP)-induced sepsis mouse model and HMGB1-activated human umbilical vein endothelial cells (HUVECs). We found that RGX-365 significantly reduced HMGB1 release from LPS- activated HUVECs and CLP-induced release of HMGB1 in mice. RGX-365 also restored HMGB1-mediated vascular disruption and inhibited hyperpermeability in the mice. In addition, treatment with RGX-365 reduced sepsis-related mortality in vivo. Our results suggest that RGX- 365 reduces HMGB1 release and septic mortality in vivo, indicating that it is useful in the treatment of sepsis.


Subject(s)
HMGB1 Protein/analysis , Panax/adverse effects , Permeability , Sepsis/pathology , Ginsenosides , Human Umbilical Vein Endothelial Cells/classification , Anti-Infective Agents, Local/adverse effects
16.
Article in Chinese | WPRIM | ID: wpr-879110

ABSTRACT

The ecological environment is closely related to the growth and quality of authentic medicinal materials. Ginseng is very strict with its natural environment and grows mostly in the damp valleys of forests, and the appearance and chemical composition of ginseng under different growth environments are very different. This article reviews the effects of different ecological factors(including light, temperature, altitude, moisture, soil factors, etc.)on the appearance and chemical composition(mainly ginsenosides) of ginseng. Through systematic review, it is found that soil physical factors are the most important ecological factors that affect the appea-rance of ginseng, and soil bulk density plays a key role; temperature affects ginsenosides in ginseng medicinal materials The dominant ecological factors for the accumulation of chemical ingredents; strong light, high altitude, high soil moisture, low soil nutrient and strong acid soil can influence the accumulation of secondary metabolites in ginseng. Environmental stress can also stimulate the formation and accumulation of secondary metabolites in medicinal plants. Appropriate low temperature stress, high or low water stress, acid or alkali stress can also promote the accumulation of ginsenosides. This article systematically reviews the ecological factors that affect the appearance and chemical composition of ginseng, and clarifies the dominant ecological factors and limiting factors for the formation of ginseng's appearance and quality, as well as beneficial environmental stress factors, in order to provide a theoretical basis for ginseng ecological planting and ginseng quality improvement.


Subject(s)
Forests , Ginsenosides , Panax , Plants, Medicinal , Soil
17.
Article in Chinese | WPRIM | ID: wpr-879051

ABSTRACT

This project aimed to explore the protective effect of ginsenoside Rg_1 on hypoxia/reoxygenation(H/R)-induced H9 c2 cardiomyocyte injury and its underlying signaling pathway. The H/R model of H9 c2 cardiomyocytes was established and then the cells were divided into different treatment groups. CCK-8(cell counting kit-8) was used to detect the activity of cardiomyocytes; Brdu assay was used to detect the proliferation of H9 c2 cells; the caspase-3 activity was tested, and then the protein expression was assessed by Western blot. Flow cytometry was used to evaluate the apoptosis level of cardiomyocytes. Ginsenoside Rg_1 inhibited H/R-induced cardiomyocyte apoptosis and caspase-3 activity, promoted nuclear transcription of nuclear factor erythroid-2 related factor 2(Nrf2), and enhanced the expression of the downstream heme oxygenase-1(HO-1). Ginsenoside Rg_1 could increase Nrf2 nuclear transcription and HO-1 expression with the increase of concentration(10, 20, 40, 60 μmol·L~(-1)). However, the protective effect of ginsenoside Rg_1 on cardiomyocytes was significantly weakened after the transfection of Nrf2-siRNA. Ginsenoside Rg_1 could protect cardiomyocytes by activating the Nrf2/HO-1 pathway.


Subject(s)
Apoptosis , Ginsenosides/pharmacology , Heme Oxygenase-1/genetics , Humans , Hypoxia , Myocytes, Cardiac , NF-E2-Related Factor 2/genetics
18.
Chinese Medical Journal ; (24): 546-554, 2021.
Article in English | WPRIM | ID: wpr-878041

ABSTRACT

BACKGROUND@#Breast cancer (BC) is a common malignancy with highly female incidence. So far the function of notoginsenoside R1 (NGR1), the extract from Panax notoginseng, has not been clearly elucidated in BC.@*METHODS@#Optimal culture concentration and time of NGR1 were investigated by cell counting kit-8 assay. Cell proliferation ability was measured by colony formation assays. Transwell assay was used to detect the effect of NGR1 on cell migration and invasion. The apoptosis rate of cells between each group was measured by TUNEL assay.@*RESULTS@#NGR1 treatment has an inhibitory effect on proliferation, migration, invasion, and angiogenesis and a stimulating effect on cell cycle arrest and apoptosis of Michigan Cancer Foundation-7 (MCF-7) cells. The 50% growth inhibitory concentration for MCF-7 cells at 24 h was 148.9 mmol/L. The proportions of MCF-7 cells arrested in the G0/G1 phase were 36.94±6.78%, 45.06±5.60%, and 59.46±5.60% in the control group, 75, and 150 mmol/L groups, respectively. Furthermore, we revealed that NGR1 treatment attenuates BC progression by targeted downregulating CCND2 and YBX3 genes. Additionally, YBX3 activates phosphatidylinositol 3-phosphate kinase (PI3K)/protein kinase B (Akt) signaling pathway by activating kirsten rat sarcoma viral oncogene, which is an activator of the PI3K/Akt signaling pathway.@*CONCLUSION@#These results suggest that NGR1 can act as an efficacious drug candidate that targets the YBX3/PI3K/Akt axis in patients with BC.


Subject(s)
Animals , Apoptosis , Breast Neoplasms/drug therapy , Cell Proliferation , Cyclin D2 , Female , Ginsenosides/therapeutic use , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats
19.
Article in Chinese | WPRIM | ID: wpr-880834

ABSTRACT

OBJECTIVE@#To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells.@*METHODS@#Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice.@*RESULTS@#Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (@*CONCLUSIONS@#Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.


Subject(s)
Animals , Cell Line, Tumor , DNA Methylation , Female , Gene Expression , Ginsenosides/pharmacology , Humans , Mice , Mice, Nude , Ovarian Neoplasms/genetics , Promoter Regions, Genetic , Von Hippel-Lindau Tumor Suppressor Protein/genetics
20.
Article in Chinese | WPRIM | ID: wpr-878867

ABSTRACT

The aim of this paper was to study the role of phosphoinositide 3-kinase(PI3 K), protein kinase B(Akt) and mamma-lian target of rapamycin(mTOR) in the inhibition of premature ovarian failure induced by D-galactose(D-gal) in mice model by ginsenoside Rg_1(Rg_1). Fifty-four female SPF BALB/c mice were randomly divided into PBS group, D-gal group, and Rg_1 group. In the D-gal group, D-galactose(200 mg·kg~(-1)·d~(-1)) was injected subcutaneously into the neck and back for 42 days. In the PBS group, an equal amount of phosphate buffered saline(PBS) was injected into the neck and back for 42 days. In addition to the therapy of D-gal group, Rg_1 group was given Rg_1(20 mg·kg~(-1)·d~(-1)) through intraperitoneal injection since the 15 th day for 28 days, at the same time, the D-gal group and the PBS group were also given an equal amount of PBS through intraperitoneal injection since the 15 th day for 28 days. After the treatment, the estrous cycle changes of the mice were detected, and the ovarian SA-β-Gal staining was used to detect the changes of ovarian aging. Western blot was used to detect the changes in protein expressions of PI3 K, Akt, mTOR, S6 k, LC3-Ⅱ and P16~(INK4 a). Fluorescence quantitative PCR was used to detect the changes in mRNA expressions of PI3 K, Akt, mTOR, S6 k, LC3-Ⅱ and P16~(INK4 a). According to the findings, compared with the PBS group, the D-gal group began to show estrous cycle disorder in the 3 rd week,the ovarian SA-β-Gal staining positive granulosa cells increased in the D-gal group, the expression of senescence marker P16~(INK4 a) increased, while the expression of autophagy signaling molecule LC3-Ⅱ decreased. After treatment with Rg_1, the positive rate of ovarian SA-β-Gal staining in Rg_1 group decreased, the expression level of autophagy signaling molecule LC3-Ⅱ in Rg_1 group was higher than that in D-gal group, while the expression level of senescence marker P16~(INK4 a) was lower than that in D-gal group. Compared with the PBS group, the protein and mRNA expressions of PI3 K, Akt, mTOR and S6 k in the D-gal group were up-regulated, the protein expressions of Akt, mTOR and S6 k in the Rg_1 group were up-regulated, and the mRNA expressions of PI3 K and mTOR were up-regulated. After treatment with Rg_1, the protein expressions of PI3 K, Akt, mTOR and S6 k in the Rg_1 group were lower than those in the D-gal group, while the mRNA expressions of Akt, mTOR and S6 k in the Rg_1 group were lower than those in the D-gal group. The finding ssuggested that Rg_1 has the effect in delaying ovarian premature failure in D-gal-induced mouse models, and PI3 K/Akt/mTOR autophagy signaling pathways play an important role.


Subject(s)
Animals , Autophagy , Female , Ginsenosides , Humans , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases , Primary Ovarian Insufficiency , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL