Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Article in English | WPRIM | ID: wpr-880866

ABSTRACT

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Head and Neck Neoplasms , Humans , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Phosphofructokinase-2/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Microenvironment
2.
Article in English | WPRIM | ID: wpr-880664

ABSTRACT

OBJECTIVES@#To analyze the expressions and distributions of hypoxia-inducible factor-1α (HIF-1α), CD147, and glucose transporter 1 (GLUT1) in epidermis from psoriasis vulgaris and normal people, and to explore the associations among these proteins and their roles in hypoxic HaCaT cell line.@*METHODS@#The expression levels of HIF-1α, CD147, and GLUT1 were determined by immunohistochemistry staining in skin biopsies from 48 psoriasis vularis patients and 33 healthy subjects. Cobalt chloride (CoCl@*RESULTS@#HIF-1α, CD147, and GLUT1 were highly expressed and the glycolytic capacity was increased in lesions of psoriasis vulgaris; HIF-1α upregulated the expression of CD147 and GLUT1, increased the lactate production and decreased the ATP level in CoCl@*CONCLUSIONS@#Glycolytic capacity increases in the injured keratinocytes of psoriasis vulgaris, suggesting that HIF-1α, CD147, and GLUT1 are associated with glycolysis, which can be considered as the promising targets for psoriasis therapy.


Subject(s)
Basigin , Glucose Transporter Type 1 , Glycolysis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Psoriasis/genetics , Transcriptional Activation , Up-Regulation
3.
Frontiers of Medicine ; (4): 679-692, 2021.
Article in English | WPRIM | ID: wpr-922507

ABSTRACT

Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.


Subject(s)
Electrons , Energy Metabolism , Glucose , Glycolysis , Humans , Neoplasms
4.
Journal of Experimental Hematology ; (6): 1394-1402, 2021.
Article in Chinese | WPRIM | ID: wpr-922271

ABSTRACT

OBJECTIVE@#To investigate the effect of glycolytic enzyme pyruvate kinase type 2 (PKM2) on the proliferation and apoptosis of human leukemia HL-60 cells.@*METHODS@#si-PKM2 plasmid was transfected into HL-60 cells (set as si-PKM2 group), and blank vector transfected cells were set as control group (si-Ctl group). The expression levels of PKM2 mRNA and protein in si-Ctl group and si-PKM2 group were detected by RT-qPCR and Western blot. CCK-8 cell detection kit was used to detect the proliferation ability of the cells in the two groups. Flow cytometry was used to detect the changes of cell cycle and apoptosis. Western blot and RT-qPCR were used to detect the changes of p-Akt and p-mTOR protein levels in PI3K/Akt/mTOR signaling pathway and the changes of glycolysis-related mRNA levels of the cells in the two groups. The changes in glucose consumption and lactic acid production of the cells were assayed. Over expressed PKM2, HL-60 cells were treated with PI3K inhibitor LY294002 or galactose, the changes in cell proliferation ability, cell cycle and apoptosis, as well as changes in glucose consumption and lactic acid production were detected.@*RESULTS@#Interfered by si-PKM2, mRNA and protein levels of PKM2 in si-PKM2 group significantly decreased, and proliferation ability of the cells was also reduced (P<0.05). After PKM2 knockdown, the cells were significantly blocked at G@*CONCLUSION@#PKM2 knockdown can inhibit the proliferation and induce apoptosis of HL-60 cells, and its molecular mechanism may be related to the PKM2-mediated PI3K/Akt/mTOR-glycolysis, which suggesting that PKM2 may serve as a molecular target for the prevention and treatment of leukemia.


Subject(s)
Apoptosis , Cell Proliferation , Glycolysis , Humans , Phosphatidylinositol 3-Kinases/metabolism , Pyruvate Kinase
5.
Article in English | WPRIM | ID: wpr-879944

ABSTRACT

The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.


Subject(s)
Cell Line, Tumor , Drug Resistance, Neoplasm , Glutamine/metabolism , Glycolysis , Humans , Neoplasms/drug therapy , Oxidative Phosphorylation , Tumor Microenvironment
6.
Braz. j. med. biol. res ; 54(3): e10504, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153517

ABSTRACT

Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Science using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.


Subject(s)
Humans , Mouth Neoplasms/diagnosis , Squamous Cell Carcinoma of Head and Neck/diagnosis , Glycolysis , Mouth Neoplasms/metabolism , Positron Emission Tomography Computed Tomography , Squamous Cell Carcinoma of Head and Neck/metabolism
7.
Braz. j. med. biol. res ; 53(1): e8389, Jan. 2020. tab, graf
Article in English | LILACS | ID: biblio-1055479

ABSTRACT

Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.


Subject(s)
Animals , Male , Rats , Chlorophyll/analogs & derivatives , Photosensitizing Agents/administration & dosage , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/drug therapy , Glycolysis/drug effects , Liver/physiopathology , Photochemotherapy , Chlorophyll/administration & dosage , Rats, Wistar , Oxidative Stress/physiology , Diabetes Mellitus, Experimental/pathology , Drug Therapy, Combination , Energy Metabolism/drug effects , Glycolysis/physiology , Liver/pathology
8.
Article in Chinese | WPRIM | ID: wpr-828888

ABSTRACT

OBJECTIVE@#To observe the cell death pattern induced by gefitinib in non-small cell lung cancer A549 and H1975 cells and explore the possible mechanism in light of glycolysis.@*METHODS@#The inhibitory effects of gefitinib at 20, 30, or 40 μmol/L in A549 cells and at 20, 40, or 80 μmol/L in H1975 cells were examined using MTT assay. The changes of lactic acid level in the cells were determined with a lactic acid kit, and the expression levels of glycolysis-related proteins (PKM2 and HK2) and the proteins in PI3K-Akt-mTOR signaling pathway were detected using Western blotting. 2-NBDG was used for detecting glucose uptake capacity of the cells, and ATP kit was used to detect the intracellular ATP level. The mitochondrial membrane potential of the cells was examined with the JC-1 kit, and cell apoptosis was analyzed with Annexin V-FITC/PI double staining. The relative expression levels of the apoptotic proteins Bax and Bcl-2 and the autophagy marker protein LC3B were detected with Western blotting.@*RESULTS@#MTT assay showed that gefitinib inhibited the proliferation of A549 and H1975 cells in a time- and dose-dependent manner ( < 0.05). The IC of gefitinib at 24, 48 and 72 h was 48.6, 28.6 and 19.7 μmol/L in A549 cells and was 321.6, 49.1 and 14.6 μmol/L in H1975 cells, respectively. Gefitinib significantly lowered intracellular lactic acid level of the cells ( < 0.05) and down-regulated the expressions of PKM2 and HK2 proteins ( < 0.05) and PI3K-Akt-mTOR signaling pathway-associated proteins ( < 0.05). Gefitinib obviously inhibited glucose uptake and ATP levels in both A549 and H1975 cells ( < 0.05). Treatment with gefitinib induced obviously enhanced apoptosis in the cells, resulting in apoptosis rates of (10.77± 1.0)%, (14.5±0.4)%, (17.4±0.2)% and (32.1±0.6)% at 0, 20, 30 and 40 μmol/L in A549 cells ( < 0.05) and of (10.5±0.6)%, (13.2± 0.92)%, (18.9±0.98)% and (35.1±1.4)% at 0, 20, 40 and 80 μmol/L in H1975 cells, respectively ( < 0.05). The protein expression of Bax increased and that of Bcl-2 decreased following gefitinib treatment in the cells ( < 0.05). Gefitinib significantly increased autophagy in A549 and H1975 cells as shown by increased LC3B expressions following the treatment ( < 0.05).@*CONCLUSIONS@#Gefitinib can inhibit the proliferation, induce apoptosis and increase autophagy in A549 and H1975 cells. Gefitinib induces apoptosis of the cells possibly by affecting glycolysis and PI3K-Akt-mTOR signaling pathway.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Cell Proliferation , Gefitinib , Glycolysis , Humans , Lung Neoplasms , Phosphatidylinositol 3-Kinases
9.
Braz. j. med. biol. res ; 53(5): e9330, 2020. tab, graf
Article in English | LILACS | ID: biblio-1098112

ABSTRACT

The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , MicroRNAs/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Glycolysis/genetics , Transfection , Gene Expression Regulation, Neoplastic , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Flow Cytometry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
10.
Article in English | WPRIM | ID: wpr-764077

ABSTRACT

BACKGROUND AND OBJECTIVES: Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cardiovascular tissue engineering and cell therapy. The aim of this study is to verify angiotensin II and transforming growth factor-beta 1 (TGF-β1) as potential cardiomyogenic differentiation inducers of AF-MSCs. METHODS AND RESULTS: AF-MSCs were obtained from amniocentesis samples from second-trimester pregnant women, isolated and characterized by the expression of cell surface markers (CD44, CD90, CD105 positive; CD34 negative) and pluripotency genes (OCT4, SOX2, NANOG, REX1). Cardiomyogenic differentiation was induced using different concentrations of angiotensin II and TGF-β1. Successful initiation of differentiation was confirmed by alterations in cell morphology, upregulation of cardiac genes-markers NKX2-5, TBX5, GATA4, MYH6, TNNT2, DES and main cardiac ion channels genes (sodium, calcium, potassium) as determined by RT-qPCR. Western blot and immunofluorescence analysis revealed the increased expression of Connexin43, the main component of gap junctions, and Nkx2.5, the early cardiac transcription factor. Induced AF-MSCs switched their phenotype towards more energetic and started utilizing oxidative phosphorylation more than glycolysis for energy production as assessed using Agilent Seahorse XF analyzer. The immune analysis of chromatin-modifying enzymes DNMT1, HDAC1/2 and Polycomb repressive complex 1 and 2 (PRC1/2) proteins BMI1, EZH2 and SUZ12 as well as of modified histones H3 and H4 indicated global chromatin remodeling during the induced differentiation. CONCLUSIONS: Angiotensin II and TGF-β1 are efficient cardiomyogenic inducers of human AF-MSCs; they initiate alterations at the gene and protein expression, metabolic and epigenetic levels in stem cells leading towards cardiomyocyte-like phenotype formation.


Subject(s)
Amniocentesis , Amniotic Fluid , Angiotensin II , Angiotensins , Blotting, Western , Calcium , Cell Differentiation , Cell- and Tissue-Based Therapy , Chromatin , Chromatin Assembly and Disassembly , Connexin 43 , Epigenomics , Female , Fluorescent Antibody Technique , Gap Junctions , Glycolysis , Histones , Humans , Ion Channels , Mesenchymal Stem Cells , Muscle Cells , Oxidative Phosphorylation , Phenotype , Polycomb Repressive Complex 1 , Pregnant Women , Smegmamorpha , Stem Cells , Tissue Engineering , Transcription Factors , Up-Regulation
11.
Immune Network ; : e32-2019.
Article in English | WPRIM | ID: wpr-764028

ABSTRACT

Pellino-1 is a ubiquitin (Ub) E3 ligase that plays a role in M1, but not M2a polarization of macrophages. However, it is unknown whether Pellino-1 regulates IL-10-mediated M2c polarization of macrophages. Here, we found that Pellino-1 attenuated tumor growth by inhibiting M2c polarization of macrophages. Upon IL-10 stimulation, Pellino-1-deificient bone marrow-derived macrophages (BMDMs) showed higher expression of M2c markers, but not M2a, and M2b markers than wild-type (WT) BMDMs, indicating that Pellino-1 inhibits M2c polarization of macrophages. Pellino-1-deficient BMDMs exhibited a defect in mitochondria respiration, but enhancement of glycolysis during M2c polarization. During M2c polarization of macrophages, Pellino-1 increased STAT1 phosphorylation via K63-linked ubiquitination of IL-1 receptor associated kinase 1 (IRAK1). Furthermore, Lysm-CrePellino-1(fl/fl) mice showed enhancement of tumor growth via regulating M2c polarization of tumor-associated macrophages. These results demonstrate that Pellino-1 inhibits IL-10-induced M2c macrophage polarization via K63-linked ubiquitination of IRAK1 and activation of STAT1, thereby inhibiting tumor growth in vivo.


Subject(s)
Animals , Glycolysis , Interleukin-1 , Interleukin-10 , Macrophages , Mice , Mitochondria , Phosphorylation , Phosphotransferases , Respiration , Ubiquitin , Ubiquitin-Protein Ligases , Ubiquitination
12.
Cancer Research and Treatment ; : 1479-1487, 2019.
Article in English | WPRIM | ID: wpr-763213

ABSTRACT

PURPOSE: The purpose of this study was to investigate the prognostic significance of total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) in patients with follicular lymphoma (FL) at baseline and mid-treatment with ¹⁸F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scans. MATERIALS AND METHODS: The study analyzed data from 48 patients with FL who were treated in Jiangsu Province Hospital and reviewed their baseline PET-CT scans. TMTV and TLG were computed by using the absolute value of 2.0, 2.5, and 3.0 thresholding method, respectively. RESULTS: Median age was 53 years, 75.0% of patients had stage III to IV disease, 43.8% had a Follicular Lymphoma International Prognostic Index 1 (FLIPI1) score of 3 to 5 and 20.8% had a FLIPI2 score of 3 to 5. Receiver operating characteristic (ROC) curve analysis showed the optimal cut-off values for TMTV3.0 and TLG3.0 were 476.4 (sensitivity, 85.7%; specificity, 78.0%; area under the curve [AUC], 0.760; p=0.003) and 2,676.9 (sensitivity, 71.4%; specificity, 78.0%; AUC, 0.760; p=0.003). On multivariable analysis, TMTV3.0 and TLG3.0 were independent predictors of both progression-free survival (PFS) (hazard ratio [HR], 5.406; 95% confidence interval [CI], 1.326 to 22.040; p=0.019 and HR, 6.502; 95% CI, 1.079 to 39.182; p=0.042) and overall survival (OS) (HR, 4.111; 95% CI, 1.125 to 15.027; p=0.033 and HR, 5.885; 95% CI, 1.014 to 34.148; p=0.049). ROC curve analysis showed the optimal cut-off values for ΔTMTV3.0 and ΔTLG3.0 were 66.3% (sensitivity, 85.7%; specificity, 63.4%; AUC, 0.774; p 66.3%) and TLG (ΔTLG > 64.5%) reduction are valuable tools for early treatment response assessment in FL patients.


Subject(s)
Area Under Curve , Disease-Free Survival , Electrons , Glycolysis , Humans , Lymphoma, Follicular , Methods , Prognosis , ROC Curve , Sensitivity and Specificity , Tumor Burden
13.
Yonsei Medical Journal ; : 604-610, 2019.
Article in English | WPRIM | ID: wpr-762101

ABSTRACT

PURPOSE: This study aimed to determine the prognostic value of new quantitative parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), including metabolic tumor volume (MTV), in patients with locally advanced and metastatic gallbladder cancer (GBC). MATERIALS AND METHODS: In total, 83 patients initially diagnosed with locally advanced and metastatic GBC and who underwent 18F-FDG PET/CT at the time of initial diagnosis were retrospectively reviewed. The metabolic volume-based PET parameters of primary tumors and metastatic lesions were measured, including maximum and average standardized uptake values (SUV), MTV, and total lesion glycolysis. An overall survival (OS) analysis was performed using the Kaplan-Meier method with PET and clinical parameters. A Cox proportional hazards regression analysis was performed to determine independent prognostic factors. RESULTS: In univariate analysis, pathologic differentiation (p<0.001), performance status (PS; p=0.003), C-reactive protein (CRP) level (p=0.009), and PET-related SUVmt max (the highest SUV among the metastatic lesions) (p=0.040) and MTVtotal (the sum of the MTVs of both the primary and metastatic lesions) (p=0.031), were significant for OS. In multivariate analysis, MTVtotal (hazard ratio: 2.07; 95% confidence interval: 1.23–3.48; p=0.006) remained significant for the prediction of OS, as did differentiation (p=0.001), PS (p=0.001), and CRP (p=0.039). CONCLUSION: In locally advanced and metastatic GBC, volume-based PET/CT parameters of the total tumor burden of malignancy, such as MTVtotal, were found to be useful for the identification of patients with poor prognosis.


Subject(s)
C-Reactive Protein , Diagnosis , Electrons , Fluorodeoxyglucose F18 , Gallbladder Neoplasms , Gallbladder , Glycolysis , Humans , Methods , Multivariate Analysis , Neoplasm Metastasis , Positron Emission Tomography Computed Tomography , Prognosis , Retrospective Studies , Tumor Burden
14.
Article in Chinese | WPRIM | ID: wpr-775231

ABSTRACT

It has been shown that aerobic glycolysis (AG) plays an important role in the pathogenesis and resistance mechanism of non-Hodgkin lymphoma (NHL) in recent years. Signaling pathway related to abnormal activation of AG can increase the level of AG in lymphatic and hematopoietic cells, while the enzymes related to the activity of AG are involved in the pathogenesis and prognosis of NHL. Drugs that inhibit AG can also inhibit NHL cells . Drugs inhibiting AG may increase the sensitivity of chemotherapeutic agents and prevent drug resistance. In this article, the role of signaling pathway proteins and regulatory genes related to AG in the pathogenesis and drug resistance of NHL are reviewed, and the AG as a target in the clinical diagnosis and treatment of NHL is discussed.


Subject(s)
Drug Resistance, Neoplasm , Glycolysis , Humans , Lymphoma, Non-Hodgkin , Signal Transduction
15.
Article in Chinese | WPRIM | ID: wpr-775220

ABSTRACT

OBJECTIVE@#To investigate the effects of high dose vitamin C (VC) on proliferation of breast cancer cells and to explore its mechanisms.@*METHODS@#Human breast cancer cells Bcap37 and MDA-MB-453 were treated with VC at low dose (0.01 mmol/L), medium dose (0.10 mmol/L) and high dose (2.00 mmol/L). Cell proliferation was determined with CCK-8 assay, protein expression was evaluated by Western blot, and the secretion of lactic acid in tumor cells was detected by colorimetric method. Bcap37 cells were inoculated in nude mice, and tumor baring nude mice were intraperitoneally injected with high VC(4 g/kg, VC group, =5)or normal saline (control group, =5) for 24 d. Tumor weight and body weight were calculated.@*RESULTS@# experiments demonstrated that high dose VC significantly inhibited cell proliferation in Bcap37 and MDA-MB-453 cells (all <0.01); the expressions of Glut1 and mTOR signaling pathway-related proteins were decreased (all <0.05); and the secretion of lactic acid was also markedly reduced (all <0.05). experiment showed that the tumor weight was decreased in mice treated with high-dose VC as compared with control group (<0.05), but no difference in body weights between two groups was observed.@*CONCLUSIONS@#High dose VC may inhibit proliferation of breast cancer cells both and through reducing glycolysis and protein synthesis.


Subject(s)
Animals , Ascorbic Acid , Pharmacology , Breast Neoplasms , Drug Therapy , Cell Line, Tumor , Cell Proliferation , Glycolysis , Humans , Mice , Mice, Nude , Protein Biosynthesis
16.
Immune Network ; : e11-2019.
Article in English | WPRIM | ID: wpr-740217

ABSTRACT

During virus infection, T cells must be adapted to activation and lineage differentiation states via metabolic reprogramming. Whereas effector CD8⁺ T cells preferentially use glycolysis for their rapid proliferation, memory CD8⁺ T cells utilize oxidative phosphorylation for their homeostatic maintenance. Particularly, enhanced AMP-activated protein kinase (AMPK) activity promotes the memory T cell response through different pathways. However, the level of AMPK activation required for optimal memory T cell differentiation remains unclear. A new metformin derivative, IM156, formerly known as HL156A, has been reported to ameliorate various types of fibrosis and inhibit in vitro and in vivo tumors by inducing AMPK activation more potently than metformin. Here, we evaluated the in vivo effects of IM156 on antigen-specific CD8⁺ T cells during their effector and memory differentiation after acute lymphocytic choriomeningitis virus infection. Unexpectedly, our results showed that in vivo treatment of IM156 exacerbated the memory differentiation of virus-specific CD8⁺ T cells, resulting in an increase in short-lived effector cells but decrease in memory precursor effector cells. Thus, IM156 treatment impaired the function of virus-specific memory CD8⁺ T cells, indicating that excessive AMPK activation weakens memory T cell differentiation, thereby suppressing recall immune responses. This study suggests that metabolic reprogramming of antigen-specific CD8⁺ T cells by regulating the AMPK pathway should be carefully performed and managed to improve the efficacy of T cell vaccine.


Subject(s)
AMP-Activated Protein Kinases , Cell Differentiation , Fibrosis , Glycolysis , Immunologic Memory , In Vitro Techniques , Lymphocytic choriomeningitis virus , Lymphocytic Choriomeningitis , Memory , Metformin , Oxidative Phosphorylation , T-Lymphocytes
17.
Article in English | WPRIM | ID: wpr-739584

ABSTRACT

PURPOSE: In intrahepatic cholangiocarcinoma (iCCA), genetic characteristics on ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG)-PET scans are not yet clarified. If specific genetic characteristics were found to be related to FDG uptake in iCCA, we can predict molecular features based on the FDG uptake patterns and to distinguish different types of treatments. In this purpose, we analyzed RNA sequencing in iCCA patients to evaluate gene expression signatures associated with FDG uptake patterns. METHODS: We performed RNA sequencing of 22 cases iCCA who underwent preoperative ¹⁸F-FDG-PET, and analyzed the clinical and molecular features according to the maximum standard uptake value (SUVmax). Genes and biological pathway which are associated with SUVmax were analyzed. RESULTS: Patients with SUVmax higher than 9.0 (n = 9) had poorer disease-free survival than those with lower SUVmax (n = 13, P = 0.035). Genes related to glycolysis and gluconeogenesis, phosphorylation and cell cycle were significantly correlated with SUVmax (r ≥ 0.5). RRM2, which is related to the toxicity of Gemcitabine was positively correlated with SUVmax, and SLC27A2 which is associated with Cisplastin response was negatively correlated with SUVmax. According to the pathway analysis, cell cycle, cell division, hypoxia, inflammatory, and metabolism-related pathways were enriched in high SUVmax patients. CONCLUSION: The genomic features of gene expression and pathways can be predicted by FDG uptake features in iCCA. Patients with high FDG uptake have enriched cell cycle, metabolism and hypoxic pathways, which may lead to a more rational targeted treatment approach.


Subject(s)
Hypoxia , Cell Cycle , Cell Division , Cholangiocarcinoma , Disease-Free Survival , Fluorodeoxyglucose F18 , Gene Expression , Gluconeogenesis , Glycolysis , Humans , Metabolism , Phosphorylation , Positron-Emission Tomography , Sequence Analysis, RNA , Transcriptome
19.
Article in English | WPRIM | ID: wpr-786502

ABSTRACT

PURPOSE: This study evaluated the usefulness of semiquantitative and volumetric PET parameters for predicting prognosis in patients with advanced gastric cancer (AGC).METHODS: We enrolled 213 patients who underwent ¹⁸F-fluoro-2-deoxyglucose positron emission tomography/computed tomography (¹⁸F-FDG PET/CT) prior to curative surgery for AGC. Maximum standardized uptake value (SUVmax) and tumor-to-liver uptake ratio (TLR) were measured in all patients. Metabolic tumor volume (MTV) and total lesion glycolysis were measured in volume-measurable patients. For further quantification of FDG uptake, we developed PET prognostic scores by combining SUVmax and MTV (1: low SUVmax/low MTV; 2: high SUVmax/low MTV; 3: high SUVmax/high MTV). Comparison of PET parameters between recurrence and non-recurrence groups was performed. Univariate and multivariate analyses for recurrence-free survival (RFS) and overall survival (OS) were subsequently performed.RESULTS: The recurrence rate was 32.4% (69/213 patients). Mean SUVmax and mean MTV of the recurrence group were significantly higher than those of the non-recurrence group (p = 0.026 and p = 0.025). TLR showed marginal significance (p = 0.051). In multivariate analysis for RFS including all patients, SUVmax (p = 0.022), TLR (p = 0.010), and PET score (p = 0.003) were independent prognostic factors. In post hoc analysis of PET score, significant differences in RFS were observed between PET scores 2 and 3 as well as scores 1 and 3. No significant difference in RFS was observed between scores 1 and 2. Only PET score was statistically significant for OS in univariate analysis. None of the PET parameters were statistically significant for OS in multivariate analysis.CONCLUSION: High SUVmax and high MTV of the primary tumor suggest a high risk of recurrence for AGC patients. Even if SUVmax is similar, the prognosis may vary depending on MTV. Combining PET parameters results in a better prediction for prognosis.


Subject(s)
Electrons , Glycolysis , Humans , Multivariate Analysis , Positron Emission Tomography Computed Tomography , Prognosis , Recurrence , Stomach Neoplasms , Tumor Burden
20.
Article in Chinese | WPRIM | ID: wpr-774153

ABSTRACT

Tumor cells have unique energy metabolism phenomena, namely high glucose absorption, aerobic glycolysis and high lactic acid production, which are characterized by down-regulation of related proteins involved in oxidative metabolism in tumor cells, and up-regulation of glucose transporters and monocarboxylate transporters. Studies have shown that drugs that target tumor cell glucose metabolism have the ability to selectively kill tumor cells, bringing new hope for tumor treatment. Tumor stem cells are considered to be the root cause of tumor recurrence, metastasis and poor prognosis, and their energy metabolism characteristics have not yet been agreed. Studies have shown that reversing the energy metabolism of tumor stem cells can increase their chemosensitivity. This article reviews recent studies on tumor and tumor stem cell glucose metabolism and the opportunities and challenges of tumor treatment through targeting glucose metabolism, which might provide new ideas and opportunities for clinical tumor therapy.


Subject(s)
Energy Metabolism , Glucose , Metabolism , Glycolysis , Humans , Lactic Acid , Metabolism , Neoplasms , Metabolism , Neoplastic Stem Cells , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL