Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Acta Physiologica Sinica ; (6): 160-170, 2023.
Article in Chinese | WPRIM | ID: wpr-980993

ABSTRACT

This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.


Subject(s)
Rats , Animals , Mitophagy/physiology , Rats, Sprague-Dawley , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Gyrus Cinguli , Neuralgia , Ubiquitin-Protein Ligases/metabolism , Protein Kinases , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
2.
Chinese Medical Journal ; (24): 1331-1338, 2023.
Article in English | WPRIM | ID: wpr-980922

ABSTRACT

BACKGROUND@#Amygdala plays an important role in the neurobiological basis of panic disorder (PD), and the amygdala contains different subregions, which may play different roles in PD. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the amygdala subregions in PD using resting-state functional magnetic resonance imaging and to explore the relationship between the abnormal spontaneous functional connectivity patterns of the regions of interest (ROIs) and the clinical symptoms of PD patients.@*METHODS@#Fifty-three drug-naïve, non-comorbid PD patients and 70 healthy controls (HCs) were recruited. Seed-based resting-state functional connectivity (rsFC) analyses were conducted using the bilateral amygdalae and its subregions as the ROI seed. Two samples t test was performed for the seed-based Fisher's z -transformed correlation maps. The relationship between the abnormal spontaneous functional connectivity patterns of the ROIs and the clinical symptoms of PD patients was investigated by Pearson correlation analysis.@*RESULTS@#PD patients showed increased rsFC of the bilateral amygdalae and almost all the amygdala subregions with the precuneus/posterior cingulate gyrus compared with the HC group (left amygdala [lAMY]: t  = 4.84, P  <0.001; right amygdala [rAMY]: t  = 4.55, P  <0.001; left centromedial amygdala [lCMA]: t  = 3.87, P  <0.001; right centromedial amygdala [rCMA]: t  = 3.82, P  = 0.002; left laterobasal amygdala [lBLA]: t  = 4.33, P  <0.001; right laterobasal amygdala [rBLA]: t  = 4.97, P  <0.001; left superficial amygdala [lSFA]: t  = 3.26, P  = 0.006). The rsFC of the lBLA with the left angular gyrus/inferior parietal lobule remarkably increased in the PD group ( t  = 3.70, P  = 0.003). And most of the altered rsFCs were located in the default mode network (DMN). A significant positive correlation was observed between the severity of anxiety and the rsFC between the lSFA and the left precuneus in PD patients ( r  = 0.285, P  = 0.039).@*CONCLUSIONS@#Our research suggested that the increased rsFC of amygdala subregions with DMN plays an important role in the pathogenesis of PD. Future studies may further explore whether the rsFC of amygdala subregions, especially with the regions in DMN, can be used as a biological marker of PD.


Subject(s)
Humans , Panic Disorder , Magnetic Resonance Imaging/methods , Amygdala , Gyrus Cinguli , Comorbidity
3.
Neuroscience Bulletin ; (6): 793-807, 2023.
Article in English | WPRIM | ID: wpr-982434

ABSTRACT

Itch is an unpleasant sensation that provokes the desire to scratch. While acute itch serves as a protective system to warn the body of external irritating agents, chronic itch is a debilitating but poorly-treated clinical disease leading to repetitive scratching and skin lesions. However, the neural mechanisms underlying the pathophysiology of chronic itch remain mysterious. Here, we identified a cell type-dependent role of the anterior cingulate cortex (ACC) in controlling chronic itch-related excessive scratching behaviors in mice. Moreover, we delineated a neural circuit originating from excitatory neurons of the ACC to the ventral tegmental area (VTA) that was critically involved in chronic itch. Furthermore, we demonstrate that the ACC→VTA circuit also selectively modulated histaminergic acute itch. Finally, the ACC neurons were shown to predominantly innervate the non-dopaminergic neurons of the VTA. Taken together, our findings uncover a cortex-midbrain circuit for chronic itch-evoked scratching behaviors and shed novel insights on therapeutic intervention.


Subject(s)
Mice , Animals , Gyrus Cinguli/physiology , Pruritus/pathology , Mesencephalon , Cerebral Cortex/pathology , Neurons/pathology
4.
Arq. bras. neurocir ; 41(1): 76-84, 07/03/2022.
Article in English | LILACS | ID: biblio-1362091

ABSTRACT

Alcohol abuse has impacts on public health worldwide. Conservative treatment to achieve abstinence consists of detoxification combined with psychotherapy and the use of drugs, but it is estimated that only half of the individuals achieve long-term abstinence with the available treatments. In this sense, neurosurgery appears as a therapeutic proposal. The present study aimed to gather information about the circuitry related to alcohol use disorder (AUD), to describe possible surgical targets, and to establish whether a surgical approach could be a safe and effective treatment option. A systematic review of the literature was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The 14 selected articles analyze ablative operations, deep brain stimulation (DBS), and a new procedure in which the patient is first submitted to repetitive transcranial magnetic stimulation to evaluate their response, and later an implant is surgically positioned on the evaluated target to obtain more lasting results. The most relevant outcomes were found when the anterior cingulate cortex (ACC) and the nucleus accumbens (NAcc) were used as targets, demonstrating a large reduction in alcohol intake and even its cessation. However, important side effects were observed, such as psychotic symptoms, right frontal venous infarction, seizures after implantation in the ACC and a hypomanic period after DBS in the NAcc, which could be reversed. Due to the lack of studies involving the surgical treatment of AUD, more clinical trials are needed to compare targets, to assess surgical techniques, and to estimate the safety of these techniques.


Subject(s)
Deep Brain Stimulation/methods , Alcoholism/surgery , Transcranial Magnetic Stimulation/methods , Ablation Techniques/rehabilitation , Neurosurgical Procedures/methods , Gyrus Cinguli/surgery , Nucleus Accumbens/surgery
5.
Neuroscience Bulletin ; (6): 533-547, 2022.
Article in English | WPRIM | ID: wpr-929102

ABSTRACT

People as third-party observers, without direct self-interest, may punish norm violators to maintain social norms. However, third-party judgment and the follow-up punishment might be susceptible to the way we frame (i.e., verbally describe) a norm violation. We conducted a behavioral and a neuroimaging experiment to investigate the above phenomenon, which we call the "third-party framing effect". In these experiments, participants observed an anonymous perpetrator deciding whether to keep her/his economic benefit while exposing a victim to a risk of physical pain (described as "harming others" in one condition and "not helping others" in the other condition), then they had a chance to punish that perpetrator at their own cost. Our results showed that the participants were more willing to execute third-party punishment under the harm frame compared to the help frame, manifesting a framing effect. Self-reported anger toward perpetrators mediated the relationship between empathy toward victims and the framing effect. Meanwhile, activation of the insula mediated the relationship between mid-cingulate cortex activation and the framing effect; the functional connectivity between these regions significantly predicted the size of the framing effect. These findings shed light on the psychological and neural mechanisms of the third-party framing effect.


Subject(s)
Female , Humans , Empathy , Gyrus Cinguli , Neuroimaging , Pain , Punishment/psychology
6.
Neuroscience Bulletin ; (6): 342-358, 2022.
Article in English | WPRIM | ID: wpr-929097

ABSTRACT

Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.


Subject(s)
Animals , Rats , Anxiety/etiology , Chronic Pain/etiology , GABAergic Neurons , Gyrus Cinguli/metabolism , Hyperalgesia/metabolism , Pancreatitis, Chronic/pathology , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Trinitrobenzenesulfonic Acid/toxicity
7.
Acta Physiologica Sinica ; (6): 155-164, 2022.
Article in Chinese | WPRIM | ID: wpr-927591

ABSTRACT

The present study was aimed to explore the involvement of dopamine D1 receptor of the anterior cingulate cortex (ACC) in the regulation of chronic inflammatory pain-related emotion. On the first day, the rats were acclimated to the environment and the baseline indices were measured. On the second day, the rats were administered with the dopamine D1 receptor antagonist SCH-23390 or agonist SKF38393 in the ACC, and then they were subcutaneously injected with complete Freund's adjuvant (CFA, 0.08 mL) in the left hind paw to establish conditioned place avoidance (CPA) response after pairing with specific environment. On the third day, the CPA response and the firing frequency of ACC neurons were observed synchronously, and the open-field behavior, mechanical pain behavior and paw withdrawal latency (PWL) tests were also observed subsequently. In other experiments, rats were given subcutaneous injection of normal saline (NS) on the left hind paw after SCH-23390 or SKF-38393 was administered in the ACC, and then the same observations were performed. The results showed that: (1) Compared with the control group, the PWL and mechanical pain thresholds of rats injected with CFA on the left hind paw were significantly decreased (P < 0.05); (2) The residence time of rats injected with CFA in the "pain environment" and open field center was significantly shortened (P < 0.05); (3) Pre-injection of antagonist SCH-23390 in ACC (10 μg) alleviated the anxiety-like negative behavior response induced by CFA (P < 0.05) and reversed CFA-induced increases of discharge frequency of ACC neurons (P < 0.05); (4) Pre-injection of agonist SKF-38393 in the ACC (10 μg) induced CPA-like behavioral response in rats injected with NS in the left hind paw, and increased the firing frequency of ACC neurons (P < 0.05); (5) Immunofluorescence detection showed that dopamine D1 receptor and NMDA receptor were co-expressed in the same neuron. These results suggest that inhibition of dopamine D1 receptor in ACC can alleviate the negative emotional response induced by persistent pain.


Subject(s)
Animals , Rats , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/adverse effects , Anxiety , Chronic Pain , Gyrus Cinguli , Hyperalgesia , Receptors, Dopamine D1/metabolism
8.
Acta Physiologica Sinica ; (6): 355-368, 2021.
Article in Chinese | WPRIM | ID: wpr-887674

ABSTRACT

The disorder of brain-gut interaction is an important cause of irritable bowel syndrome (IBS), but the dynamic characteristics of the brain remain unclear. Since there are many shortcomings for evaluating brain dynamic nature in the previous studies, we proposed a new method based on slope calculation by point-by-point analysis of the data from functional magnetic resonance imaging, and detected the abnormalities of brain dynamic changes in IBS patients. The results showed that compared with healthy subjects, there were dynamic changes in the brain for the IBS patients. After correction by false discovery rate (FDR), significant abnormalities were only found in two functional connections of the right posterior cingulate gyrus linked to left middle frontal gyrus, and the right posterior cingulate gyrus linked to left pallidus. The above results of the brain dynamic analysis were totally different from those of the brain static analysis of IBS patients. Our findings provide novel complementary information for illustrating the central nervous mechanism of IBS and may offer a new direction to explore central target for patients with IBS.


Subject(s)
Humans , Brain/diagnostic imaging , Brain Mapping , Gyrus Cinguli/diagnostic imaging , Irritable Bowel Syndrome/diagnostic imaging , Magnetic Resonance Imaging
10.
Chinese Acupuncture & Moxibustion ; (12): 397-404, 2020.
Article in Chinese | WPRIM | ID: wpr-826723

ABSTRACT

OBJECTIVE@#To observe the direct intervention effects of electroacupuncture (EA) and non-steroid anti-inflammatory drugs (NSAIDs) on pain memory, and to explore their effects on cAMP/PKA/cAMP pathway in anterior cingulate gyrus (ACC).@*METHODS@#Fifty clean healthy male SD rats were randomly divided into a control group, a model group, an indomethacin group, an EA group and a sham EA group, 10 rats in each group. Except the control group, the pain memory model was established in the remaining four groups by twice injection of carrageenan at foot; 0.1 mL of 2%λ-carrageenan was subcutaneously injected at the left foot of rats; 14 days later, when the pain threshold of rats of each group returned to the basic level, the second injection was performed with the same procedure. The rats in the EA group were treated with EA at bilateral "Zusanli" (ST 36) for 30 min; the rats in the indomethacin group was treated with indomethacin intragastric administration with the dose of 3 mg/kg; the rats in the sham EA group was treated with EA without electricity at the point 0.3 mm forward "Zusanli" (ST 36) with the depth of 2 mm for 30 min; the rats in the control group was not given any invention. All the above interventions were performed 5 h, 1 d, 2 d and 3 d after the second injection of 2% λ-carrageenan. The left-side paw withdrawal thresholds (PWT) were observed before the first injection, 4 h, 3 d, 5 d after the first injection, before the second injection and 4 h, 1 d, 2 d, 3 d after the second injection. Three days after the second injection, the number of positive cells of cAMP, p-PKA, p-CREB and the number of positive cells of protein co-expression in the right ACC brain area were detected by immunofluorescence, and the relative protein expression of p-PKA and p-CREB were detected by Western blot.@*RESULTS@#Compared with the control group, the PWTs in the model group decreased significantly 4 h, 3 d and 5 d after the first injection and 1 d, 2 d and 3 d after the second injection (<0.05); compared with the control group, the positive expression of cAMP, p-PKA and p-CREB in the right ACC brain area in the model group increased significantly (<0.05), and the number of positive cells of the co-expression of cAMP/p-PKA and p-PKA/p-CREB also increased significantly (<0.05). Compared with the model group, indomethacin group and sham EA group, the PWTs in the EA group were increased significantly 1 d, 2 d and 3 d after the second injection (<0.05); compared with the model group, indomethacin group and sham EA group, the positive expression of p-PKA and p-CREB in the right ACC brain area in the EA group decreased significantly (<0.05), and the number of positive cells of co-expression of cAMP/p-PKA and p-PKA/p-CREB was decreased significantly (<0.05). Compared with the model group and sham EA group, the positive expression of cAMP in the right ACC brain area was decreased in the EA group (<0.05).@*CONCLUSION@#EA have a direct intervention effect on pain memory, which have significant advantage over NSAIDs in the treatment of chronic pain. The advantage effect of EA on pain memory may be related to the inhibition of cAMP/PKA/CREB pathway in ACC area.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents, Non-Steroidal , Therapeutic Uses , Cyclic AMP , Metabolism , Cyclic AMP Response Element-Binding Protein , Metabolism , Cyclic AMP-Dependent Protein Kinases , Metabolism , Electroacupuncture , Gyrus Cinguli , Metabolism , Pain Threshold , Random Allocation , Rats, Sprague-Dawley , Signal Transduction
11.
Rev. Assoc. Med. Bras. (1992) ; 65(9): 1174-1180, Sept. 2019. graf
Article in English | LILACS | ID: biblio-1041070

ABSTRACT

SUMMARY OBJECTIVE The study aims to explore the relationship between preoperative anxiety and chronic postoperative pain. METHODS A total of forty rats were divided into four groups, control, single-prolonged stress alone, Hysterectomy alone, and SPS+ Hysterectomy. The paw withdrawal mechanical thresholds (PWMT) were examined. qRT-PCR and western blotting assay were performed to detect the GFAP expression in astrocytes isolated from the anterior cingulate cortex (ACC) region. In addition, the long-term potentiation (LTP) in ACC was examined. RESULTS Rats in the SPS group or the Hysterectomy alone group had no significant effect on chronic pain formation, but SPS can significantly induce chronic pain after surgery. Astrocytes were still active, and the LTP was significantly increased three days after modeling in the SPS+Hysterectomy group. CONCLUSIONS anxiety can induce chronic pain by activating astrocytes in the ACC region.


RESUMO OBJETIVO O objetivo deste estudo é explorar a relação entre a ansiedade no pré-operatório e a dor crônica no pós-operatório. MÉTODOS Um total de 40 ratos foram divididos em quatro grupos: controle, estresse prolongado (SPS), histerectomia e SPS + histerectomia. Os limiares de retirada da pata em resposta a estímulo mecânico (PWMT) foram examinados. Ensaios qRT-PCR e imunoenzimáticos (western blotting) foram realizados para detectar a expressão de GFAP em astrócitos isolados da região do córtex cingulado anterior (CCA). Além disso, a potenciação de longa duração (LTP) no CCA também foi examinada. RESULTADOS Os ratos no grupo de estresse prolongado e no grupo de histerectomia não apresentaram nenhum efeito significativo na formação de dor crônica. Porém, o estresse prolongado foi capaz de induzir dor crônica significativamente após a cirurgia. Três dias após o modelo, o grupo de SPS + histerectomia ainda apresentava astrócitos ativos e LTP significativamente maior. CONCLUSÃO A ansiedade pode provocar dor crônica através da ativação de astrócitos na região do CCA.


Subject(s)
Animals , Female , Anxiety/complications , Pain, Postoperative/etiology , Astrocytes/metabolism , Chronic Pain/etiology , Pain, Postoperative/psychology , Stress, Psychological/etiology , Time Factors , Random Allocation , Rats, Sprague-Dawley , Pain Threshold/physiology , Long-Term Potentiation/physiology , Disease Models, Animal , Preoperative Period , Chronic Pain/psychology , Glial Fibrillary Acidic Protein/metabolism , Gyrus Cinguli/metabolism , Hindlimb , Hysterectomy
13.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 41(3): 254-256, May-June 2019. tab
Article in English | LILACS | ID: biblio-1039095

ABSTRACT

Objective: Bipolar disorder (BD) is highly heritable. The present study aimed at identifying brain morphometric features that could represent markers of BD vulnerability in non-bipolar relatives of bipolar patients. Methods: In the present study, structural magnetic resonance imaging brain scans were acquired from a total of 93 subjects, including 31 patients with BD, 31 non-bipolar relatives of BD patients, and 31 healthy controls. Volumetric measurements of the anterior cingulate cortex (ACC), lateral ventricles, amygdala, and hippocampus were completed using the automated software FreeSurfer. Results: Analysis of covariance (with age, gender, and intracranial volume as covariates) indicated smaller left ACC volumes in unaffected relatives as compared to healthy controls and BD patients (p = 0.004 and p = 0.037, respectively). No additional statistically significant differences were detected for other brain structures. Conclusion: Our findings suggest smaller left ACC volume as a viable biomarker candidate for BD.


Subject(s)
Humans , Male , Female , Adult , Young Adult , Bipolar Disorder/pathology , Gyrus Cinguli/pathology , Hippocampus/pathology , Bipolar Disorder/genetics , Magnetic Resonance Imaging , Family , Case-Control Studies , Endophenotypes , Middle Aged
14.
Journal of Neurocritical Care ; (2): 37-45, 2019.
Article in English | WPRIM | ID: wpr-765921

ABSTRACT

BACKGROUND: Patients with persistent vegetative state (PVS) show no evidence of awareness of self or their environment, and those with minimally conscious state (MCS) have severely impaired consciousness with minimal but definite behavioral evidence of self or environmental awareness after stroke. Neuroimaging and clinical characteristics separating these two close consciousness states after stroke were insufficiently studied. METHODS: We conducted a hospital-based cohort study of all patients with stroke (2011 to 2017) who underwent 3T magnetic resonance imaging and consciousness assessment after 3 months of inclusion. Univariate and multivariate regression analyses were used to estimate the relative risk of neuroimaging markers for differentiation of PVS and MCS. RESULTS: Of 3,600 eligible subjects, 323 patients (0.09%) had PVS and 93 (0.02%) had MCS (mean age, 62.25±13.4 years). Higher stroke volume was strongly associated with PVS compared to MCS (odds ratio [OR], 0.99; 95% confidence interval [CI], 0.98 to 1.00; P=0.001). On univariate analysis, cingulate gyrus (OR, 2.7; 95% CI, 1.62 to 4.36; P=0.001) and corpus callosum (OR, 2.1; 95% CI, 1.28 to 3.44; P=0.003) involvement was significantly associated with PVS. However, on multivariate analysis, only cingulate gyrus involvement was independently associated with PVS (OR, 2.2; 95% CI, 1.33 to 3.72; P=0.002). CONCLUSION: Our results indicate that PVS and MCS are different consciousness states according to clinical and neuroimaging findings. To predict outcome, cognitive performance of these patients should be well questioned after stroke.


Subject(s)
Humans , Cognition Disorders , Cohort Studies , Consciousness , Corpus Callosum , Gyrus Cinguli , Magnetic Resonance Imaging , Multivariate Analysis , Neuroimaging , Persistent Vegetative State , Stroke Volume , Stroke
15.
International Neurourology Journal ; : 195-204, 2019.
Article in English | WPRIM | ID: wpr-764124

ABSTRACT

PURPOSE: To quantify the relative importance of brain regions responsible for reduced functional connectivity (FC) in their Voiding Initiation Network in female multiple sclerosis (MS) patients with neurogenic lower urinary tract dysfunction (NLUTD) and voiding dysfunction (VD). A data-driven machine-learning approach is utilized for quantification. METHODS: Twenty-seven ambulatory female patients with MS and NLUTD (group 1: voiders, n=15 and group 2: VD, n=12) participated in a functional magnetic resonance imaging (fMRI) voiding study. Brain activity was recorded by fMRI with simultaneous urodynamic testing. The Voiding Initiation Network was identified from averaged fMRI activation maps. Four machine-learning algorithms were employed to optimize the area under curve (AUC) of the receiver-operating characteristic curve. The optimal model was used to identify the relative importance of relevant brain regions. RESULTS: The Voiding Initiation Network exhibited stronger FC for voiders in frontal regions and stronger disassociation in cerebellar regions. Highest AUC values were obtained with ‘random forests’ (0.86) and ‘partial least squares’ algorithms (0.89). While brain regions with highest relative importance (>75%) included superior, middle, inferior frontal and cingulate regions, relative importance was larger than 60% for 186 of the 227 brain regions of the Voiding Initiation Network, indicating a global effect. CONCLUSIONS: Voiders and VD patients showed distinctly different FC in their Voiding Initiation Network. Machine-learning is able to identify brain centers contributing to these observed differences. Knowledge of these centers and their connectivity may allow phenotyping patients to centrally focused treatments such as cortical modulation.


Subject(s)
Female , Humans , Area Under Curve , Brain , Gyrus Cinguli , Machine Learning , Magnetic Resonance Imaging , Multiple Sclerosis , Urinary Tract , Urodynamics
16.
Psychiatry Investigation ; : 662-670, 2019.
Article in English | WPRIM | ID: wpr-760982

ABSTRACT

The neuroimaging has been applied in the study of pathophysiology in major depressive disorder (MDD). In this review article, several kinds of methodologies of neuroimaging would be discussed to summarize the promising biomarkers in MDD. For the magnetic resonance imaging (MRI) and magnetoencephalography field, the literature review showed the potentially promising roles of frontal lobes, such as anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). In addition, the limbic regions, such as hippocampus and amygdala, might be the potentially promising biomarkers for MDD. The structures and functions of ACC, DLPFC, OFC, amygdala and hippocampus might be confirmed as the biomarkers for the prediction of antidepressant treatment responses and for the pathophysiology of MDD. The functions of cognitive control and emotion regulation of these regions might be crucial for the establishment of biomarkers. The near-infrared spectroscopy studies demonstrated that blood flow in the frontal lobe, such as the DLPFC and OFC, might be the biomarkers for the field of near-infrared spectroscopy. The electroencephalography also supported the promising role of frontal regions, such as the ACC, DLPFC and OFC in the biomarker exploration, especially for the sleep electroencephalogram to detect biomarkers in MDD. The positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in MDD demonstrated the promising biomarkers for the frontal and limbic regions, such as ACC, DLPFC and amygdala. However, additional findings in brainstem and midbrain were also found in PET and SPECT. The promising neuroimaging biomarkers of MDD seemed focused in the fronto-limbic regions.


Subject(s)
Amygdala , Biomarkers , Brain Stem , Depression , Depressive Disorder, Major , Electroencephalography , Frontal Lobe , Gyrus Cinguli , Hippocampus , Magnetic Resonance Imaging , Magnetoencephalography , Mesencephalon , Neuroimaging , Positron-Emission Tomography , Prefrontal Cortex , Spectroscopy, Near-Infrared , Tomography, Emission-Computed , Tomography, Emission-Computed, Single-Photon
17.
Psychiatry Investigation ; : 234-243, 2019.
Article in English | WPRIM | ID: wpr-760913

ABSTRACT

OBJECTIVE: Working memory impairments serve as prognostic factors for patients with schizophrenia. Working memory deficits are mainly associated with gray matter (GM) thickness and volume. We investigated the association between GM diffusivity and working memory in controls and individuals with schizophrenia. METHODS: T1 and diffusion tensor images of the brain, working memory task (letter number sequencing) scores, and the demographic data of 90 individuals with schizophrenia and 97 controls were collected from the SchizConnect database. T1 images were parcellated into the 68 GM Regions of Interest (ROI). Axial Diffusivity (AD), Fractional Anisotropy (FA), Radial Diffusivity (RD), and Trace (TR) were calculated for each of the ROIs. RESULTS: Compared to the controls, schizophrenia group showed significantly increased AD, RD, and TR in specific regions on the frontal, temporal, and anterior cingulate area. Moreover, working memory was negatively correlated with AD, RD, and TR in the lateral orbitofrontal, superior temporal, inferior temporal, and rostral anterior cingulate area on left hemisphere in the individuals with schizophrenia. CONCLUSION: These results demonstrated GM microstructural abnormalities in the frontal, temporal, and anterior cingulate regions of individuals with schizophrenia. Furthermore, these regional GM microstructural abnormalities suggest a neuropathological basis for the working memory deficits observed clinically in individuals with schizophrenia.


Subject(s)
Humans , Anisotropy , Brain , Diffusion , Diffusion Tensor Imaging , Gray Matter , Gyrus Cinguli , Memory, Short-Term , Schizophrenia
18.
Annals of Rehabilitation Medicine ; : 142-148, 2019.
Article in English | WPRIM | ID: wpr-762632

ABSTRACT

OBJECTIVE: To investigate association between lesion location on magnetic resonance imaging (MRI) performed after an infarction and the duration of dysphagia in middle cerebral artery (MCA) infarction. METHODS: A videofluoroscopic swallowing study was performed for 59 patients with dysphagia who were diagnosed as cerebral infarction of the MCA territory confirmed by brain MRI. Lesions were divided into 11 regions of interest: primary somatosensory cortex, primary motor cortex, supplementary motor cortex, anterior cingulate cortex, orbitofrontal cortex, parieto-occipital cortex, insular cortex, posterior limb of the internal capsule (PLIC), thalamus, basal ganglia (caudate nucleus), and basal ganglia (putamen). Recovery time was defined as the period from the first day of L-tube feeding to the day that rice porridge with thickening agent was prescribed. Recovery time and brain lesion patterns were compared and analyzed. RESULTS: The mean recovery time of all patients was 26.71±16.39 days. The mean recovery time was 36.65±15.83 days in patients with PLIC lesions and 32.6±17.27 days in patients with caudate nucleus lesions. Only these two groups showed longer recovery time than the average recovery time for all patients. One-way analysis of variance for recovery time showed significant differences between patients with and without lesions in PLIC and caudate (p<0.001). CONCLUSION: Injury to both PLIC and caudate nucleus is associated with longer recovery time from dysphagia.


Subject(s)
Humans , Basal Ganglia , Brain , Caudate Nucleus , Cerebral Cortex , Cerebral Infarction , Deglutition , Deglutition Disorders , Extremities , Gyrus Cinguli , Infarction , Infarction, Middle Cerebral Artery , Internal Capsule , Magnetic Resonance Imaging , Middle Cerebral Artery , Motor Cortex , Prefrontal Cortex , Somatosensory Cortex , Thalamus
19.
Yonsei Medical Journal ; : 935-943, 2019.
Article in English | WPRIM | ID: wpr-762039

ABSTRACT

PURPOSE: This study aimed to identify the neural basis of executive function (EF) in amnestic mild cognitive impairment (aMCI) according to beta-amyloid (Aβ) positivity. Furthermore, we explored if the identified brain areas could serve as predictors for clinical progression. MATERIALS AND METHODS: We included individuals with aMCI using data from [¹⁸F]-florbetapir-positron emission tomography (PET), fluorodeoxyglucose-PET, and EF scores, as well as follow-up clinical severity scores at 1 and 5 years from baseline from the Alzheimer's Disease Neuroimaging Initiative database. The correlations between EF score and regional cerebral glucose metabolism (rCMglc) were analyzed separately for aMCI with low Aβ burden (aMCI Aβ−, n=230) and aMCI with high Aβ burden (aMCI Aβ+, n=268). Multiple linear regression analysis was conducted to investigate the associations between rCMglc and clinical progression. RESULTS: Longitudinal courses differed between aMCI Aβ− and aMCI Aβ+ groups. On average, aMCI Aβ− subjects maintained their level of clinical severity, whereas aMCI Aβ+ subjects showed progression. EF impairment in aMCI Aβ− was related to the anterior cingulate cortex (ACC), whereas that in aMCI Aβ+ was related to Alzheimer's Disease-vulnerable brain regions. ACC and the posterior cingulate cortex were associated with clinical progression in aMCI Aβ− and aMCI Aβ+, respectively. CONCLUSION: Our findings suggest that although MCI subjects showed similar behavioral phenotypes at the time of diagnosis, EF and further progression were associated with different brain regions according to Aβ burden. Clarification of the etiologies and nature of EF impairment in aMCI are critical for disease prognosis and management.


Subject(s)
Alzheimer Disease , Amyloid , Brain , Cognition , Diagnosis , Executive Function , Follow-Up Studies , Glucose , Gyrus Cinguli , Linear Models , Metabolism , Cognitive Dysfunction , Neuroimaging , Phenotype , Positron-Emission Tomography , Prognosis
20.
Journal of Korean Medical Science ; : e146-2019.
Article in English | WPRIM | ID: wpr-764987

ABSTRACT

BACKGROUND: The processing of emotional visual stimulation involves the processing of emotional and visuoperceptual information. It is not completely revealed how the valence and arousal affect these two aspects. The objective was to investigate the effects of valence and arousal on spatiotemporal characteristics of cortical information processing using distributed source imaging of event-related current density (ERCD). METHODS: Electroencephalograms (64 channels) were recorded from 19 healthy men while presenting affective pictures. Distributed source localization analysis was adopted to obtain the spatiotemporal pattern of ERCD on cortical surface in response to emotional visual stimulation. A nonparametric cluster-based permutation test was used to find meaningful time and space without prior knowledge. RESULTS: Significant changes of ERCD in 400–800 ms among positive, negative, and neutral emotional conditions were found in left posterior cingulate cortex (PCC) and right inferior temporal cortex (ITC). In the PCC, the stimuli with higher arousal levels showed more negative ERCD than neutral stimuli. In the ITC, the ERCD for negative stimuli was significantly more negative than those of positive and neutral ones. CONCLUSION: Arousal and valence had strong influence on memory encoding and visual analysis at late period. The location and time showing significant change in neural activity according to arousal and valence would provide valuable information for understanding the changes of cortical function by neuropsychiatric disorders.


Subject(s)
Humans , Male , Arousal , Electronic Data Processing , Electroencephalography , Gyrus Cinguli , Memory , Photic Stimulation , Spatio-Temporal Analysis , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL