Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Article in Chinese | WPRIM | ID: wpr-879520

ABSTRACT

OBJECTIVE@#To detect the mutation site in a pedigree affected with autosomal dominant polycystic kidney disease (ADPKD) and verify its impact on the protein function.@*METHODS@#Peripheral blood samples were collected from the proband and his pedigree members for the extraction of genomic DNA. Mutational analysis was performed on the proband through whole-exome sequencing. Suspected variant was verified by Sanger sequencing. A series of molecular methods including PCR amplification, restriction enzyme digestion, ligation and transformation were also used to construct wild-type and mutant eukaryotic expression vectors of the PKD2 gene, which were transfected into HEK293T and HeLa cells for the observation of protein expression and cell localization.@*RESULTS@#The proband was found to harbor a c.2051dupA (p. Tyr684Ter) frame shift mutation of the PKD2 gene, which caused repeat of the 2051st nucleotide of its cDNA sequence and a truncated protein. Immunofluorescence experiment showed that the localization of the mutant protein within the cell was altered compared with the wild-type, which may be due to deletion of the C-terminus of the PKD2 gene.@*CONCLUSION@#The c.2051dupA (p. Tyr684Ter) mutation of the PKD2 gene probably underlay the pathogenesis of ADPKD in this pedigree.


Subject(s)
DNA Mutational Analysis , Female , Frameshift Mutation , HEK293 Cells , HeLa Cells , Humans , Male , Pedigree , Polycystic Kidney, Autosomal Dominant/physiopathology , Protein Kinases/genetics , Protein Transport/genetics , Whole Exome Sequencing
2.
Braz. arch. biol. technol ; 64: e21190530, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153299

ABSTRACT

HIGHLIGHTS The phenolic composition, antioxidant activity and cytotoxic potential of the extracts of C. solstitialis and U. picroides were investigated. Caffeic acid was found as the most abundant phenolic compound in the extracts. Both species showed promising antioxidant activity towards different assays. The highest cytotoxic potential was observed in the extract of C. solstitialis.


Abstract It is known that some genera of the Asteraceae family are commonly used in Turkish folk medicine. Several studies have investigated the biological effects of different extracts of Centaurea and Urospermum species, but studies involving the phenolic composition of C. solstitialis and U. picroides extracts are very limited. This study aimed to investigate the phenolic composition and antioxidant activity of C. solstitialis and U. picroides and evaluate their possible cytotoxic effect. RP-HPLC analysis was used to elucidate the phenolic profiles of the ethanolic extracts of flowering parts of C. solstitialis and U. picroides.The both ethanolic extracts were assessed for their antioxidant properties using DPPH, FRAP, phosphomolybdenum and metal chelating assays. Furthermore, the effect of the extracts on cell viability was evaluated against MCF-7 and PC-3 cancer cells and HEK293 cell line using the MTT assay. The most abundant phenolic compound in both extracts was determined to be caffeic acid, and the amount of this compound was 24078.03 and 14329.59 µg g-1 in the extracts of C. solstitialis and U. picroides, respectively. The antioxidant activity of the extracts was found similar. Compared with U. picroides extract, C. solstitialis extract had higher potential on the inhibition of cell viability. The IC50 value of C. solstitialis on MCF cells was found as 58.53 µg mL-1. These data suggest that the extracts of C. solstitialis and U. picroides may be considered as novel and alternative natural antioxidant and anticancer sources.


Subject(s)
Humans , Asteraceae/chemistry , Cytotoxins/pharmacology , Centaurea/chemistry , Phenolic Compounds/analysis , Antioxidants/pharmacology , Phenols/pharmacology , Plants, Medicinal , Turkey , Caffeic Acids/pharmacology , Plant Extracts/pharmacology , Chromatography, High Pressure Liquid , HEK293 Cells
3.
Braz. arch. biol. technol ; 64: e21200817, 2021. graf
Article in English | LILACS | ID: biblio-1345486

ABSTRACT

Abstract Human Embryonic Kidney 293T cells (HEK-293T) are the most common host for viral vector production and are also widely employed for recombinant protein production. These cells are typically cultured in monolayer (adherent culture) using culture medium containing fetal bovine serum (FBS), which impairs batch-to-batch reproducibility and scale-up. The adaptation of adherent cell culture to suspension culture in chemically defined serum-free culture medium is an attractive approach for large-scale bioprocess implementation while aiming for a Good Manufacturing Practice (GMP) compliant production process. Therefore, in the present study, our goal was to adapt HEK-293T cells to serum-free suspension culture conditions and evaluate the feasibility of adapted cells to be transfected using different plasmid vectors for recombinant protein production. Firstly, the cells were efficiently adapted to serum-free conditions by sequential adaptation (FBS-containing medium weaning). During the whole process, parameters such as cell growth, viability and doubling time were evaluated and compared to the control (adherent serum-supplemented HEK-293T cell culture). Afterwards, these cells were adapted to suspension culture by using Erlenmeyer flasks in an orbital shaker platform, being able to achieve meaningful cell density with high viability. Adapted cells presented a transfection efficiency of approximately 50% for all vector constructs used (1054-GFP, Factor-VIII and Factor-IX). Overall, it was possible to successfully adapt HEK-293T cells to suspension and serum-free conditions, which represents an important step towards the development of a scalable and GMP-compliant production process. In addition, adapted cells efficiently expressed the different transgene tested, opening up possibilities for its use in recombinant protein production.


Subject(s)
Recombinant Proteins , Adaptation , HEK293 Cells , Culture Media, Serum-Free
4.
Article in Chinese | WPRIM | ID: wpr-878422

ABSTRACT

OBJECTIVES@#This study aims to construct endogenous exosomes abundantly loaded with miR-1 and investigate the role of exosome-mediated microRNA-1 (miR-1) delivery on CAL-27 cell proliferation.@*METHODS@#Exosomes secreted by miR-1-overexpressing HEK293 cells (miR1-EXO) were purified via ultracentrifugation and subjected to transmission electron microscopy, nanoparticle analysis, Western blot analysis, and quantitative polymerase chain reaction (qPCR). CAL-27 cells were cocultured with exosomes secreted by HEK293 cells (CON-EXO) and miR1-EXO and equivalent phosphate buffer saline. The intracellular transport of exosomes was measured by using immunofluorescence, the expression of miR-1 and its target gene MET were investigated via qPCR, CAL-27 cell proliferation was measured through MTT assay, and cell cycle state was determined by applying flow cytometry.@*RESULTS@#Electron microscopy revealed that miR1-EXO and CON-EXO were spherical or cup-shaped with an average diameter of approximately 110 nm. The well-known exosome markers CD9, Tsg101, and Alix were enriched. The expression of miR-1 in miR1-EXO was higher than that in CON-EXO (285.80±14.33 vs 1.00±0.06, @*CONCLUSIONS@#Exosomes secreted from miR1-EXO cells could load abundant miR-1. Exosomal miR-1 delivered into CAL-27 cells by using miR1-EXO suppressed the expression of MET mRNA and inhibited cell proliferation.


Subject(s)
Cell Cycle , Cell Proliferation , Exosomes , HEK293 Cells , Humans , MicroRNAs
5.
Acta Physiologica Sinica ; (6): 274-284, 2020.
Article in Chinese | WPRIM | ID: wpr-827059

ABSTRACT

The study was designed to investigate the effects and mechanism of a calcium-sensing receptor (CaSR) polymorphism at E942K on the proliferation of gastric cancer cells. Single nucleotide polymorphisms (SNPs) were detected between gastric cancers group and normal controls group by DNA sequence analysis. The cell model was constructed by transfection of E942K mutant plasmid and wild-type (WT) plasmid into SGC-7901 and HEK-293 cells. The effect of E942K mutation on cell proliferation ability was detected by CCK8 and cell clone formation experiments. The effect of E942K mutation on calcium signaling was detected by calcium imaging. Western blot experiments were used to detect changes in phosphorylation levels of key proteins ERK1/2 and β-catenin in downstream signaling pathways after E942K mutation. The results showed that the mutation rate of E942K in gastric cancer group was significantly higher than that in normal control group (P < 0.05). CCK8 and cell clone formation experiments showed that E942K mutation significantly improved the proliferation ability of SGC-7901 gastric cancer cells and HEK-293 cells. E942K mutation enhanced calcium signaling in SGC-7901 and HEK-293 cells. E942K mutation enhanced ERK1/2 phosphorylation without affecting β-catenin phosphorylation. The results suggest that E942K mutation in CaSR may ultimately promote the proliferation of gastric cancer cells by enhancing intracellular calcium signaling and ERK1/2 phosphorylation. These results have potential clinical implications for the diagnosis and targeted therapy of gastric cancer.


Subject(s)
Calcium , Cell Proliferation , HEK293 Cells , Humans , MAP Kinase Signaling System , Mutation , Receptors, Calcium-Sensing , Genetics , Stomach Neoplasms , Genetics
6.
Chinese Journal of Biotechnology ; (12): 969-978, 2020.
Article in Chinese | WPRIM | ID: wpr-826879

ABSTRACT

Drugs targeting immune checkpoint are used for cancer treatment, but resistance to single drug may occur. Combination therapy blocking multiple checkpoints simultaneously can improve clinical outcome. Therefore, we designed a recombinant protein rPC to block multiple targets, which consists of extracellular domains of programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). The coding sequence was inserted into expression vector and stably transfected into HEK293 cells. The culture supernatant was collected and rPC was affinity-purified. Real-time quantitative PCR was used to evaluate the expression levels of ligands for PD-1 and CTLA-4 in several human cancer cell lines. The binding of rPC with cancer cells was examined by immunofluorescence cell staining, the influence of rPC on cancer cell growth was assayed by CCK-8. The results showed that rPC could be expressed and secreted by stably transfected HEK293 cells, the purified rPC could bind to lung cancer NCI-H226 cells which have high levels of ligands for PD-1 and CTLA-4, no direct impact on cancer cell growth could be observed by rPC treatment. The recombinant protein rPC can be functionally assayed further for developing novel immunotherapeutic drugs for cancer.


Subject(s)
Animals , CTLA-4 Antigen , Genetics , Cell Proliferation , HEK293 Cells , Humans , Lung Neoplasms , Metabolism , Programmed Cell Death 1 Receptor , Genetics , Protein Binding , Protein Domains , Genetics , Recombinant Fusion Proteins , Genetics , Metabolism
7.
Chinese Journal of Biotechnology ; (12): 979-991, 2020.
Article in Chinese | WPRIM | ID: wpr-826878

ABSTRACT

Adoptive immunotherapy based on chimeric antigen receptor-modified T cells (CAR-T) is one of the most promising strategies to treat malignant tumors, but its application in solid tumors is still limited. Glypican-3 (GPC3) is a meaningful diagnostic, therapeutic, and prognostic biomarker for hepatocellular carcinoma (HCC). The second/third generation GPC3-targeted CAR-T cells are generated to treat HCC. In order to improve the therapeutic effect, we constructed a fourth-generation lentiviral vector to express GPC3 CAR, human interleukin-7 (IL-7) and CCL19. Then the lentiviral vector and packaging plasmids were co-transfected into HEK293T cells to generate CAR lentiviral particles. Human T lymphocyte cells were transduced with CAR lentiviral to develop the fourth-generation GPC3-targeted CAR-T cells (GPC3-BBZ-7×19). In vitro, we used cell counting, transwell assay, luciferase bioluminescence assay and flow cytometry to compare the proliferation, chemotaxis, cytotoxicity and subtype distribution between GPC3-BBZ-7×19 CAR-T cells and the second generation GPC3-targeted CAR-T cells (GPC3-BBZ). In vivo, we established GPC3-positive HCC xenograft model in immunodeficient mice, then untransduced T cells (non-CAR-T) or GPC3-BBZ-7×19 CAR-T cells were injected. Tumor growth in mice was observed by bioluminescence imaging. Results showed that compared with GPC3-BBZ CAR-T, GPC3-BBZ-7×19 CAR-T cells had stronger proliferation, chemotactic ability, and higher composition of memory stem T cells (Tscm) (P values<0.05). However, there were no significant difference in cytotoxicity and cytokine secretion between them. In addition, GPC3-BBZ-7×19 CAR-T cells could significantly eliminate GPC3-positive HCC xenografts established in immunodeficient mice. Therefore, the fourth-generation GPC3-targeted CAR-T cells (secreting IL-7 and CCL19) are expected to be more durable and effective against HCC and produce tumor-specific memory, to provide a preclinical research basis for future clinical trials.


Subject(s)
Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Chemokine CCL19 , Metabolism , Glypicans , Metabolism , HEK293 Cells , Humans , Interleukin-7 , Metabolism , Lentivirus , Genetics , Liver Neoplasms , Mice , Receptors, Chimeric Antigen , Metabolism , T-Lymphocytes , Metabolism , Xenograft Model Antitumor Assays
8.
Protein & Cell ; (12): 894-914, 2020.
Article in English | WPRIM | ID: wpr-880885

ABSTRACT

Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.


Subject(s)
A549 Cells , Animals , Apoptosis Regulatory Proteins/immunology , DEAD Box Protein 58/immunology , Dogs , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Orthomyxoviridae Infections/pathology , Proteolysis , Signal Transduction/immunology , THP-1 Cells , TNF Receptor-Associated Factor 3/immunology , Ubiquitination/immunology , Viral Proteins/immunology
9.
Biol. Res ; 53: 25, 2020. tab, graf
Article in English | LILACS | ID: biblio-1124210

ABSTRACT

BACKGROUND: Hypoxia inducible factor-1 (HIF-1) is considered as the most activated transcriptional factor in response to low oxygen level or hypoxia. HIF-1 binds the hypoxia response element (HRE) sequence in the promoter of different genes, mainly through the bHLH domain and activates the transcription of genes, especially those involved in angiogenesis and EMT. Considering the critical role of bHLH in binding HIF-1 to the HRE sequence, we hypothesized that bHLH could be a promising candidate to be targeted in hypoxia condition. METHODS: We inserted an inhibitory bHLH (ibHLH) domain in a pIRES2-EGFP vector and transfected HEK293T cells with either the control vector or the designed construct. The ibHLH domain consisted of bHLH domains of both HIF-1a and Arnt, capable of competing with HIF-1 in binding to HRE sequences. The transfected cells were then treated with 200 µM of cobalt chloride (CoCl2) for 48 h to induce hypoxia. Real-time PCR and western blot were performed to evaluate the effect of ibHLH on the genes and proteins involved in angiogenesis and EMT. RESULTS: Hypoxia was successfully induced in the HEK293T cell line as the gene expression of VEGF, vimentin, and ß-catenin were significantly increased after treatment of untransfected HEK293T cells with 200 µM CoCl2. The gene expression of VEGF, vimentin, and ß-catenin and protein level of ß-catenin were significantly decreased in the cells transfected with either control or ibHLH vectors in hypoxia. However, ibHLH failed to be effective on these genes and the protein level of ß-catenin, when compared to the control vector. We also observed that overexpression of ibHLH had more inhibitory effect on gene and protein expression of N-cadherin compared to the control vector. However, it was not statistically significant. CONCLUSION: bHLH has been reported to be an important domain involved in the DNA binding activity of HIF. However, we found that targeting this domain is not sufficient to inhibit the endogenous HIF-1 transcriptional activity. Further studies about the function of critical domains of HIF-1 are necessary for developing a specific HIF-1 inhibitor.


Subject(s)
Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Gene Expression , Transcriptional Activation/genetics , Blotting, Western , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypoxia-Inducible Factor 1/genetics , HEK293 Cells , Real-Time Polymerase Chain Reaction , Hypoxia/genetics
10.
Article in Chinese | WPRIM | ID: wpr-781304

ABSTRACT

OBJECTIVE@#To explore the genetic basis of a pedigree affected with hereditary spherocytosis.@*METHODS@#Peripheral blood samples were collected from 17 members of the pedigree. Genomic DNA of the proband was subjected to next generation sequencing. Candidate variant was validated by co-segregation analysis. pCAS2(c.5798+1G) and pCAS2(c.5798+1A) plasmids were constructed by homologous recombination and transfected into 293T cells. Reverse transcription PCR, TA cloning and Sanger sequencing were used to analyze the effect of candidate variant on splicing. Meanwhile, peripheral blood RNAs were extracted to analyze the effect of candidate variant on splicing in vivo.@*RESULTS@#The proband was found to carry a c.5798+1G>A variant of the SPTB gene. The variant has co-segregated with the phenotype in the pedigree. In vitro and in vivo splicing experiments confirmed that the mutation has significantly affected the splicing, resulting in shift of reading frame and produced a premature termination codon.@*CONCLUSION@#The novel c.5798+1G>A variant of the SPTB gene probably underlies the pathogenesis of hereditary spherocytosis in this pedigree.


Subject(s)
Codon, Nonsense , Genetics , Genetic Variation , HEK293 Cells , Humans , Mutation , Genetics , Pedigree , Plasmids , RNA Splicing , Spectrin , Genetics , Spherocytosis, Hereditary , Genetics , Transfection
11.
Chinese Journal of Biotechnology ; (12): 1414-1421, 2020.
Article in Chinese | WPRIM | ID: wpr-826835

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system is a hotspot of gene editing and gene expression research, in which CRISPR/Cas13 system provides a new direction for RNA interference and editing. In this study, we designed and synthesized the corresponding gRNAs of CRISPR/Cas13a and CRISPR/Cas13b systems in non-homologous end joining (NHEJ) pathway, such as Ku70 and Lig4, and then detected the expression of ku70 and lig4 in HEK293T cells. The CRISPR/Cas13a system could efficiently knockdown the mRNA expression of ku70 and lig4 more than 50%, and CRISPR/Cas13b system also suppressed ku70 and lig4 about 92% and 76%, respectively. Also, CRISPR/Cas13a, b systems could down-regulate Ku70 and Lig4 proteins level to 68% and 53%, respectively. The study demonstrates that the CRISPR/Cas13 system could effectively knockdown the expression of RNA and protein in HEK293T cells, providing a new strategy for gene function and regulation research.


Subject(s)
CRISPR-Cas Systems , DNA Ligase ATP , Genetics , Gene Expression Regulation , Genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , Ku Autoantigen , Genetics
12.
Article in Chinese | WPRIM | ID: wpr-826365

ABSTRACT

To explore whether the downregulation of protein phosphatase 2A catalytic subunit(PP2Ac)involved in the pathogenesis of mitochondria fission/fusion dynamics and functional imbalance induced by human tau accumulation. After cotransfection with mito-dsRed plasmids and pIRES-eGFP-tau40 plasmids 48 hours,the rat primary hippocampal neurons were observed with a laser scanning confocal microscope for their changes in shape and distribution of mitochondria.The expressions of mitochondria fission/fusion protein and PP2Ac and PP2Ab were detected by Western blotting.Furthermore,the shape and distribution of mitochondria of rat primary hippocampal neuron and wild type 293wt cells were assayed 48 hours after co-transfection with siPP2Ac-EGFP plasmids and mito-DsRed plasmids,and the fission/fusion dynamics of 293wt cells was captured with live cell time-lapse imaging after co-transfection with siPP2Ac plasmids and mito-Dendra2 plasmids.After transfection with siPP2Ac plasmids,the relative level of mitochondria fission/fusion protein of 293wt cells was assayed by Western blotting,and mitochondria membrane potential was detected by JC-1 staining,and the cellular viability was measured by CCK8 assay.Finally,the shape and distribution and membrane potential of mitochondria of HEK293 cells with stable transfection of htau40(293htau)were detected after co-transfection with PP2Ac and mito-dsRed plasmids. Human tau40 expression decreased distribution of mitochondria and significantly lowered PP2Ac level in primary hippocampal neuron(=4.814, =0.0086).Down-regulation of PP2Ac caused mitochondria elongation and perinuclear accumulation in primary hippocampal neuron and 293wt cells;in addition,down-regulation of PP2Ac in 293wt cells significantly increased mitochondria fusion rate(=2.857, =0.0074)and the levels of mitochondria fusion protein mitofusin(MFN)1(=6.768, =0.0025),MFN2(=3.121, =0.0035),and optic atrophy 1(=3.775, =0.0199);however,the levels of dynamin-like protein-1 and Fis1 remained unchanged.The down-regulation of PP2Ac in 293wt cells led to the significant decrease in mitochondria membrane potential(=2.300, =0.0270)and cell viability(=6.249, <0.0001).Finally,up-regulation of PP2Ac attenuated the abnormalities in the shape,distribution and function of mitochondria in the 293htau cells. Down-regulation of PP2Ac is involved in the abnormal shape and distribution of mitochondria and its dysfunction induced by human tau40 in rat primary hippocampal neurons and HEK293 cells.


Subject(s)
Animals , Catalytic Domain , Down-Regulation , HEK293 Cells , Humans , Mitochondria , Protein Phosphatase 2 , Rats , tau Proteins
13.
Article in English | WPRIM | ID: wpr-785827

ABSTRACT

PSMD10(Gankyrin), a proteasome assembly chaperone, is a widely known oncoprotein which aspects many hall mark properties of cancer. However, except proteasome assembly chaperon function its role in normal cell function remains unknown. To address this issue, we induced PSMD10(Gankyrin) overexpression in HEK293 cells and the resultant large-scale changes in gene expression profile were analyzed. We constituted networks from microarray data of these differentially expressed genes and carried out extensive topological analyses. The overrecurring yet consistent theme that appeared throughout analysis using varied network metrics is that all genes and interactions identified as important would be involved in neurogenesis and neuronal development. Intrigued we tested the possibility that PSMD10(Gankyrin) may be strongly associated with cell fate decisions that commit neural stem cells to differentiate into neurons. Overexpression of PSMD10(Gankyrin) in human neural progenitor cells facilitated neuronal differentiation via β-catenin Ngn1 pathway. Here for the first time we provide preliminary and yet compelling experimental evidence for the involvement of a potential oncoprotein – PSMD10(Gankyrin), in neuronal differentiation.


Subject(s)
HEK293 Cells , Humans , Neural Stem Cells , Neurogenesis , Neurons , Proteasome Endopeptidase Complex , Stem Cells , Transcriptome
14.
Immune Network ; : 40-2019.
Article in English | WPRIM | ID: wpr-785821

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neurological disorders including Guillain-Barré syndrome and microcephaly. The host innate immune responses against ZIKV infection are essential for protection; however, ZIKV has evolved strategies to evade and antagonize antiviral responses via its nonstructural (NS) proteins. Here, we demonstrated that ZIKV infection unexpectedly inhibits NLRP3-dependent inflammasome activation in bone marrow-derived macrophages and mixed glial cells from mouse brain. ZIKV infection led to increased transcript levels of proinflammatory cytokines such as IL-1β and IL-6 via activating NF-κB signaling. However, ZIKV infection failed to trigger the secretion of active caspase-1 and IL-1β from macrophages and glial cells even in the presence of LPS priming or ATP costimulation. Intriguingly, ZIKV infection significantly attenuated NLRP3-dependent, but not absent in melanoma 2-dependent caspase-1 activation and IL-1β secretion from both cells. ZIKV infection further blocked apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization in LPS/ATP-stimulated macrophages. Interestingly, expression of ZIKV NS3 protein reduced NLRP3-mediated caspase-1 activation and IL-1β secretion in macrophages, whereas NS1 and NS5 proteins showed no effects. Furthermore, NLRP3 was found to be degraded by the overexpression of ZIKV NS3 in 293T cells. Collectively, these results indicate that ZIKV evades host NLRP3 inflammasome-mediated innate immune responses in macrophages and glial cells; this may facilitate ZIKV's ability to enhance the replication and dissemination in these cells.


Subject(s)
Adenosine Triphosphate , Animals , Brain , Caspase 1 , Cytokines , Flavivirus , Guillain-Barre Syndrome , HEK293 Cells , Immunity, Innate , Inflammasomes , Interleukin-6 , Macrophages , Melanoma , Mice , Microcephaly , Nervous System Diseases , Neuroglia , Zika Virus
15.
Article in Chinese | WPRIM | ID: wpr-772053

ABSTRACT

OBJECTIVE@#To establish a stable HEK293T cell line with c.392G>T (p.131G>V) mutation site knockout in gene using CRISPR/Cas9 technique.@*METHODS@#We designed 4 pairs of small guide RNA (sgRNA) for c.392G>T(p.131G>V) mutation site, and constructed exogenous PX458 plasmids expressing Cas9-sgRNA. The plasmids were transfected into HEK293T cells, and the cells expressing GFP fluorescent protein were separated by flow cytometry for further culture. After verification of the knockout efficiency using T7 endonuclease Ⅰ, the monoclonal cells were screened by limiting dilution and DNA sequencing to confirm the knockout. We detected the expressions of mRNA and protein and examined functional changes of the genetically modified cells.@*RESULTS@#We successfully constructed the Cas9-sgRNA exogenous PX458 plasmid based on the c.392G>T(p.131G>V) mutation site of gene. The editing efficiency of the 4 pairs of sgRNA, as detected by T7E1 enzyme digestion, was 6.74%, 12.36%, 12.54% and 2.94%. Sanger sequencing confirmed that the HEK293T cell line with stable knockout of c.392G>T(p.131G>V) was successfully constructed. The genetically modified cells expressed lower levels of mRNA and protein and showed reduced enzyme activity and proliferative capacity and increased apoptosis in response to vitamin K3 treatment.@*CONCLUSIONS@#We successfully constructed a stable HEK293T cell model with gene c.392G>T(p.131G>V) mutation site knockout to facilitate future study of gene repair.


Subject(s)
CRISPR-Cas Systems , HEK293 Cells , Humans , Mutation , Plasmids , RNA, Guide
16.
Article in Chinese | WPRIM | ID: wpr-771905

ABSTRACT

OBJECTIVE@#To clone the promoter sequence of acute monocytic leukemia new antigen gene.MLAA-34 and identify its promoter core region.@*METHODS@#The full-length fragment of MLAA-34 gene promoter region was amplified by PCR, then was ligated into pGL3-Basic vector, and the recombinant plasmid was cloned. Constructed a series of MLAA-34 gene promoter 5' flanking region truncated plasmid. These recombinant plasmids were transfected into U937 and HEK293 cells, and the dual luciferase reporter gene was used to detect the promoter activity of each fragment to determine the minimum active region. Transcription factor binding sites were analyzed by bioinformatics methods.@*RESULTS@#The recombinant plasmid containing MLAA-34 promoter sequence and its truncated plasmid were successfully constructed, and the promoter activity was significantly increased as compared with the empty vector (P<0.001). The minimal active region of MLAA-34 located between 402 bp and 200 bp. It contained multiple transcription factor binding sites such as E2F1, MZF-1, SP1, USF2 and STAT3.@*CONCLUSION@#The promoter of luciferase reporter gene has been successfully constructed with different deletion fragments of MLAA-34, and its core promoter region may contain multiple transcription factor sequence.


Subject(s)
Adult , Antigens, Neoplasm , Genetics , Apoptosis Regulatory Proteins , Genetics , Cloning, Molecular , Genes, Reporter , HEK293 Cells , Humans , Leukemia, Monocytic, Acute , Genetics , Luciferases , Promoter Regions, Genetic
17.
Chinese Journal of Biotechnology ; (12): 1088-1096, 2019.
Article in Chinese | WPRIM | ID: wpr-771819

ABSTRACT

To improve and broaden the antimicrobial activity of β-defensin130, 3 copies of β-defensin130 encoding sequences were synthesized and cloned into pET28a (+) expression vector, and expressed in Escherichia coli BL21 (DE3) as a 25 kDa soluble protein. The affinity purified 3×β-defensin 130 displayed antimicrobial activity against not only Gram-positive strains including Staphylococcus aureus (ATCC 25923) (45 μg/mL) and Listeria monocytogenes (ATCC 221633) (80 μg/mL) but also Gram-negative strains. Furthermore, the antimicrobial activity of β-defensin130 was not affected by temperature, pH and proteinase digestion. In addition, E. coli-derived 3×β-defensin130 was not toxic to HEK 293 cells and showed a relatively low hemolytic activity against rabbit erythrocytes. Our study proves 3×β-defensin130 expressed in E. coli is stable, non-cytotoxic and low-hemolytic active with great potential as alternative antibiotics.


Subject(s)
Animals , Anti-Bacterial Agents , Escherichia coli , HEK293 Cells , Humans , Rabbits , Recombinant Fusion Proteins , Staphylococcus aureus , beta-Defensins
18.
Chinese Journal of Biotechnology ; (12): 1307-1316, 2019.
Article in Chinese | WPRIM | ID: wpr-771798

ABSTRACT

Gene therapy is a rapidly developing field. The most widely used technique for foreign gene transfer is lentiviral-mediated gene therapy. Lentiviral vector has been developed from the first generation to the third generation in terms of safety. The preparation of lentiviruses with high titer remains difficult. In this study, a Fibra-Cel sheet carrier was used as an HEK293T cell carrier matrix, and several sterile cell culture spinners were combined and cultured on a roller bottle machine to scale up the adherent cells. The virus titer was maximized by screening the factors to optimize the lentivirus titer in the third-generation lentivirus packaging process one by one. Fibra-Cel sheet vector was successfully used as the matrix of HEK293T cell adhesion to culture adherent cells at large scale. The optimal conditions for large-scale preparation of the third-generation lentivirus by bottle roller were screened and three batches of lentiviruses were produced on pilot scale. The production time of lentivirus was shortened from 120 hours to 54 hours from plasmid transfection to virus collection; in terms of cost, a rolling bottle machine was used instead of a bioreactor, leading to lower cost and no need for repeated sterilization during the whole process. The safe, effective and low-cost operation of successful production will provide a technical base for the large-scale preparation of lentivirus and thus lay a firm foundation for its clinical application.


Subject(s)
Genetic Vectors , HEK293 Cells , Humans , Lentivirus , Transduction, Genetic , Transfection
19.
Chinese Journal of Biotechnology ; (12): 1537-1545, 2019.
Article in Chinese | WPRIM | ID: wpr-771775

ABSTRACT

Exosomes have many advantages as natural drug delivery carriers, but their application is limited by the inefficient loading of intracellular drugs (such as proteins and nucleic acids). In this study, mCherry, a red fluorescent protein, was used as the endogenous cargo target. Through gene modification of donor cells and fusion expression of membrane localization elements (PB, CAAX, Palm and CD63), mCherry was specifically sorted into exosomes through biogenesis. Results show that CD63 had the highest sorting efficiency, followed by Palm. PB and CAAX led enrichment of mCherry on the plasma membrane, but not in exosomes. The approach provides an alternative to facilitate packaging of cargo by exosomes and thus to increase the efficient delivery of endogenous protein drugs.


Subject(s)
Drug Carriers , Drug Delivery Systems , Exosomes , HEK293 Cells , Humans , Protein Transport
20.
Article in Chinese | WPRIM | ID: wpr-771402

ABSTRACT

A novel protein encoded by the open reading frame 4 (ORF4) was recently discovered in porcine circovirus type 2 (PCV2). However, little is known about the interaction proteins of ORF4 which hindered better understanding the biological functions of ORF4 in the life cycle of PCV2. In the present study, the ORF4 was inserted into the multiple cloning site of pCMV-N-Flag-GST, yielding recombinant plasmid pCMV-N-Flag-GST-ORF4. The recombinant plasmid was transfected into 293T cells and the intracellular interaction complex of ORF4 were enriched and separated by GST pull-down and SDS-PAGE, sequentially. The potential interacting proteins of PCV2 ORF4 were stained with silver and identified by mass spectrometry (MS). Finally, five candidate ORF4-interacting proteins, including Serine/threonine-protein phosphatase 6 catalytic subunit, alpha cardiac muscle 1, actin, SEC14-like protein 5 and myosin 9 were identified. These results would benefit a better understanding of the biological function of ORF4 in PCV2 infected cells.


Subject(s)
Animals , Circoviridae Infections , Circovirus , HEK293 Cells , Humans , Mass Spectrometry , Open Reading Frames , Swine , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL