ABSTRACT
OBJECTIVE@#To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.@*METHODS@#SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.@*RESULTS@#The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).@*CONCLUSION@#PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Subject(s)
Animals , Rats , Brain Injuries, Traumatic , Glucosides/pharmacology , HMGB1 Protein/metabolism , Oxidative Stress , Rats, Sprague-Dawley , Sirtuin 1/metabolism , Stilbenes/pharmacology , Superoxide Dismutase/metabolismABSTRACT
High-mobility group box 1 (HMGB1) is a non-histone nuclear protein in most eukaryocytes. Inside the nucleus, HMGB1 plays an important role in several DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it fulfils more complicated functions, including promoting cell proliferation, inflammation, angiogenesis, immune tolerance and immune escape, which may play a pro-tumoral role.Meanwhile, HMGB1 acts as an anti-tumoral protein by regulating immune cell recruitment and inducing immunogenic cell death (ICD) during the carcinogenesis process. Therefore, abnormal expression of HMGB1 is associated with oncogenesis, development, and metastasis of cancer, which may play a dual role of pro-tumor and anti-tumor.
Subject(s)
Humans , Carcinogenesis , Cell Proliferation , HMGB1 Protein/metabolism , Neoplasms/pathology , Neovascularization, PathologicABSTRACT
SUMMARY OBJECTIVE: To investigate the associations of high-mobility group box 1 and its specific receptor, receptor for advanced glycation end products with acute lung injury in patients with acute aortic dissection. METHODS: A total of 96 acute aortic dissection patients were divided into acute aortic dissection with acute lung injury group (38 cases) and acute aortic dissection without acute lung injury group (58 cases), according to partial pressure of oxygen/fraction of inspired oxygen. In addition, 44 healthy individuals were selected for the control group. The blood samples were taken. The serum high-mobility group box 1 and receptor for advanced glycation end products levels were detected by enzyme-linked immunosorbent assay, and the partial pressure of oxygen/fraction of inspired oxygen was measured. RESULTS: 24 h after admission, the high-mobility group box 1 and receptor for advanced glycation end products levels in acute aortic dissection with acute lung injury and acute aortic dissection without acute lung injury groups were significantly higher than those in the control group, respectively (p<0.05), and each index in acute aortic dissection with acute lung injury group was significantly higher than that in acute aortic dissection without acute lung injury group (p<0.05). At each time point within 96 h after admission, compared with acute aortic dissection without acute lung injury group, in acute aortic dissection with acute lung injury group, the high-mobility group box 1 and receptor for advanced glycation end products levels were increased, respectively, and the partial pressure of oxygen/fraction of inspired oxygen was decreased. The correlation analysis showed that, in acute aortic dissection patients, the high-mobility group box 1 and receptor for advanced glycation end products levels were negatively correlated with partial pressure of oxygen/fraction of inspired oxygen, respectively (p<0.05). CONCLUSIONS: The serum high-mobility group box 1 and receptor for advanced glycation end products levels may be associated with the occurrence of acute lung injury in acute aortic dissection patients. Monitoring the high-mobility group box 1 and receptor for advanced glycation end products levels can evaluate the risk of acute aortic dissection with acute lung injury.
Subject(s)
Humans , HMGB1 Protein/metabolism , Acute Lung Injury/etiology , Receptor for Advanced Glycation End Products/metabolism , Aortic Dissection , Glycation End Products, AdvancedABSTRACT
OBJECTIVE@#To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms.@*METHODS@#BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3.@*RESULTS@#CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (@*CONCLUSIONS@#Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Flavonols , HMGB1 Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor , Stomach NeoplasmsABSTRACT
Although Taxol has improved the survival of cancer patients as a first-line chemotherapeutic agent, an increasing number of patients develop resistance to Taxol after prolonged treatment. The potential mechanisms of cancer cell resistance to Taxol are not completely clear. It has been reported that microRNAs (miRNAs) are involved in regulating the sensitivity of cancer cells to various chemotherapeutic agents. In this study, we aimed to explore the role of miR-129-5p in regulating the sensitivity of breast cancer cells to Taxol. Cell apoptosis and autophagy, and the sensitivity of MCF-7 cells to Taxol were assessed with a series of in vitro assays. Our results showed that the inhibition of autophagy increased the Taxol-induced apoptosis and the sensitivity of MCF-7 cells to Taxol. Up-regulation of miR-129-5p also inhibited autophagy and induced apoptosis. Furthermore, miR-129-5p overexpression increased the sensitivity of MCF-7 cells to Taxol. High mobility group box 1 (HMGB1), a target gene of miR-129-5p and a regulator of autophagy, was negatively regulated by miR-129-5p. We found that interference of HMGB1 enhanced the chemosensitivity of Taxol by inhibiting autophagy and inducing apoptosis in MCF-7 cells. Taken together, our findings suggested that miR-129-5p increased the chemosensitivity of MCF-7 cells to Taxol through suppressing autophagy and enhancing apoptosis by inhibiting HMGB1. Using miR-129-5p/HMGB1/autophagy-based therapeutic strategies may be a potential treatment for overcoming Taxol resistance in breast cancer.
Subject(s)
Humans , Female , Breast Neoplasms/metabolism , Paclitaxel/metabolism , HMGB1 Protein/metabolism , MicroRNAs/metabolism , MCF-7 Cells/metabolism , Antineoplastic Agents, Phytogenic/metabolism , Autophagy/genetics , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/genetics , Up-Regulation/genetics , Paclitaxel/therapeutic use , Apoptosis/genetics , Drug Resistance, Neoplasm/genetics , HMGB1 Protein/genetics , MicroRNAs/genetics , Antineoplastic Agents, Phytogenic/therapeutic useABSTRACT
Glucocorticoid insensitivity is an important barrier to the treatment of several inflammatory diseases, including acute lung injury (ALI). Saquinavir (SQV) is an inhibitor of the human immunodeficiency virus protease, and the therapeutic effects of SQV in ALI accompanied with glucocorticoid insensitivity have not been previously investigated. In this study, the effects of SQV on lipopolysaccharide (LPS)-mediated injury in human pulmonary microvascular endothelial cells (HPMECs), human type I alveolar epithelial cells (AT I), and alveolar macrophages were determined. In addition, the effects of SQV on an LPS-induced ALI model with or without methylprednisolone (MPS) were studied. In LPS-stimulated HPMECs, SQV treatment resulted in a decrease of high mobility group box 1 (HMGB1), phospho-NF-κB (p-NF-κB), and toll-like receptor 4 (TLR4), and an increase of VE-cadherin. Compared to MPS alone, MPS plus SQV attenuated the decrease of glucocorticoid receptor alpha (GRα) and IκBα in LPS-stimulated HPMECs. HMGB1, TLR4, and p-NF-κB expression were also lessened in LPS-stimulated alveolar macrophages with SQV treatment. In addition, SQV reduced the injury in human AT I with a decrease of HMGB1 and p-NF-κB, and with an increase of aquaporin 5 (AQP 5). SQV ameliorated the lung injury caused by LPS in rats with reductions in vascular permeability, myeloperoxidase activity (MPO) and histopathological scores, and with lowered HMGB1, TLR4, and p-NF-κB expression, but with enhanced VE-cadherin expression. By comparison, SQV plus MPS increased GRα and IκBα in lung tissues of rats with ALI. This study demonstrated that SQV prevented experimental ALI and improved glucocorticoid insensitivity by modulating the HMGB1/TLR4 pathway.
Subject(s)
Animals , Male , Rats , Methylprednisolone/administration & dosage , Saquinavir/administration & dosage , Acute Lung Injury/drug therapy , Signal Transduction/drug effects , Antigens, CD/drug effects , Antigens, CD/metabolism , Cadherins/drug effects , Cadherins/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , HMGB1 Protein/drug effects , HMGB1 Protein/metabolism , Disease Models, Animal , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Acute Lung Injury/chemically inducedABSTRACT
Abstract INTRODUCTION Renal damage is a consequence of severe malaria, and is generally caused by sequestration of Plasmodium falciparum -infected erythrocytes in the renal microcirculation, which leads to obstruction, hypoxia, and ischemia. This triggers high mobility group box 1 (HMGB1) to send a danger signal through toll-like receptors 2 and 4. This signal up-regulates inducible nitric oxide (iNOS) and nitrotyrosine to re-perfuse the tissue, and also increases heat shock protein 70 (HSP70) expression. As no study has examined the involvement of intracellular secondary molecules in this setting, the present study compared the renal expressions of HSP70, HMGB1, iNOS, and nitrotyrosine between mice suffered from severe malaria and normal mice. METHODS C57BL/6 mice were divided into an infected group (intraperitoneal injection of 10 6 P. berghei ANKA) and a non-infected group. Renal damage was evaluated using hematoxylin eosin staining, and immunohistochemistry was used to evaluate the expressions of HSP70, HMGB1, iNOS, and nitrotyrosine. RESULTS Significant inter-group differences were observed in the renal expressions of HSP70, HMGB1, and iNOS (p=0.000, Mann-Whitney test), as well as nitrotyrosine (p=0.000, independent t test). The expressions of HSP70 and HMGB1 were strongly correlated (p=0.000, R=1.000). No correlations were observed between iNOS and HMGB, HMGB1 and nitrotyrosine, HSP70 and nitrotyrosine, or iNOS and nitrotyrosine. CONCLUSIONS It appears that HMGB1, HSP70, iNOS, and nitrotyrosine play roles in the renal damage that is observed in mice with severe malaria. Only HSP70 expression is strongly correlated with the expression of HMGB1.
Subject(s)
Animals , Female , Tyrosine/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , HMGB1 Protein/metabolism , Nitric Oxide Synthase Type II/metabolism , Acute Kidney Injury/parasitology , Malaria/complications , Malaria/metabolism , Tyrosine/metabolism , Severity of Illness Index , Disease Models, Animal , Mice , Mice, Inbred C57BLABSTRACT
Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages) and non-modified macrophages (RAW-macrophages) has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2). Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ) and secreted more IL-10, high mobility group box 1 proteins (HMGB1) and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype.
Subject(s)
Animals , Mice , Receptor, Metabotropic Glutamate 5/physiology , Cell Plasticity/physiology , Macrophages/physiology , Phenotype , Enzyme-Linked Immunosorbent Assay , Transfection/methods , Cells, Cultured , Lipopolysaccharides , Blotting, Western , Interleukin-10/analysis , Interleukin-10/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , HMGB1 Protein/analysis , HMGB1 Protein/metabolism , Galectin 3/analysis , Galectin 3/metabolism , PPAR alpha/analysis , PPAR alpha/metabolism , RAW 264.7 Cells , Nitric Oxide/metabolismABSTRACT
ABSTRACT PURPOSE: To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS: Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS: Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION: Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.
Subject(s)
Animals , Male , Reperfusion Injury/prevention & control , Allopurinol/pharmacology , Ischemic Preconditioning/methods , Protective Agents/pharmacology , HMGB1 Protein/drug effects , Kidney/blood supply , Superoxide Dismutase/drug effects , Blood Urea Nitrogen , Reperfusion Injury/metabolism , Random Allocation , Rats, Sprague-Dawley , Apoptosis/drug effects , Peroxidase/metabolism , HMGB1 Protein/metabolism , Disease Models, Animal , Inflammation/metabolism , Kidney/pathologyABSTRACT
Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.
Subject(s)
Animals , Male , Acute Lung Injury/drug therapy , Cholinesterase Inhibitors/therapeutic use , Galantamine/therapeutic use , HMGB1 Protein/metabolism , Analysis of Variance , Acute Lung Injury/chemically induced , Acute Lung Injury/mortality , Acute Lung Injury/pathology , Enzyme-Linked Immunosorbent Assay , HMGB1 Protein/antagonists & inhibitors , /blood , Lipopolysaccharides , Lung/drug effects , Lung/metabolism , Lung/pathology , Mortality , Organ Size , Peroxidase/metabolism , Protective Agents/therapeutic use , Random Allocation , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/bloodABSTRACT
This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.
Subject(s)
Animals , Mice , Anesthetics, Intravenous/pharmacology , Cell Nucleus/drug effects , HMGB1 Protein/drug effects , Macrophages/drug effects , Propofol/pharmacology , RNA, Messenger/drug effects , Active Transport, Cell Nucleus , Anesthetics, Intravenous/administration & dosage , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression/drug effects , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Lipopolysaccharides , Macrophages/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Propofol/administration & dosage , Random Allocation , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolismABSTRACT
In this study, we investigated the potential role of high-mobility group box 1 (HMGB1) in severe acute pancreatitis (SAP) and the effects of growth hormone (G) and somatostatin (S) in SAP rats. The rats were randomly divided into 6 groups of 20 each: sham-operated, SAP, SAP+saline, SAP+G, SAP+S and SAP+G+S. Ileum and pancreas tissues of rats in each group were evaluated histologically. HMGB1 mRNA expression was measured by reverse transcription-PCR. Levels of circulating TNF-α, IL-1, IL-6, and endotoxin were also measured. In the SAP group, interstitial congestion and edema, inflammatory cell infiltration, and interstitial hemorrhage occurred in ileum and pancreas tissues. The levels of HMGB1, TNF-α, IL-1, IL-6 and endotoxin were significantly up-regulated in the SAP group compared with those in the sham-operated group, and the 7-day survival rate was 0%. In the SAP+G and SAP+S groups, the inflammatory response of the morphological structures was alleviated, the levels of HMGB1, TNF-α, IL-1, IL-6, and endotoxin were significantly decreased compared with those in the SAP group, and the survival rate was increased. Moreover, in the SAP+G+S group, all histological scores were significantly improved and the survival rate was significantly higher compared with the SAP group. In conclusion, HMGB1 might participate in pancreas and ileum injury in SAP. Growth hormone and somatostatin might play a therapeutic role in the inflammatory response of SAP.
Subject(s)
Animals , Male , Growth Hormone/metabolism , HMGB1 Protein/metabolism , Pancreas/pathology , Pancreatitis, Acute Necrotizing/etiology , Somatostatin/metabolism , Edema/pathology , Endotoxins/blood , Gene Expression , HMGB1 Protein/genetics , Hematoma/pathology , Ileum/injuries , Ileum/pathology , Interleukin-1beta/blood , /blood , Microscopy, Electron, Transmission , Neutrophil Infiltration/physiology , Pancreas/injuries , Pancreas/metabolism , Pancreatitis, Acute Necrotizing/metabolism , Pancreatitis, Acute Necrotizing/pathology , Random Allocation , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/isolation & purification , Survival Rate , Tumor Necrosis Factor-alpha/bloodABSTRACT
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.
Subject(s)
Animals , Male , Mice , Acute Lung Injury/metabolism , Antibodies/therapeutic use , HMGB1 Protein/metabolism , Inflammation Mediators/metabolism , Shock, Hemorrhagic/metabolism , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Endotoxins/administration & dosage , Endotoxins/pharmacology , HMGB1 Protein/immunology , Inflammation Mediators/immunology , Mice, Inbred BALB CABSTRACT
Dominant inflammatory cytokines might be different depending on the underlying causes of acute lung injury (ALI). The role of kertinocyte-derived chemokine (KC), a potent chemoattractant for neutrophils, has not been clearly established in hemorrhage-induced ALI. In this study, lung injury and cytokine expressison were evaluated in LPS- or hemorrhage-induced ALI models of BALB/c mice. The myeloperoxidase activities at 4 hr after hemorrhage and LPS-injection were 47.4+/-13.0 and 56.5+/-16.4 U/g, respectively. NF-kappa B activity peaked at 4 hr after hemorrhage, which was suppressed to the control level by anti-high mobility group B1 (HMGB1) antibody. Lung expressions of TNF-alpha, MIP-2, and IL-1beta were increased by LPS injection. However, there was only a minimal increase in IL-1beta and no expressions of TNF-alpha or MIP-2 in hemorrhage-induced ALI. In contrast, lung KC increased significantly at 4 hr after hemorrhage compared to control levels (83.1+/-12.3 vs. 14.2+/-1.6 pg/mL/mg by ELISA) (P<0.05). By immunohistochemical staining, lung neutrophils stained positive for KC. Increased KC was also observed in bronchoalveolar lavage fluid and plasma. KC plays an important role in hemorrhage-induced ALI.