Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 658
Filter
1.
Chinese journal of integrative medicine ; (12): 34-41, 2024.
Article in English | WPRIM | ID: wpr-1010288

ABSTRACT

OBJECTIVE@#To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.@*METHODS@#Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.@*RESULTS@#Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).@*CONCLUSION@#Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP , HeLa Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Cell Line, Tumor
2.
Braz. J. Pharm. Sci. (Online) ; 59: e22459, 2023. graf
Article in English | LILACS | ID: biblio-1439495

ABSTRACT

Abstract Cervical cancer is a leading cause of death among women. The endocervical adenocarcinoma (ECA) represents an aggressive and metastatic type of cancer with no effective treatment options currently available. We evaluated the antitumoral and anti-migratory effects of hypericin (HYP) encapsulated on Pluronic F127 (F127/HYP) photodynamic therapy (PDT) against a human cell line derived from invasive cervical adenocarcinoma (HeLa) compared to a human epithelial cell line (HaCaT). The phototoxicity and cytotoxicity of F127/HYP were evaluated by the following assays: colorimetric assay, MTT, cellular morphological changes by microscopy and long-term cytotoxicity by clonogenic assay. In addition, we performed fluorescence microscopy to analyze cell uptake and subcellular distribution of F127/HYP, cell death pathway and reactive oxygen species (ROS) production. The PDT mechanism was determined with sodium azide and D-mannitol and cell migration by wound-healing assay. The treatment with F127/HYP promoted a phototoxic result in the HeLa cells in a dose-dependent and selective form. Internalization of F127/HYP was observed mainly in the mitochondria, causing cell death by necrosis and ROS production especially by the type II PDT mechanism. Furthermore, F127/HYP reduced the long-term proliferation and migration capacity of HeLa cells. Overall, our results indicate a potentially application of F127/HYP micelles as a novel approach for PDT with HYP delivery to more specifically treat ECA.


Subject(s)
Adenocarcinoma/pathology , Poloxamer/analogs & derivatives , Photochemotherapy/classification , HeLa Cells/classification , Uterine Cervical Neoplasms/pathology , Sodium Azide/administration & dosage , Epithelial Cells/classification , Microscopy, Fluorescence/methods , Neoplasms/pathology
3.
Chinese Journal of Pathology ; (12): 1230-1236, 2023.
Article in Chinese | WPRIM | ID: wpr-1012398

ABSTRACT

Objective: To explore the potential pathogenesis of clear cell renal cell carcinoma (ccRCC) based on the HIF-1α/ACLY signaling pathway, as well as to provide new ideas for the treatment of ccRCC. Methods: Seventy-eight ccRCC cases diagnosed at the First Affiliated Hospital of Soochow University, Suzhou, China were collected. The VHL mutation was examined using exon sequencing. The expression of HIF-1α/ACLY in VHL-mutated ccRCC was evaluated using immunohistochemical staining and further validated in VHL-mutated ccRCC cell lines (786-O, A498, UM-RC-2, SNU-333, and Caki-2) using Western blot. The mRNA and protein levels of ACLY were detected using real-time quantitative PCR and Western blot after overexpression or interference with HIF-1α in ccRCC cell lines. HeLa cells were treated with CoCl2 and hypoxia (1%O2) to activate HIF-1α and then subject to the detection of the ACLY mRNA and protein levels. The potential molecular mechanism of HIF-1α-induced ACLY activation was explored through JASPAR database combined with chromatin immunoprecipitation assay (ChIP) and luciferase reporter gene assay. The effect of HIF-1α/ACLY regulation axis on lipid accumulation was detected using BODIPY staining and other cell biological techniques. The expression of ACLY was compared between patients with ccRCC and those with benign lesions, and the feasibility of ACLY as a prognostic indicator for ccRCC was explored through survival analysis. Results: Exon sequencing revealed that 55 (70.5%) of the 78 ccRCC patients harbored a VHL inactivation mutation, and HIF-1α expression was associated with ACLY protein levels. The protein levels of ACLY and HIF-1α in ccRCC cell lines carrying VHL mutation were also correlated to various degrees. Overexpression of HIF-1α in A498 cells increased the mRNA and protein levels of ACLY, and knockdown of HIF-1α in Caki-2 cells inhibited the mRNA and protein levels of ACLY (P<0.001 for all). CoCl2 and hypoxia treatment significantly increased the mRNA and protein levels of ACLY by activating HIF-1α (P<0.001 for all). The quantification of transcriptional activity of luciferase reporter gene and ChIP-qPCR results suggested that HIF-1α could directly bind to ACLY promoter region to transcriptionally activate ACLY expression and increase ACLY protein level (P<0.001 for all). The results of BODIPY staining suggested that the content of free fatty acids in cell lines was associated with the levels of HIF-1α and ACLY. The depletion of HIF-1α could effectively reduce the accumulation of lipid in cells, while the overexpression of ACLY could reverse this process. At the same time, cell function experiments showed that the proliferation rate of ccRCC cells with HIF-1α knockdown was significantly decreased, and overexpression of ACLY could restore proliferation of these tumor cells (P<0.001). Survival analysis further showed that compared with the ccRCC patients with low ACLY expression, the ccRCC patients with high ACLY expression had a poorer prognosis and a shorter median survival (P<0.001). Conclusions: VHL mutation-mediated HIF-1α overexpression in ccRCC promotes lipid synthesis and tumor progression by activating ACLY. Targeting the HIF-1α/ACLY signaling axis may provide a theoretical basis for the clinical diagnosis and treatment of ccRCC.


Subject(s)
Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , HeLa Cells , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Mutation , Signal Transduction , Luciferases/therapeutic use , Hypoxia/genetics , RNA, Messenger , Lipids/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 927-937, 2023.
Article in English | WPRIM | ID: wpr-1011004

ABSTRACT

Six new abietane diterpenoids (1-6) and five undescribed iridoids (7-11) have been isolated from the aerial parts of Caryopteris mongolica. The intricate structural characterization of these compounds was meticulously undertaken using an array of advanced spectroscopic techniques. This process was further enhanced by the application of DP4+ probability analyses and electronic circular dichroism (ECD) calculations. Following isolation and structural elucidation, the cytotoxicity of these compounds was evaluated. Among them, compound 3 stood out, displaying significant cytotoxic activity against HeLa cells with an IC50 value of 7.83 ± 1.28 μmol·L-1. Additionally, compounds 1, 2, 4, 9, and 10 manifested moderate cytotoxic effects on specific cell lines, with IC50 values ranging from 11.7 to 20.9 μmol·L-1.


Subject(s)
Humans , Abietanes/chemistry , HeLa Cells , Lamiaceae/chemistry , Circular Dichroism , Diterpenes/chemistry , Molecular Structure
5.
Journal of Zhejiang University. Science. B ; (12): 1062-1068, 2023.
Article in English | WPRIM | ID: wpr-1010585

ABSTRACT

无义介导的信使RNA(mRNA)降解途径(nonsense-mediated mRNA decay,简称为NMD)是真核生物细胞内一种重要的基因转录后表达调控机制,它积极参与一系列细胞生理和生化过程,控制细胞命运和生命体的组织稳态。NMD的缺陷会导致人类疾病,如神经发育障碍、肿瘤发生和自身免疫疾病等。UPF3 (Up-frameshift protein 3)是一个核心的NMD因子,它最早在酵母中被发现。UPF3A和UPF3B是UPF3在生物进化到脊椎动物阶段出现的两个旁系同源物,在NMD中具有激活或抑制的作用。以往研究发现,UPF3B蛋白几乎在所有哺乳动物器官中均有表达,而UPF3A蛋白在除睾丸外的大多数哺乳动物组织中难以被检测到。解释这一现象的假说为:在NMD途径中,UPF3B具有比UPF3A更高的竞争性结合UPF2的能力,UPF3B和UPF2的结合促使UPF3A成为游离状态,而游离的UPF3A蛋白不稳定且易被降解。此假说提示UPF3A和UPF3B在NMD中存在拮抗作用。在本研究中,我们重新定量评估了UPF3A和UPF3B在野生型成年雄性和雌性小鼠的9个主要组织和生殖器官中的mRNA和蛋白表达,结果证实UPF3A在雄性生殖细胞中表达量最高。令人惊讶的是,我们发现在包括大脑和胸腺在内的大多数组织中,UPF3A与UPF3B的蛋白水平相当,而在小鼠脾、肺组织中,UPF3A表达高于UPF3B。公共基因表达数据进一步支持了上述发现。因此,我们的研究表明了UPF3A是小鼠组织中普遍表达的NMD因子。同时,该研究结果推测:在生理条件下,UPF3A和UPF3B蛋白之间不存在竞争抑制,且UPF3A在多种哺乳动物组织的稳态中发挥重要作用。


Subject(s)
Animals , Humans , Mice , HeLa Cells , Nonsense Mediated mRNA Decay , RNA-Binding Proteins/genetics
6.
Chinese Journal of Biotechnology ; (12): 4189-4203, 2023.
Article in Chinese | WPRIM | ID: wpr-1008020

ABSTRACT

Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.


Subject(s)
Humans , Animals , Mice , HeLa Cells , Silver/pharmacology , Ketoglutaric Acids/pharmacology , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Glutathione , Microbial Sensitivity Tests
7.
Chinese Medical Journal ; (24): 2351-2361, 2023.
Article in English | WPRIM | ID: wpr-1007550

ABSTRACT

BACKGROUND@#Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.@*METHODS@#CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.@*RESULTS@#RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.@*CONCLUSION@#CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.


Subject(s)
Humans , HeLa Cells , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Vimentin/metabolism , MicroRNAs/metabolism , Colonic Neoplasms/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics
8.
China Journal of Chinese Materia Medica ; (24): 5817-5821, 2023.
Article in Chinese | WPRIM | ID: wpr-1008779

ABSTRACT

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 μmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 μmol·L~(-1).


Subject(s)
Humans , Garcinia mangostana/chemistry , HeLa Cells , Antineoplastic Agents , Magnetic Resonance Spectroscopy , Xanthones/pharmacology , Garcinia/chemistry , Plant Extracts/chemistry , Molecular Structure
9.
Chinese journal of integrative medicine ; (12): 224-232, 2023.
Article in English | WPRIM | ID: wpr-971321

ABSTRACT

OBJECTIVE@#To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism.@*METHODS@#Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L).@*RESULTS@#DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells.@*CONCLUSION@#CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.


Subject(s)
Female , Humans , Cell Line, Tumor , HeLa Cells , Neoplastic Stem Cells/metabolism , RNA, Small Interfering/metabolism , Uterine Cervical Neoplasms/metabolism
10.
Biomedical and Environmental Sciences ; (12): 146-159, 2023.
Article in English | WPRIM | ID: wpr-970302

ABSTRACT

OBJECTIVE@#In this study, the role and potential mechanism of transformer 2β (Tra2β) in cervical cancer were explored.@*METHODS@#The transcriptional data of Tra2β in patients with cervical cancer from Gene Expression Profiling Interactive Analysis (GEPIA) and cBioPortal databases were investigated. The functions of Tra2β were evaluated by using Western blot, MTT, colony formation, Transwell assays, and nude mouse tumor formation experiments. Target genes regulated by Tra2β were studied by RNA-seq. Subsequently, representative genes were selected for RT-qPCR, confocal immunofluorescence, Western blot, and rescue experiments to verify their regulatory relationship.@*RESULTS@#The dysregulation of Tra2β in cervical cancer samples was observed. Tra2β overexpression in Siha and Hela cells enhanced cell viability and proliferation, whereas Tra2β knockdown showed the opposite effect. Alteration of Tra2β expression did not affect cell migration and invasion. Furthermore, tumor xenograft models verified that Tra2β promoted cervical cancer growth. Mechanically, Tra2β positively regulated the mRNA and protein level of SP1, which was critical for the proliferative capability of Tra2β.@*CONCLUSION@#This study demonstrated the important role of the Tra2β/SP1 axis in the progression of cervical cancer in vitro and in vivo, which provides a comprehensive understanding of the pathogenesis of cervical cancer.


Subject(s)
Humans , Animals , Mice , Female , Uterine Cervical Neoplasms/genetics , HeLa Cells , Cell Proliferation , Biological Assay , Transcription Factors , Sp1 Transcription Factor/genetics
11.
Chinese Journal of Oncology ; (12): 375-381, 2023.
Article in Chinese | WPRIM | ID: wpr-984732

ABSTRACT

Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/pathology , HeLa Cells , Fibronectins/metabolism , Culture Media, Conditioned , Carcinoma, Squamous Cell/metabolism , Adenocarcinoma , Cadherins/metabolism , RNA, Messenger/metabolism , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cell Proliferation , S100 Calcium Binding Protein A7/metabolism
12.
Protein & Cell ; (12): 120-140, 2022.
Article in English | WPRIM | ID: wpr-929156

ABSTRACT

Ebola virus (EBOV) is an enveloped negative-sense RNA virus and a member of the filovirus family. Nucleoprotein (NP) expression alone leads to the formation of inclusion bodies (IBs), which are critical for viral RNA synthesis. The matrix protein, VP40, not only plays a critical role in virus assembly/budding, but also can regulate transcription and replication of the viral genome. However, the molecular mechanism by which VP40 regulates viral RNA synthesis and virion assembly/budding is unknown. Here, we show that within IBs the N-terminus of NP recruits VP40 and is required for VLP-containing NP release. Furthermore, we find four point mutations (L692A, P697A, P698A and W699A) within the C-terminal hydrophobic core of NP result in a stronger VP40-NP interaction within IBs, sequestering VP40 within IBs, reducing VP40-VLP egress, abolishing the incorporation of NC-like structures into VP40-VLP, and inhibiting viral RNA synthesis, suggesting that the interaction of N-terminus of NP with VP40 induces a conformational change in the C-terminus of NP. Consequently, the C-terminal hydrophobic core of NP is exposed and binds VP40, thereby inhibiting RNA synthesis and initiating virion assembly/budding.


Subject(s)
Humans , Ebolavirus/physiology , HEK293 Cells , HeLa Cells , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Matrix Proteins/metabolism , Virion/metabolism , Virus Assembly
13.
Journal of Southern Medical University ; (12): 1026-1031, 2022.
Article in Chinese | WPRIM | ID: wpr-941036

ABSTRACT

OBJECTIVE@#To observe the expression of c-Myc protein in cervical cancer HeLa cells and explore the effect of juglone on the proliferation and apoptosis of HeLa cells by affecting c-Myc ubiquitination.@*METHODS@#HeLa cells treated with different concentrations (0, 10, 20, or 50 μmol/L) of juglone or with 20 μmol/L juglone for different time lengths were examined for expression of c-Myc protein with Western blotting. The half-life of c-Myc protein was determined using cycloheximide (CHX) and c-Myc protein degradation was detected using coimmunoprecipitation. We also assessed the effects of 20 μmol/L juglone combined with 0, 1.0 or 2.0 μmol/L MG132 (a proteasome inhibitor) on c-Myc expression. The effects of 20 μmol/L juglone on the proliferation and apoptosis of HeLa cells with RNA interference-mediated knockdown of c-Myc were evaluated with MTT assay and flow cytometry.@*RESULTS@#Treatment with juglone significantly lowered c-Myc protein expression in HeLa cells in a concentration-and time-dependent manner (P < 0.05). Juglone obviously shortened the half-life of c-Myc protein, and the addition of MG132 significantly up-regulated the expression level of c-Myc protein (P < 0.05). Juglone treatment also promoted ubiquitination of c-Myc protein in HeLa cells. Compared with the cells transfected with a negative control construct, the cells transfected with si-c-Myc showed significantly decreased proliferation inhibition and a lowered cell rate with early apoptosis after juglone treatment (P < 0.05).@*CONCLUSION@#Juglone inhibits proliferation and promotes apoptosis of HeLa cells by affecting the ubiquitination of c-Myc protein.


Subject(s)
Female , Humans , Apoptosis , Cell Proliferation , HeLa Cells , Naphthoquinones , Ubiquitination , Uterine Cervical Neoplasms/genetics
14.
Biomedical and Environmental Sciences ; (12): 194-205, 2022.
Article in English | WPRIM | ID: wpr-927653

ABSTRACT

Objective@#SET8 is a member of the SET domain-containing family and the only known lysine methyltransferase (KMT) that monomethylates lysine 20 of histone H4 (H4K20me1). SET8 has been implicated in many essential cellular processes, including cell cycle regulation, DNA replication, DNA damage response, and carcinogenesis. There is no conclusive evidence, however, regarding the effect of SET8 on radiotherapy. In the current study we determined the efficacy of SET8 inhibition on radiotherapy of tumors and the underlying mechanism.@*Methods@#First, we explored the radiotherapy benefit of the SET8 expression signature by analyzing clinical data. Then, we measured a series of biological endpoints, including the xenograft tumor growth in mice and apoptosis, frequency of micronuclei, and foci of 53BP1 and γ-H2AX in cells to detect the SET8 effects on radiosensitivity. RNA sequencing and subsequent experiments were exploited to verify the mechanism underlying the SET8 effects on radiotherapy.@*Results@#Low expression of SET8 predicted a better benefit to radiotherapy in lung adenocarcinoma (LUAD) and invasive breast carcinoma (BRCA) patients. Furthermore, genetic deletion of SET8 significantly enhanced radiation treatment efficacy in a murine tumor model, and A549 and MCF7 cells; SET8 overexpression decreased the radiosensitivity. SET8 inhibition induced more apoptosis, the frequency of micronuclei, and blocked the kinetics process of DNA damage repair as 53BP1 and γ-H2AX foci remained in cells. Moreover, RNF8 was positively correlated with the SET8 impact on DNA damage repair.@*Conclusion@#Our results demonstrated that SET8 inhibition enhanced radiosensitivity by suppressing DNA damage repair, thus suggesting that SET8 potentiated radiotherapy of carcinomas. As new inhibitors of SET8 are synthesized and tested in preclinical and clinical settings, combining SET8 inhibitors with radiation warrants consideration for precise radiotherapy.


Subject(s)
Animals , Humans , Mice , Apoptosis , Carcinogenesis , Carcinoma/radiotherapy , Cell Cycle , Cell Line, Tumor , DNA Damage , DNA Replication , HeLa Cells , Histone-Lysine N-Methyltransferase , Radiotherapy
15.
Gac. méd. Méx ; 157(1): 30-36, ene.-feb. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1279070

ABSTRACT

Resumen Introducción: Se requiere analizar diversos parámetros para el control de calidad adecuado de las unidades de sangre de cordón umbilical (USCU) cuando se utilizan con fines terapéuticos. Objetivo: Optimizar las unidades formadoras de colonias (UFC) de cultivos clonogénicos y detectar el genoma del virus del papiloma humano (VPH) en USCU. Métodos: Se incluyeron 141 muestras de sangre de cordón umbilical (SCU), de segmento y de UFC de cultivos clonogénicos de USCU. Se realizó extracción de ADN, cuantificación y amplificación por PCR del gen endógeno GAPDH. Se detectó el gen L1 del VPH con los oligonucleótidos MY09/MY11 y GP5/GP6+; los productos de PCR se migraron en electroforesis de agarosa. El ADN purificado de las UFC se analizó mediante electroforesis de agarosa y algunos ADN, con la técnica sequence specific priming. Resultados: La concentración de ADN extraído de UFC fue superior comparada con la de SCU (p = 0.0041) y la de segmento (p < 0.0001); así como la de SCU comparada con la de segmento (p < 0.0001). Todas las muestras fueron positivas para la amplificación de GAPDH y negativas para MY09/MY11 y GP5/GP6+. Conclusiones: Las USCU criopreservadas fueron VPH netativas; además, es factible obtener ADN en altas concentraciones y con alta pureza a partir de UFC de los cultivos clonogénicos.


Abstract Introduction: Analysis of several markers is required for adequate quality control in umbilical cord blood units (UCBU) when are used for therapeutic purposes. Objective: To optimize colony-forming units (CFU) from clonogenic cultures and to detect the human papillomavirus (HPV) genome in UCBU. Methods: One hundred and forty-one umbilical cord blood (UCB), segment or CFU samples from UCBU clonogenic cultures were included. DNA extraction, quantification and endogenous GAPDH gene PCR amplification were carried out. Subsequently, HPV L1 gene was detected using the MY09/MY11 and GP5/GP6+ oligonucleotides. PCR products were analyzed with electrophoresis in agarose gel. CFU-extracted purified DNA was analyzed by electrophoresis in agarose gel, as well as some DNAs, using the SSP technique. Results: CFU-extracted DNA concentration was higher in comparison with that of UCB (p = 0.0041) and that of the segment (p < 0.0001), as well as that of UCB in comparison with that of the segment (p < 0.0001). All samples were positive for GAPDH amplification and negative for MY09/MY11 and GP5/GP6+. Conclusions: Cryopreserved UCBUs were HPV-negative. Obtaining CFU DNA from clonogenic cultures with high concentrations and purity is feasible.


Subject(s)
Humans , Female , Adult , Young Adult , Papillomaviridae/isolation & purification , DNA, Viral/isolation & purification , Hematopoietic Stem Cells/virology , Genome, Viral , Fetal Blood/virology , Papillomaviridae/genetics , Histocompatibility Testing , HeLa Cells , Cryopreservation , Cell Line , Polymerase Chain Reaction/methods , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Electrophoresis, Agar Gel , Fetal Blood/cytology
16.
Braz. arch. biol. technol ; 64: e21200163, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153296

ABSTRACT

HIGHLIGHTS Isolate, fractionate and characterize extracts obtained from soursop leaves. Use of emerging green technologies such as microwave-ultrasound hybridization. The extracts contain kaempferol, procyanidins, catechin, and quercetin. The total ethanolic extract demonstrates cytotoxic effect on HeLa cells.


Abstract Cervical cancer is classified as the fourth most common malignancy in women. Natural compounds are a therapeutic alternative in cancer therapy. The aim of the study is to isolate, fractionate, and characterize extracts obtained from soursop leaves (Annona muricata L.) and determine their cytotoxic effect against HeLa cervical cancer cells and non-carcinogenic fibroblast 3T3 cells. The phytochemicals of soursop leaves were extracted through emerging green technologies such as the novel use of microwave-ultrasound hybridization and the use of environmentally friendly solvents (water and ethanol), in addition to the purification of extracts enriched in polyphenols by liquid chromatography with Amberlite XAD-16. Total aqueous and ethanolic extract were purified, as well as the fraction one of each extract. The extracts recovered from soursop leaves contained kaempferol and its isomers, procyanidins, catechin, and quercetin. The viability of the cells was determined with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. HeLa and 3T3 cells were exposed to concentrations of 25, 50, 75, 100, 150, 200, and 250 ppm of a solution of soursop leaf extract powder. The MTT assay showed that soursop leaf extracts were toxic to both cell lines in general, however, the ethanolic extract at 25 and 50 ppm demonstrated inhibition in cell viability against the HeLa cancer line and low cytotoxicity for 3T3 fibroblast cells. In conclusion, the novel microwave-ultrasound hybridization technology allows the extraction of polyphenols that may have a potential cytotoxic effect on cancer cells.


Subject(s)
Humans , Female , HeLa Cells , Annona/chemistry , Polyphenols/isolation & purification , Phytochemicals/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Plant Extracts/pharmacology , Catechin/chemistry , Chromatography, Liquid/methods , Ethanol , Antineoplastic Agents, Phytogenic/pharmacology
17.
Journal of Southern Medical University ; (12): 1125-1130, 2021.
Article in Chinese | WPRIM | ID: wpr-888696

ABSTRACT

OBJECTIVE@#To explore the role of small nuclear noncoding RNA 7SK in embryonic stem cell (ESCs) proliferation and the value of 7SK as a target for early diagnosis and treatment for primordial dwarfism (PD).@*METHODS@#ESC line R1 was transfected with the CRISPR/Cas9 system, and sequencing of the PCR product and glycerol gradient analysis were performed to identify novel 7SK deletion mutations. A lentivirus system was used to knock down cyclin-dependent kinase 9 (CDK9) in clones with 7SK deletion mutations, and the effect of CDK9 knockdown on the protein level of cell division cycle 6 (CDC6) was analyzed with Western blotting.@*RESULTS@#We identified a novel deletion mutation of 7SK at 128-179 nt in the ESCs, which resulted in deficiency of cell proliferation. 7SK truncation at 128-179 nt significantly reduced the protein expressions of La-related protein 7 (LARP7) and CDC6.@*CONCLUSIONS@#7SK truncation at 128-179 nt can significantly impair proliferation of ESCs by downregulating CDC6. 7SK is a key regulator of proliferation and mediates the growth of ESCs through a mechanism dependent on CDK9 activity, suggesting the value of 7SK truncation at 128-179 nt as a potential target for early diagnosis and treatment of PD.


Subject(s)
Humans , Cell Cycle Proteins , Cell Proliferation , Embryonic Stem Cells/metabolism , HeLa Cells , Nuclear Proteins , Positive Transcriptional Elongation Factor B/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins , Ribonucleoproteins , Transcription Factors
18.
China Journal of Chinese Materia Medica ; (24): 2481-2488, 2021.
Article in Chinese | WPRIM | ID: wpr-879151

ABSTRACT

The paclitaxel-loaded and folic acid-modified poly(lactic-co-glycolic acid) nano-micelles(PTX@FA-PLGA-NMs) were prepared by the emulsion solvent evaporation method, and the parameters of paclitaxel-loaded nano-micelles were optimized with the particle size and PDI as evaluation indexes. The morphology of the nano-micelles was observed by transmission electron microscopy(TEM), and the stability, drug loading and encapsulation efficiency were systematically investigated. In vitro experiments were performed to study the cytotoxic effects of nano-micelles, apoptosis, and cellular uptake. Under the optimal parameters, the nano-micelles showed the particle size of(125.3±1.2) nm, the PDI of 0.086±0.026, the zeta potential of(-20.0±3.8) mV, the drug loading of 7.2%±0.75%, and the encapsulation efficiency of 50.7%±1.0%. The nano-micelles were in regular spherical shape as observed by TEM. The blank FA-PLGA-NMs exhibited almost no inhibitory effect on the proliferation and growth of tumor cells, while the drug-loaded nano-micelles and free PTX exhibited significant inhibitory effects. The IC_(50) of PTX@FA-PLGA-NMs and PTX was 0.56 μg·mL~(-1) and 0.66 μg·mL~(-1), respectively. The paclitaxel-loaded nano-micelles were potent in inhibiting cell migration as assessed by the scratch assay. PTX@FA-PLGA-NMs had good pro-apoptotic effect on cervical cancer HeLa cells and significantly promoted the uptake of HeLa cells. The results of in vitro experiments suggested that PTX@FA-PLGA-NMs could target and treat cervical cancer HeLa cells. Therefore, as nanodrug carriers, PTX@FA-PLGA-NMs with anti-cancer activity are a promising nano-system for improving the-rapeutic effects on tumors.


Subject(s)
Female , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Drug Carriers , Folic Acid , Glycolates , HeLa Cells , Micelles , Paclitaxel , Particle Size , Uterine Cervical Neoplasms/drug therapy
19.
Acta Physiologica Sinica ; (6): 233-243, 2021.
Article in English | WPRIM | ID: wpr-878252

ABSTRACT

There is increasing evidence that long non-coding RNA (lncRNA) plays critical roles in cancer progression. However, the role of long non-coding RNA 00665 (LINC00665) in most cancers is poorly understood. The purpose of the present study was to reveal the functional role of LINC00665 in cervical cancer cells. HeLa cells were subjected to LINC00665 short hairpin RNA (shRNA) or control shRNA treatment to investigate the metastasis and proliferation phenotype of cervical cancer cells in vitro and in vivo. Transcriptome sequencing experiments of HeLa cells in LINC00665 silencing or control group were conducted, and the differentially expressed genes (DEGs) were screened. The DEGs were subjected to Metascape database functional analysis and gene set enrichment analysis. Epithelial-mesenchymal transition (EMT) related markers and a key element of WNT/β‑catenin pathway, CTNNB1 (catenin beta 1), were detected by Western blot and immunofluorescence assay. The results showed that silencing LINC00665 reduced cell viability of Hela cells, up-regulated protein expression level of E-cadherin, down-regulated protein expression levels of N-cadherin, Vimentin and CTNNB1, and inhibited cell migration and invasion of HeLa cells. Bioinformatics analysis results showed that LINC00665 might promote EMT by activating WNT-CTNNB1/β‑catenin signaling pathway. These results indicate that LINC00665 has functions in transcriptional EMT regulation via WNT-CTNNB1/β‑catenin signaling pathway and therefore can be developed as a therapeutic target for cervical cancer.


Subject(s)
Female , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , HeLa Cells , Wnt Signaling Pathway , beta Catenin/metabolism
20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 815-824, 2021.
Article in English | WPRIM | ID: wpr-922764

ABSTRACT

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Subject(s)
Animals , Female , Humans , Mice , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Feedback , HeLa Cells , Interleukin-6/genetics , Janus Kinase 1 , Mice, Nude , Quinolizidines , STAT3 Transcription Factor/genetics , Signal Transduction , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL