Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
An. acad. bras. ciênc ; 89(2): 1133-1141, Apr.-June 2017. graf
Article in English | LILACS | ID: biblio-886699

ABSTRACT

ABSTRACT Studies have shown that schizophrenic patients seem to have nutritional deficiencies. Ascorbic acid (AA) has an important antioxidant effect and neuromodulatory properties. The aim of this study was to evaluate the effects of AA on locomotor activity and the acetylcholinesterase activity (AChE) in an animal model of schizophrenia (SZ). Rats were supplemented with AA (0.1, 1, or 10 mg/kg), or water for 14 days (gavage). Between the 9th and 15th days, the animals received Ketamine (Ket) (25 mg/kg) or saline (i.p). After the last administration (30 min) rats were subjected to the behavioral test. Brain structures were dissected for biochemical analysis. There was a significant increase in the locomotor activity in Ket treated. AA prevented the hyperlocomotion induced by ket. Ket also showed an increase of AChE activity within the prefrontal cortex and striatum prevented by AA. Our data indicates an effect for AA in preventing alterations induced by Ket in an animal model of SZ, suggesting that it may be an adjuvant approach for the development of new therapeutic strategies within this psychiatric disorder.


Subject(s)
Animals , Male , Acetylcholinesterase/analysis , Acetylcholinesterase/drug effects , Ascorbic Acid/pharmacology , Schizophrenia/enzymology , Locomotion/drug effects , Antioxidants/pharmacology , Acetylcholinesterase/physiology , Schizophrenia/prevention & control , Excitatory Amino Acid Antagonists , Dietary Supplements , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/enzymology , Ketamine , Locomotion/physiology
2.
Yonsei Medical Journal ; : 131-138, 2017.
Article in English | WPRIM | ID: wpr-65053

ABSTRACT

PURPOSE: To investigate the effects of hyperbaric oxygen (HBO) pretreatment on cognitive decline and neuronal damage in an Alzheimer’s disease (AD) rat model. MATERIALS AND METHODS: Rats were divided into three groups: normal saline (NS), AD, and HBO+AD. In the AD group, amyloid β peptide (Aβ)₁₋₄₀ was injected into the hippocampal CA1 region of the brain. NS rats received NS injection. In the HBO+AD group, rats received 5 days of daily HBO therapy following Aβ₁₋₄₀ injection. Learning and memory capabilities were examined using the Morris water maze task. Neuronal damage and astrocyte activation were evaluated by hematoxylin-eosin staining and immunohistochemistry, respectively. Dendritic spine density was determined by Golgi-Cox staining. Tumor necrosis factor-α, interleukin-1β, and interleukin-10 production was assessed by enzyme-linked immunosorbent assay. Neuron apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Protein expression was examined by western blotting. RESULTS: Learning and memory dysfunction was ameliorated in the HBO+AD group, as shown by significantly lower swimming distances and escape latency, compared to the AD group. Lower rates of neuronal damage, astrocyte activation, dendritic spine loss, and hippocampal neuron apoptosis were seen in the HBO+AD than in the AD group. A lower rate of hippocampal p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed in the HBO+AD than in the AD group. CONCLUSION: HBO pretreatment improves cognition and reduces hippocampal damage via p38 MAPK in AD rats.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/administration & dosage , Animals , Apoptosis , Cognition/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hippocampus/enzymology , Hyperbaric Oxygenation , In Situ Nick-End Labeling , Interleukin-10/biosynthesis , Interleukin-1beta/biosynthesis , Learning/drug effects , Male , Memory/drug effects , Neurons , Peptide Fragments/administration & dosage , Rats , Rats, Sprague-Dawley , Sodium Chloride/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950836

ABSTRACT

BACKGROUND: Wnt-5a is a member of the WNT family of secreted lipoglycoproteins, whose expression increases during development; moreover, Wnt-5a plays a key role in synaptic structure and function in the adult nervous system. However, the mechanism underlying these effects is still elusive. MicroRNAs (miRNAs) are a family of small non-coding RNAs that control the gene expression of their targets through hybridization with complementary sequences in the 3' UTR, thereby inhibiting the translation of the target proteins. Several evidences indicate that the miRNAs are actively involved in the regulation of neuronal function. RESULTS: In the present study, we examined whether Wnt-5a modulates the levels of miRNAs in hippocampal neurons. Using PCR arrays, we identified a set of miRNAs that respond to Wnt-5a treatment. One of the most affected miRNAs was miR-101b, which targets cyclooxygenase-2 (COX2), an inducible enzyme that converts arachidonic acid to prostanoids, and has been involved in the injury/inflammatory response, and more recently in neuronal plasticity. Consistent with the Wnt-5a regulation of miR-101b, this Wnt ligand regulates COX2 expression in a time-dependent manner in cultured hippocampal neurons. CONCLUSION: The biological processes induced by Wnt-5a in hippocampal neurons, involve the regulation of several miRNAs including miR-101b, which has the capacity to regulate several targets, including COX-2 in the central nervous system


Subject(s)
Animals , Rats , MicroRNAs/physiology , Cyclooxygenase 2/analysis , Wnt Proteins/physiology , Hippocampus/enzymology , Neurons/enzymology , Down-Regulation , Gene Expression , Cells, Cultured , Blotting, Western , Rats, Sprague-Dawley , Gene Targeting , Gene Expression Profiling , Real-Time Polymerase Chain Reaction , Wnt-5a Protein , Hippocampus/chemistry , Neuronal Plasticity , Neurons/chemistry
4.
Article in English | WPRIM | ID: wpr-206918

ABSTRACT

In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.


Subject(s)
Animals , Diabetes Mellitus/enzymology , Female , Gene Expression Regulation, Enzymologic , Genotype , Hippocampus/enzymology , Lipid Peroxidation/physiology , Male , Malondialdehyde/metabolism , Physical Conditioning, Animal/physiology , Rats , Rats, Zucker , Superoxide Dismutase/genetics
5.
Arq. neuropsiquiatr ; 68(4): 586-591, Aug. 2010. graf, tab
Article in English | LILACS | ID: lil-555239

ABSTRACT

In the present study we investigated the effects of lipoic acid (LA) on acetylcholinesterase (AChE), glutathione peroxidase (GPx) and Na+, K+-ATPase activities in rat hippocampus during seizures. Wistar rats were treated with 0.9 percent saline (i.p., control group), lipoic acid (20 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., P400 group), and the association of pilocarpine (400 mg/kg, i.p.) plus LA (20 mg/kg, i.p.), 30 min before of administration of P400 (LA plus P400 group). After the treatments all groups were observed for 1 h. In P400 group, there was a significant increase in GPx activity as well as a decrease in AChE and Na+, K+-ATPase activities after seizures. In turn, LA plus P400 abolished the appearance of seizures and reversed the decreased in AChE and Na+, K+-ATPase activities produced by seizures, when compared to the P400 seizing group. The results from the present study demonstrate that preadministration of LA abolished seizure episodes induced by pilocarpine in rat, probably by increasing AChE and Na+, K+-ATPase activities in rat hippocampus.


No presente estudo nós investigamos os efeitos do ácido lipóico (AL) sobre as atividades da acetilcolinesterase (AChE), da glutationa peroxidase (GPx) e da Na+, K+-ATPase no hipocampo de ratos durante crises convulsivas. Ratos Wistar foram tratados com solução salina a 0,9 por cento (i.p., grupo controle), ácido lipóico (20 mg/kg, i.p., grupo AL), pilocarpina (400 mg/kg, i.p., grupo P400), e a associação de AL (20 mg/kg, i.p.) com a pilocarpina (400 mg/kg, i.p.), 30 min antes da administração de pilocarpina (grupo AL + P400). Após os tratamentos todos os grupos foram observados durante 1 h. No grupo P400, houve um aumento significativo na atividade da GPx, assim como uma diminuição das atividades da AChE e Na+, K+-ATPase. Por sua vez, o pré-tratamento com AL aboliu o aparecimento de convulsões e reverteu a diminuição das atividades da AChE e da Na+, K+-ATPase causadas pelas convulsões, quando comparada com o grupo P400 sozinho. Os resultados do estudo demonstram que o pré-tratamento com AL aboliu os episódios de convulsão induzido pela pilocarpina em ratos, provavelmente por meio do aumento das atividades das enzimas AChE e Na+, K+-ATPase no hipocampo de ratos.


Subject(s)
Animals , Male , Rats , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Glutathione Peroxidase/metabolism , Hippocampus/enzymology , Seizures/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Thioctic Acid/pharmacology , Hippocampus/drug effects , Pilocarpine , Rats, Wistar , Seizures/chemically induced
6.
Braz. j. med. biol. res ; 41(4): 333-341, Apr. 2008. ilus, tab
Article in English | LILACS | ID: lil-479683

ABSTRACT

Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Bipolar Disorder/enzymology , Depressive Disorder, Major/enzymology , Hippocampus/enzymology , Nitric Oxide Synthase Type I/metabolism , Schizophrenia/enzymology , Bipolar Disorder/physiopathology , Case-Control Studies , Depressive Disorder, Major/physiopathology , Hippocampus/physiopathology , Immunohistochemistry , N-Methylaspartate/metabolism , Schizophrenia/physiopathology , Signal Transduction/physiology
7.
Article in English | WPRIM | ID: wpr-171365

ABSTRACT

Mesial temporal lobe epilepsy (MTLE) is associated with severe neuronal death and reactive gliosis in hippocampus. However, the molecular mechanisms underlying these pathological changes remain unanswered. ERK has been reported chronically activated in reactive glia of human epileptic hippocampus. In the present study, we investigated which of the downstream signaling molecules of ERK would be involved in MTLE. Western blot analysis demonstrated that CREB and p90RSK were strongly activated in MTLE patients. Increase in the active forms of CREB and p90RSK resulted not only from the increase in their phosphorylation levels but also from the increase in the protein levels. Activation of CREB and p90RSK was noted in the whole subfields of hippocampus with Ammon's horn sclerosis (AHS) representing a distinctive cellular distribution. However, the common major change was present in proliferating reactive astrocytes. In contrast, their activation was not significant in adjacent temporal lobes despite the presence of a number of astrocytes expressing high levels of GFAP. Our results demonstrate that chronic activation CREB and p90RSK in the epileptic hippocampus may be closely associated with the histopathological changes of AHS.


Subject(s)
Blotting, Western , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Activation , Epilepsy/enzymology , Epilepsy, Temporal Lobe/enzymology , Hippocampus/enzymology , Humans , Immunohistochemistry , Mitogen-Activated Protein Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Temporal Lobe/enzymology
8.
Article in English | WPRIM | ID: wpr-53143

ABSTRACT

This study investigated calcium/calmodulin kinase II (CaMKII) activity related to long-standing neuronal injury of the hippocampus in kainate (KA)-induced experimental temporal lobe epilepsy. Epileptic seizure was induced by injection of KA (1 g/L) dissolved in phosphate buffer (0.1 M, pH 7.4) into the left amygdala. Clinical seizures, histopathologic changes and CaMKII activity of the hippocampus were evaluated. Characteristic early limbic and late seizures were developed. Hippocampal CaMKII activity increased significantly 4 and 8 weeks after intra-amygdaloid injection of KA, when late seizures developed. The histopathologic changes of the hippocampus included swelling of neuronal cytoplasm with nuclear pyknosis and loss of neurons in CA3 during this period. The increased activity of CaMKII may correlate with appearance of distant damage in the hippocampus. The above results indicate that intra-amygdaloid injection of KA produces excitatory signals for ipsilateral CA3 neurons in the hippocampus and that subsequently increased levels of CaMKII in postsynaptic neurons induce neuronal injury via phosphorylation of N-methyl-D-aspartate type glutamate receptor.


Subject(s)
Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Epilepsy, Temporal Lobe/chemically induced , Hippocampus/enzymology , Kainic Acid/toxicity , Long-Term Potentiation/drug effects , Male , Rats , Rats, Wistar
9.
Article in English | WPRIM | ID: wpr-105755

ABSTRACT

Electroconvulsive shock (ECS) has been suggested to affect cAMP signaling pathways to exert therapeutic effects. ECS was recently reported to increase the expression of PDE4 isoforms in rat brain, however, these studies were limited to PDE4 family in the cerebral cortex and hippocampus. Thus, for comprehensive understanding of how ECS regulates PDE activity, the present study was performed to determine whether chronic ECS treatment induces differential changes in the expression of all the PDE isoforms in rat brains. We analyzed the mRNA expression of PDE isoforms in the rat hippocampus and striatum using reverse transcription polymerase chain reaction. We found chronic ECS treatment induced differential changes in the expression of PDE isoform 1, 2, 3, 4, 5 and 7 at the rat hippocampus and striatum. In the hippocampus, the expression of PDE1A/B (694%), PDE4A (158%), PDE4B (323 %), and PDE4D (181%) isoforms was increased from the controls, but the expression of PDE2 (62.8%) and PDE7 (37.8%) decreased by chronic ECS treatment. In the striatum, the expression of PDE1A/B (179%), PDE4A (223%), PDE4B (171%), and PDE4D (327%) was increased by chronic ECS treatment with the concomitant decrease in the expression of PDE2 (78.4%) and PDE3A (67.1%). In conclusion, chronic ECS treatment induces differential changes in the expression of most PDE isoforms including PDE1, PDE2, PDE3, PDE4, PDE5, and PDE7 in the rat hippocampus and striatum in an isoform- and brain region-specific manner. Such differential change is suggested to play an important role in regulation of the activity of PDE and cAMP system by ECS.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/analysis , Animals , Corpus Striatum/enzymology , Electroconvulsive Therapy , Gene Expression Regulation, Enzymologic , Hippocampus/enzymology , Isoenzymes/analysis , Male , Rats , Rats, Sprague-Dawley
10.
Article in English | WPRIM | ID: wpr-53062

ABSTRACT

Phospholipase C (PLC) and related enzymes in signal transduction system are closely linked to cellular damage in ischemic encephalopathy. This study was undertaken to elucidate the time sequential changes of PLC isoenzymes (beta and gamma) in vulnerable areas of hippocampus in global ischemia and infarcted area in focal infarction. Mongolian gerbils were used because of their susceptibility to ischemic encephalopathy and divided into the following groups: the bilateral ischemia with various reperfusion periods group, unilateral progressive ischemia group, and focal ischemia group induced by infusion of iron particles through the femoral artery. The changes of PLC isoenzymes were observed immunohistochemically and matched with morphological changes. In the global ischemia with reperfusion group, the changes were most significant in hippocampus. Sequential changes of neurons such as red neurons at an early stage progressed to pknotic neurons at a later stage were noted with typical delayed neuronal damage in the corns ammonis (CA) 1 subfield of hippocampus. Red neurons and pyknotic neurons as well as intracytoplasmic inclusion in 3 to 24 hours of reperfusion showed loss of PLC isoenzymes as well as tubulin. The changes of PLC expression were corresponding to the degeneration of neurons with no discernible time sequential changes in remaining neurons. In the unilateral hemispheric progressive ischemia group, ischemic damage was far more marked and extensive with no selective injury pattern according to time and location. At 1 day, there was diffuse vacuolization and necrosis of neuropil with a loss of neuron. Admixed surviving neurons and vacuolated neuropil showed increased reaction to anti-PLC antibodies, which could be either an evidence of protein synthesis responding to ischemic insult or an artifactual change. Focal ischemia group showed time sequential changes of blood vessels and white blood cells with necrosis of surrounding tissue. Degenerating hippocampal neurons in infarction also showed a strong positive reaction to anti-PLC antibody, which was most likely due to condensation of cytoplasm rather than increased synthesis. This study showed different changes of PLC expression in global ischemic encephalopathy with reperfusion, progressive ischemia, and focal infarction, which suggested different pathophysiologic mechanism between these conditions.


Subject(s)
Animals , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Female , Gene Expression , Gerbillinae , Hippocampus/enzymology , Immunoenzyme Techniques , Isoenzymes/biosynthesis , Male , Neurons/enzymology , Type C Phospholipases/biosynthesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL