ABSTRACT
Abstract Agricultural crops suffer many diseases, including fungal and bacterial infections, causing significant yield losses. The identification and characterisation of pathogenesis-related protein genes, such as chitinases, can lead to reduction in pathogen growth, thereby increasing tolerance against fungal pathogens. In the present study, the chitinase I gene was isolated from the genomic DNA of Barley (Hordeum vulgare L.) cultivar, Haider-93. The isolated DNA was used as template for the amplification of the ∼935 bp full-length chitinase I gene. Based on the sequence of the amplified gene fragment, class I barley chitinase shares 93% amino acid sequence homology with class II wheat chitinase. Interestingly, barley class I chitinase and class II chitinase do not share sequence homology. Furthermore, the amplified fragment was expressed in Escherichia coli Rosetta strain under the control of T7 promoter in pET 30a vector. Recombinant chitinase protein of 35 kDa exhibited highest expression at 0.5 mM concentration of IPTG. Expressed recombinant protein of 35 kDa was purified to homogeneity with affinity chromatography. Following purification, a Western blot assay for recombinant chitinase protein measuring 35 kDa was developed with His-tag specific antibodies. The purified recombinant chitinase protein was demonstrated to inhibit significantly the important phytopathogenic fungi Alternaria solani, Fusarium spp, Rhizoctonia solani and Verticillium dahliae compared to the control at concentrations of 80 µg and 200 µg.
Subject(s)
Antifungal Agents/pharmacology , Chitinases/pharmacology , Hordeum/enzymology , Recombinant Proteins/metabolism , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Blotting, Western , Chitinases/chemistry , Chitinases/genetics , Chitinases/isolation & purification , Chromatography, Affinity , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hordeum/genetics , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sequence Homology, Amino AcidABSTRACT
Background: The enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes. Results: Gene for α-amylase from hydrothermal Thermococcus, optimally active at 7585°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley). Conclusions: Expression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.
Subject(s)
Seeds/enzymology , Hordeum/enzymology , Thermococcus/metabolism , alpha-Amylases/metabolism , Seeds/genetics , Seeds/microbiology , Transformation, Genetic , Hordeum/genetics , Hordeum/microbiology , Beer , Enzyme Stability , Plants, Genetically Modified/enzymology , Cloning, Molecular , Gene Transfer Techniques , alpha-Amylases/genetics , Fermentation , Thermotolerance , Hot Temperature , Hydrogen-Ion ConcentrationABSTRACT
Background: Marker-assisted introgression currently represents the most widely spread application of DNA markers as an aid to selection in plant breeding. New barley germplasm should be supplemented by genes that facilitate growth and development under stressful conditions. The homology search against known genes is a fundamental approach to identify genes among the generated sequences. This procedure can be utilized for SNP search in genes of predicted function of interest and associated gene ontology (GO). Results: Backcross breeding enhanced by marker selection may become a powerful method to transfer one or a few genes controlling a specific trait. In the study, the integrated approach of combining phenotypic selection with marker assisted backcross breeding for introgression of LTP2 gene, in the background of semi-dwarf spring barley cultivar, was employed. This study discusses the efficiency of molecular marker application in backcrossing targeted on the selected gene. Conclusions: BC6 lines developed in this study can serve as a unique and adequate plant material to dissect the role of LTP2 gene. Due to its role in lipid transfer, the LTP2 may be crucial in lipidome modification in response to abiotic stress.
Subject(s)
Selection, Genetic , Hordeum/genetics , Crosses, Genetic , Plant Breeding/methods , Genetic Markers , Polymorphism, Single Nucleotide , InbreedingABSTRACT
Background In the present study populations, representing different rounds of recombination were used for the analysis of phenotypic effects associated with the sdw1/denso locus. Other studies have mostly focused only on one type of population. Many different QTLs mapped at the same position as the sdw1/denso locus may indicate a pleiotropy of this gene or a tight linkage between genes conditioning quantitative traits. To date, results of studies have not unequivocally proven either of these two phenomena. Results Both breeding and molecular mapping experiments were undertaken to examine 200 single seed descent (SSD) and 60 doubled haploid (DH) lines obtained from the Maresi (with a semi-dwarfing gene) and Pomo cross combination. They were evaluated for the type of juvenile growth habit and certain agronomic traits were measured after harvesting. The estimates of mean values, standard errors and significance of effects were analyzed. In terms of the analyzed characteristics, the greatest variability was obtained for genotypes with the prostrate growth habit. Microsatellite markers (SSR) were also used to identify co-segregation with the sdw1/denso locus and Bmag0013, Bmag0877, Bmag0306b markers were linked the closest. A partial linkage map of chromosome 3H with the sdw1/denso semi-dwarfing gene was constructed and QTLs were identified. Conclusions Our experiments confirmed the impact of the semi-dwarfing gene on plant height, heading and flowering date both in SSD and DH populations, which may indicate pleiotropy. Moreover, a partial linkage between sdw1/denso locus and grain weight per spike and 1000-grain weight was found in the SSD population.
Subject(s)
Hordeum/genetics , Genetic Pleiotropy , Recombination, Genetic , Seeds/genetics , Crop Production , Genes, Plant , Microsatellite Repeats , Quantitative Trait Loci , HaploidyABSTRACT
Molecular genetic research relies heavily on the ability to detect polymorphisms in DNA. Single nucleotide polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. In combination with a PCR assay, the corresponding SNP can be analyzed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. The dCAPS method exploits the well-known specificity of a restriction endonuclease for its recognition site and can be used to virtually detect any SNP. Here, we describe the use of the dCAPS method for detecting single-nucleotide changes by means of a barley EST, CK569932, PCR-based marker.
Subject(s)
Hordeum/genetics , Polymorphism, Single Nucleotide , DNA Restriction Enzymes , Genome , Polymerase Chain ReactionABSTRACT
Screening for resistant barley genotypes in response to fungal toxin of Bipolaris sorokiniana was assessed on standing barley plants as well as in selected callus lines of the same. For the standing lines tested, those manifesting chlorosis in response to toxin infiltration showed a significantly slower disease progress as compared to the necrotic lines. Also, necrosis in the callus tissues of the susceptible cultivar in MS medium supplemented with different concentrations of the crude toxin was significantly higher than in the callus tissues of the chlorotic lines studied. Similar host response to the toxin in in vitro and field situations open up the possibility of screening barley cultivars for resistance to spot blotch using callus culture as against classical methods of screening in order to increase accuracy and save time and space.
Subject(s)
Ascomycota/pathogenicity , Culture Media , Culture Techniques , Genotype , Hordeum/genetics , Host-Pathogen Interactions/drug effects , Mycotoxins/pharmacology , Plant Diseases/geneticsABSTRACT
The morphological, yield, cytological and molecular characteristics of bread wheat x tritordeum F(1) hybrids (2n = 6x = 42; AABBDH(ch)) and their parents were analysed. Morphologically, these hybrids resembled the wheat parent. They were slightly bigger than both parents, had more spikelets per spike, and tillered more profusely. The hybrids are self-fertile but a reduction of average values of yield parameters was observed. For the cytological approach we used a double-target fluorescence in situ hybridization performed with total genomic DNA from Hordeum chilense L. and the ribosomal sequence pTa71. This technique allowed us to confirm the hybrid nature and to analyse chromosome pairing in this material. Our results showed that the expected complete homologous pairing (14 bivalents plus 14 univalents) was only observed in 9.59% of the pollen mother cells (PMCs) analysed. Some PMCs presented autosyndetic pairing of H(ch) and A, B or D chromosomes. The average number of univalents was higher in the wheat genome (6.8) than in the H(ch) genome (5.4). The maximum number of univalents per PMC was 20. We only observed wheat multivalents (one per PMC) but the frequency of trivalents (0.08) was higher than that of quadrivalents (0.058). We amplified 50 RAPD bands polymorphic between the F(1) hybrid and one of its parents, and 31 ISSR polymorphic bands. Both sets of markers proved to be reliable for DNA fingerprinting. The complementary use of morphological and yield analysis, molecular cytogenetic techniques and molecular markers allowed a more accurate evaluation and characterization of the hybrids analysed here.
Subject(s)
Breeding , Chimera/anatomy & histology , Chromosome Pairing , Crosses, Genetic , Genetic Markers , Hordeum/genetics , Hybridization, Genetic , Meiosis , Triticum/anatomy & histologyABSTRACT
A cultivar MN 698, desenvolvida pela AmBev é resultado do cruzamento entre as cultivares MN 599 e MN 635. MN 698 apresenta potencial de rendimento superior a 4t ha-1, possui ciclo precoce e moderada resistência ao acamamento. A espiga é uniforme e produz em torno de 20 grãos bem distribuídos. MN 698 demonstra capacidade de afilhamento mediana (dois a três por planta) e caracteriza-se pela presenca de antocianina na base do colmo, aristas e glumas. É a cultivar nacional de melhor qualidade e representa importante avanco para este cereal no Brasil, combinando interesses de produtores e da indústria do setor.
Subject(s)
Edible Grain , Hordeum/economics , Hordeum/geneticsABSTRACT
Cultivated six-rowed naked barley (Hordeum vulgare ssp. hexastichon var. nudum Hsü) is the oldest cultivated barley in China. We used 35 simple sequence repeat (SSR) markers selected from seven barley linkage groups to study the genetic diversity, geographical differentiation and evolutionary relationships among 65 H. vulgare ssp. hexastichon landrace accessions collected from the Qinghai-Tibet plateau of China, 25 accessions from Tibet (TB), 20 from Qinghai (QH) and 20 from Ganzi (GZ) prefecture in Sichuan province. At the 35 SSR loci we identified 248 alleles among the 65 accessions, 119 (47.98 percent) of the alleles being common alleles. We also found that the TB accessions possessed 47 private alleles, about 1.5 times more than the 31 private alleles found in the QH accessions and about 5 times more than 9 private alleles found in the GZ accessions. Generally, the TB accessions showed significantly higher genetic diversity than either the QH or GZ accessions whereas no significant difference in genetic diversity was found between the QH and GZ accessions. Partitioning analysis of genetic diversity showed that about 81 percent of the total variation was due to within-subgroup diversity and about 19 percent was clearly accounted for by geographical differentiation among the three subgroups. The distributions of alleles for most loci (71.4 percent) were significantly different among the three subgroups and geographical differentiation could be found according to the distribution of SSR alleles. Cluster analysis indicated that most of the accessions could be clustered into groups which basically coincided with their geographical distribution. These results suggest that Tibet might be a center of genetic diversity for cultivated barley, the cultivated six-rowed naked barley on the Qinghai-Tibet plateau of China may have evolved in Tibet and spread to Qinghai and then to Ganzi prefecture of Sichuan province.
Subject(s)
Genetic Variation , Hordeum/genetics , China , Cluster Analysis , Geography , Minisatellite Repeats , Polymerase Chain Reaction , TibetABSTRACT
Genomic DNA isolated from barley cv. NP 113 and its high lysine mutant Notch-2, and restricted with different restriction enzymes was hybridized with B1 and C-hordein DNA probes. Similar Southern hybridization patterns were observed between NP 113 and Notch-2. Dot blot hybridization analysis of RNA isolated at different developmental stages and from different tissues of seed showed temporal as well as tissue specific expression. The results obtained indicate that regulation at the level of transcription/post transcription may be responsible for lower accumulation of hordein in mutant Notch-2.