ABSTRACT
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.
Subject(s)
Animals , Mice , Rabbits , Antibodies/metabolism , Cell Proliferation/drug effects , Epithelial Cells/parasitology , Host-Pathogen Interactions/drug effects , Iron/pharmacology , Pyruvate Synthase/metabolism , Trace Elements/pharmacology , Trichomonas Infections/parasitology , Trichomonas vaginalis/drug effectsABSTRACT
Middle East respiratory syndrome coronavirus (MERS-CoV) causes high fever, cough, acute respiratory tract infection and multiorgan dysfunction that may eventually lead to the death of the infected individuals. MERS-CoV is thought to be transmitted to humans through dromedary camels. The occurrence of the virus was first reported in the Middle East and it subsequently spread to several parts of the world. Since 2012, about 1368 infections, including ~487 deaths, have been reported worldwide. Notably, the recent human-to-human \'superspreading' of MERS-CoV in hospitals in South Korea has raised a major global health concern. The fatality rate in MERS-CoV infection is four times higher compared with that of the closely related severe acute respiratory syndrome coronavirus infection. Currently, no drug has been clinically approved to control MERS-CoV infection. In this study, we highlight the potential drug targets that can be used to develop anti-MERS-CoV therapeutics.
Subject(s)
Animals , Humans , Antiviral Agents/pharmacology , Cell Line , Coronavirus Infections/drug therapy , Dipeptidyl Peptidase 4/metabolism , Disease Outbreaks , Drug Discovery , Host-Pathogen Interactions/drug effects , Middle East Respiratory Syndrome Coronavirus/drug effects , Molecular Targeted Therapy , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
INTRODUCTION: Little is known about the early events in the interaction between Paracoccidioides brasiliensis and its host. To understand the effect of carbohydrates in the interaction between the fungus and epithelial cell in culture, we analyzed the influence of different carbohydrate solutions on the adhesion of P. brasiliensis yeast cells to CCL-6 cells in culture. METHODS: Fungal cells were cultivated with the epithelial cell line, and different concentrations of D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine, D-galactosamine, sorbitol and fructose were added at the beginning of the experiment. Six hours after the treatment, the cells were fixed and observed by light microscopy. The number of P. brasiliensis cells that were adhered to the CCL-6 monolayer was estimated. RESULTS: The number of adhesion events was diminished following treatments with D-fucose, N-acetyl-glucosamine, D-mannose, D-glucosamine and D-galactosamine as compared to the untreated controls. Sorbitol and fructose-treated cells had the same adhesion behavior as the observed in the control. P. brasiliensis propagules were treated with fluorescent lectins. The FITC-labeled lectins WGA and Con-A bound to P. brasiliensis yeast cells, while SBA and PNA did not. CONCLUSIONS: The perceptual of adhesion between P. brasiliensis and CCL-6 cells decreased with the use of D-mannose, N-acetyl-glucosamine and D-glucosamine. The assay using FITC-labeled lectins suggests the presence of N-acetyl-glucosamine, α-mannose and α-glucose on the P. brasiliensis cell surface. An enhanced knowledge of the mediators of adhesion on P. brasiliensis could be useful in the future for the development of more efficient and less harmful methods for disease treatment and control.
INTRODUÇÃO: Pouco se conhece a respeito dos eventos iniciais que mediam as interações entre Paracoccidioides brasiliensis e seus hospedeiros. Com a intenção de compreender a importância de carboidratos junto a estas interações, foram analisados os efeitos de soluções de carboidratos sobre a adesão de células leveduriformes de P. brasiliensis sobre culturas de células CCL-6. MÉTODOS: As células fúngicas foram cultivadas com as células epiteliais e diferentes concentrações de D-fucose, N-acetyl-glucosamina, D-manose, D-glicosamina, D-galactosamina, sorbitol e frutose foram adicionadas ao cultivo no início da interação. Após 6h de tratamento, as células foram fixadas e observadas em microscópio óptico. RESULTADOS: Os tratamentos utilizando D-fucose, N-acetil-glicosamina, D-manose, D-glicosamina e D-galactosamina reduziram os números de adesões quando comparados com o controle. Os tratamentos realizados com o uso de sorbitol e frutose apresentaram os mesmos resultados observados no controle. Para detectar a presença de carboidratos na superfície do fungo, propágulos de P. brasiliensis foram tratados com lectinas fluorescentes. WGA-FITC e Con-A-FITC se ligaram às células de P. brasiliensis ao contrário de SBA e PNA. CONCLUSÕES: O percentual de adesão entre P. brasiliensis e células CCL-6 foi reduzido com o uso de D-manose, N-acetil-glicosamina e D-glicosamina. O uso de lectinas marcadas sugeriu a presença de N-acetil-glicosamina, α-manose e α-glicose na superfície de P. brasiliensis. Estes resultados contribuem para o aumento do conhecimento relacionado aos mediadores de adesão de P. brasiliensis, e poderão ser utilizados no futuro para o desenvolvimento de medidas mais eficientes para o controle e tratamento deste patógeno.
Subject(s)
Carbohydrates/pharmacology , Host-Pathogen Interactions/physiology , Paracoccidioides/physiology , Cell Line , Cell Adhesion/physiology , Host-Pathogen Interactions/drug effects , Paracoccidioides/metabolismABSTRACT
Screening for resistant barley genotypes in response to fungal toxin of Bipolaris sorokiniana was assessed on standing barley plants as well as in selected callus lines of the same. For the standing lines tested, those manifesting chlorosis in response to toxin infiltration showed a significantly slower disease progress as compared to the necrotic lines. Also, necrosis in the callus tissues of the susceptible cultivar in MS medium supplemented with different concentrations of the crude toxin was significantly higher than in the callus tissues of the chlorotic lines studied. Similar host response to the toxin in in vitro and field situations open up the possibility of screening barley cultivars for resistance to spot blotch using callus culture as against classical methods of screening in order to increase accuracy and save time and space.