Subject(s)
Coloring Agents , Trametes , Polyporaceae , Laccase/metabolism , Trametes/metabolism , FermentationABSTRACT
ABSTRACT Fusarium oxysporum f. sp. lycopersici is a phytopathogenic fungus that causes vascular wilt in tomato plants. In this work we analyze the influence of metal salts such as iron and copper sulphate, as well as that of bathophenanthrolinedisulfonic acid (iron chelator) and bathocuproinedisulfonic acid (copper chelator) on the activity of laccases in the intra (IF) and extracellular fractions (EF) of the wild-type and the non-pathogenic mutant strain (rho1::hyg) of F. oxysporum. The results show that laccase activity in the IF fraction of the wild and mutant strain increased with the addition of iron chelator (53.4 and 114.32%; respectively). With copper, it is observed that there is an inhibition of the activity with the addition of CuSO4 for the EF of the wild and mutant strain (reduction of 82 and 62.6%; respectively) and for the IF of the mutant strain (54.8%). With the copper chelator a less laccase activity in the IF of the mutant strain was observed (reduction of 53.9%). The results obtained suggest a different regulation of intracellular laccases in the mutant strain compared with the wild type in presence of CuSO4 and copper chelator which may be due to the mutation in the rho gene.
Subject(s)
Fungal Proteins/metabolism , Copper/metabolism , Laccase/metabolism , Fusarium/enzymology , Iron/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/chemistry , Solanum lycopersicum/microbiology , Laccase/genetics , Laccase/chemistry , Fusarium/genetics , Fusarium/chemistryABSTRACT
Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris. Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G. Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.
Subject(s)
Pichia/metabolism , Laccase/biosynthesis , Laccase/genetics , Bacillus licheniformis/enzymology , Temperature , Yeasts , Enzyme Stability , Catalysis , Mutagenesis , Laccase/metabolism , Coloring Agents/metabolism , Hydrogen-Ion ConcentrationABSTRACT
Abstract Oxidative enzymes secreted by white rot fungi can be applied in several technological processes within the paper industry, biofuel production and bioremediation. The discovery of native strains from the biodiverse Misiones (Argentina) forest can provide useful enzymes for biotechnological purposes. In this work, we evaluated the laccase and manganese peroxidase secretion abilities of four newly discovered strains of Trametes sp. that are native to Misiones. In addition, the copper response and optimal pH and temperature for laccase activity in culture supernatants were determined.The selected strains produced variable amounts of laccase and MnP; when Cu2+ was added, both enzymes were significantly increased. Zymograms showed that two isoenzymes were increased in all strains in the presence of Cu2+. Strain B showed the greatest response to Cu2+ addition, whereas strain A was more stable at the optimal temperature and pH. Strain A showed interesting potential for future biotechnological approaches due to the superior thermo-stability of its secreted enzymes.
Subject(s)
Fungal Proteins/metabolism , Laccase/metabolism , Trametes/enzymology , Argentina , Temperature , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/chemistry , Laccase/genetics , Laccase/chemistry , Trametes/isolation & purification , Trametes/geneticsABSTRACT
Thermophilic and thermotolerant micro-organisms strains have served as the natural source of industrially relevant and thermostable enzymes. Although some strains of the Trametes genus are thermotolerant, few Trametes strains were studied at the temperature above 30 °C until now. In this paper, the laccase activity and the mycelial growth rate for Trametes trogii LK13 are superior at 37 °C. Thermostability and organic cosolvent tolerance assays of the laccase produced at 37 °C indicated that the enzyme possessed fair thermostability with 50% of its initial activity at 80 °C for 5 min, and could remain 50% enzyme activity treated with organic cosolvent at the concentration range of 25%–50% (v/v). Furthermore, the test on production of laccase and lignocellulolytic enzymes showed the crude enzymes possessed high laccase level (1000 U g−1) along with low cellulose (2 U g−1) and xylanase (140 U g−1) activity. Thus, T. trogii LK13 is a potential strain to be applied in many biotechnological processes.
Subject(s)
Laccase/metabolism , Trametes/enzymology , Trametes/growth & development , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Enzyme Stability , Laccase/chemistry , Microscopy , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Solvents , Temperature , Trametes/cytology , Trametes/radiation effectsABSTRACT
Background In the industrial biotechnology, ligninolytic enzymes are produced by single fungal strains. Experimental evidence suggests that co-culture of ligninolytic fungi and filamentous microfungi results in an increase laccase activity. In this topic, only the ascomycete Trichoderma spp. has been studied broadly. However, fungal ligninolytic-filamentous microfungi biodiversity interaction in nature is abundant and poorly studied. The enhancement of laccase and manganese peroxidase (MnP) activities of Trametes maxima as a function of time inoculation of Paecilomyces carneus and under several culture conditions using Plackett-Burman experimental design (PBED) were investigated. Results The highest increases of laccase (12,382.5 U/mg protein) and MnP (564.1 U/mg protein) activities were seen in co-cultures I3 and I5, respectively, both at 10 d after inoculation. This level of activity was significantly different from the enzyme activity in non-inoculated T. maxima (4881.0 U/mg protein and 291.8 U/mg protein for laccase and MnP, respectively). PBED results showed that laccase was increased (P < 0.05) by high levels of glucose, (NH4)2SO4 and MnSO4 and low levels of KH2PO4, FeSO4 and inoculum (P < 0.05). In addition, MnP activity was increased (P < 0.05) by high yeast extract, MgSO4, CaCl2 and MnSO4 concentrations. Conclusions Interaction between indigenous fungi: T. maxima-P. carneus improves laccase and MnP activities. The inoculation time of P. carneus on T. maxima plays an important role in the laccase and MnP enhancement. The nutritional requirements for enzyme improvement in a co-culture system are different from those required for a monoculture system.
Subject(s)
Peroxidases/metabolism , Paecilomyces/enzymology , Laccase/metabolism , Coculture Techniques , Biodiversity , Fungi/enzymology , Lignin , ManganeseABSTRACT
Laccases are blue copper oxidases (E.C. 1.10.3.2) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. A novel laccase gene pclac2 and its corresponding full-length cDNA were cloned and characterized from Phytophthora capsici for the first time. The 1683 bp full-length cDNA of pclac2 encoded a mature laccase protein containing 560 amino acids preceded by a signal peptide of 23 amino acids. The deduced protein sequence of PCLAC2 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. In order to achieve a high level secretion and full activity expression of PCLAC2, expression vector pPIC9K with the Pichia pastoris expression system was used. The recombinant PCLAC2 protein was purified and showed on SDS-PAGE as a single band with an apparent molecular weight ca. 68 kDa. The high activity of purified PCLAC2, 84 U/mL, at the seventh day induced with methanol, was observed with 2,2'-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as substrate. The optimum pH and temperature for ABTS were 4.0 and 30 ºC, respectively . The reported data add a new piece to the knowledge about P. Capsici laccase multigene family and shed light on potential function about biotechnological and industrial applications of the individual laccase isoforms in oomycetes.
Subject(s)
Laccase/genetics , Laccase/metabolism , Phytophthora/enzymology , Cloning, Molecular , Conserved Sequence , Enzyme Stability , Gene Expression , Hydrogen-Ion Concentration , Laccase/chemistry , Laccase/isolation & purification , Molecular Weight , Open Reading Frames , Protein Structure, Tertiary , Phytophthora/genetics , Pichia/genetics , Protein Sorting Signals/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , TemperatureABSTRACT
Background: Enzymatic decolourization has been recently proposed as a promising and eco-friendly method for treatment of synthetic dye-contaminated wastewaters. However, the processes require large quantities of enzymes, attracting significant attention in developing efficient methods for mass production of multifunctional enzymes. Several methods such as response surface methodology (RSM) and orthogonal experiment have been applied to optimize the parameters in bioprocesses for enzyme production. Results: In the present study, a laccase-like enzyme, phenoxazinone synthase (PHS) originated from Streptomyces antibioticus was recombinantly expressed in Escherichia coli BL21 (DE3). The production of PHS in E. coli BL21 was optimized by response surface methodology based on Box-Behnken design. A full third-order polynomial model was generated by data analysis with Statistica 8.0 in which the optimal conditions for PHS production were calculated to be 1.525 mM CuSO4 and 16.096 hrs induction at temperature of 29.88ºC. The highest PHS production under optimal conditions was calculated to be 4098.51 U/l using the established model. Average PHS production obtained from actual production processes carried out under the calculated optimal conditions was 4052.00 U/l, very close to the value predicted by the model. Crude PHS was subsequently tested in Congo red decolourization which exhibited a low decolourization rate of 27% without mediator. Several mediators were found to improve PHS-catalyzed Congo red decolourization, with the highest rate of 73.89% obtained with 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as mediator under optimized conditions of 4000 U/l PHS activity, 10 μM ABTS, 100 μM Congo red, and 8 hrs reaction time. Conclusion: Our results indicated that PHS recombinantly produced in E. coli BL21 was a prospective enzyme for decolorizing reactive dye Congo red.
Subject(s)
Oxidoreductases/metabolism , Congo Red/metabolism , Coloring Agents/metabolism , Streptomyces antibioticus/enzymology , Laccase/metabolism , Escherichia coli , WastewaterABSTRACT
Background: Enzymatic activity and laccase isoenzymes number of Pleurotus ostreatus grown in different pH values of the growing medium in submerged fermentation and incubated in buffer solutions of different initial pH values were determined. The expression profiles of five laccase genes (Lacc1, Lacc4, Lacc6, Lacc9 and Lacc10) in these cultures were also studied. Results: The highest laccases activity was obtained in cultures grown at initial pH of 4.5 and the lowest in cultures grown at initial pH of 8.5. Isoenzyme profiles were different in all the cases. Lacc1, Lacc4, Lacc6 and Lacc10 were expressed in all the cultures. Conclusions: The initial pH of the growing medium is an important factor for regulating the expression of laccase genes, having an effect on the activity and on the laccase isoenzymes number produced by P. ostreatus in SmF. This is the first report on the influence of different initial pH values of the growing medium on the laccases activity, laccase isoenzymes number and laccases expression profiles of P. ostreatus grown in submerged fermentation.
Subject(s)
Pleurotus/enzymology , Laccase/genetics , Laccase/metabolism , RNA/isolation & purification , Gene Expression , Biomass , Reverse Transcriptase Polymerase Chain Reaction , Culture Media , Fermentation , Hydrogen-Ion ConcentrationABSTRACT
The aim of this work was to evaluate the potential of grape stalks, an agroindustrial waste, for growth and lignocellulolytic enzyme production via solid-state fermentation, using the following three white rot fungi: Trametes trogii, Stereum hirsutum and Coriolus antarcticus. The decolorization of several dyes by the above mentioned cultures was also investigated. Similar values of dry weight loss of the substrate were measured after 60 days (33-43 %). C. antarcticus produced the highest laccase and Mn-peroxldase activities (33.0 and 1.6 U/g dry solid). The maximum endoglucanase production was measured in S. hirsutum cultures (10.4 U/g), while the endoxylanase peak corresponded to T. trogii (14.6 U/g). The C. antarcticus/grape stalk system seems potentially competitive in bioremediation of textile processing effluents, attaining percentages of decolorization of 93, 86, 82, 82, 77, and 58 % for indigo carmine, malachite green, azure B, remazol brilliant blue R, crystal violet and xylidine, respectively, in 5 h.
El objetivo de este trabajo fue evaluar el potencial del escobajo, un residuo agroindustrial, como sustrato para el crecimiento y la producción de enzimas lignocelulósicas de tres hongos causantes de pudrición blanca en la madera: Trametes trogii, Stereum hirsutum y Coriolus antarcticus. Para ello se utilizaron técnicas de fermentación en estado sólido. También se ensayó la decoloración de colorantes industriales sobre estos cultivos. La pérdida de peso seco del sustrato fue similar después del día 60 (33-43 %). C. antarcticus produjo las mayores actividades de lacasa y Mn-peroxidasa (33,0 y 1,6 U/g peso seco). La mayor actividad endoglucanasa fue medida en cultivos de S. hirsutum (10,4 U/g), y la mayor actividad endoxilanasa en T. trogii (14,6 U/g). El sistema C. antarcticus/escobap mostró un importante potencial para su aplicación en la biorremediación de efluentes textiles, con porcentajes de decoloración de 93, 86, 82, 82, 77 y 58 % para índigo carmín, verde de malaquita, azure B, azul R brillante de remazol, cristal violeta y xilidina, respectivamente, en 5 h.
Subject(s)
Biodegradation, Environmental , Basidiomycota/growth & development , Cellulase/isolation & purification , Coloring Agents/metabolism , /isolation & purification , Fungal Proteins/isolation & purification , Industrial Waste , Industrial Microbiology/methods , Laccase/isolation & purification , Lignin/metabolism , Peroxidases/isolation & purification , Plant Stems/microbiology , Vitis/microbiology , Argentina , Basidiomycota/enzymology , Cellulase/metabolism , Coloring Agents/classification , Coriolaceae/enzymology , Coriolaceae/growth & development , /metabolism , Fermentation , Fungal Proteins/metabolism , Laccase/metabolism , Peroxidases/metabolism , Trametes/enzymology , Trametes/growth & developmentABSTRACT
A laccase with a molecular mass of 67 kDa and inhibitory activity toward HIV-1 reverse transcriptase (IC50 = 7.5 M) was isolated from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom). Its characteristics were compared with those of laccases from cultured mushroom mycelia reported earlier. The laccase was unadsorbed on DEAE-cellulose, Affi-gel blue gel and CM-cellulose, but was adsorbed on Con A-Sepharose. About 50-fold purification was achieved with a 19.2% yield of the enzyme. The activity of the enzyme increased steadily from 20°C to 70°C. The activity disappeared after exposure to the boiling temperature for 10 min. Its optimal pH was 4 and very little enzyme activity remained at and above pH 10. The laccase inhibited HIV-1 reverse transcriptase with an IC50 of 7.5 M, but did not demonstrate any antifungal or anti-proliferative activity.
Subject(s)
Amino Acid Sequence , Anti-HIV Agents/chemistry , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Fruiting Bodies, Fungal/enzymology , Fruiting Bodies, Fungal/growth & development , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Hydrogen-Ion Concentration , Laccase/chemistry , Laccase/isolation & purification , Laccase/metabolism , Laccase/pharmacology , Molecular Weight , Mycelium/enzymology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/isolation & purification , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/growth & development , Substrate Specificity , TemperatureABSTRACT
Lacasse is one of the extracellular enzymes excreted from white and brown rot fungi, which is involved in ligninolysis. In the present study, the effects of the addition of lacasse inducers to the medium on enhancement of enzyme production under conditions of submerged fermentation were researched. At first, a culture medium was selected suitable for lacasse production. To increase the production of lacasse using different inducers and to examine the ability of dechlorination, this article focuses on screen lacasse activity of 21 basidiomycetes isolates grown in five culture media. All inducers evaluated influenced lacasse activity positively except for gallic acid, mannitol, and malt extract for studied isolates. Our findings showed that lacasse activity of Trametes versicolor ATCC (200801) when it was induced with wheat bran reached up to 29.08 U ml-1 and was examined the ability of dechlorination of 2, 4, 5-trichlorophenol (2,4,5-TCP). The parameters including pH, initial substrate concentration, amount of enzyme, period of reaction, and temperature were tested for dechlorination process. Correlation between oxygen consumption and dechlorination processes under the determined optimum conditions was analyzed. Toxicity of 2, 4, 5-TCP before and after enzymatic treatment was evaluated by Microtox test. The results demonstrated that toxicity of intermediates formed 2, 4, 5-TCP did not change.
Subject(s)
Basidiomycota/enzymology , Chlorophenols/metabolism , Laccase/metabolism , Culture Media , Oxidation-ReductionABSTRACT
Ligninolytic enzymes of the basidiomycetes play a crucial role in the global carbon cycle. The demand for application of ligninolytic enzymes complexes of white-rot fungi in industry and biotechnology is ever increasing due to their use in a variety of processes. Ligninolytic enzymes have potential applications in a large number of fields, including the chemical, fuel, food, agricultural, paper, textile, cosmetic industrial sectors and more. This ligninolytic system of white-rot fungi is also directly involved in the degradation of various xenobiotic compounds and dyes. Their capacities to remove xenobiotic substances and produce polymeric products make them a useful tool for bioremediation purposes. This paper reviews the applications of ligninolytic enzymes of basidiomycetes within different industrial and biotechnological area.
Subject(s)
Basidiomycota/enzymology , Lignin , Laccase/chemistry , Peroxidases/chemistry , Biodegradation, Environmental , Biotechnology , Drug Industry , Food Industry , Laccase/metabolism , Manganese , Pulp and Paper Industry , Peroxidases/metabolismABSTRACT
Effluent from textile industries were treated with enzyme from white rot fungi isolated from outskirts of Mumbai and identified as Polyporus rubidus in our laboratory. Decolorisation of 4 Reactive dyes commonly found in the effluents such as Reactive bue, Reactive orange, Ramazol black and Congo red was examined by treatment with enzyme from Polyporus rubidus. Treatment of effluent was done in a laboratory scale bioreactor constructed with laccase immobilized Na-alginate beads. Greater than 80% of dyes were degraded within 5 days under stationary incubation conditions. The enzyme had a maxmimum activity of 17.1U after 3 days and was found to be secreted extracellularly by Polyporus rubidus. In this study the Polyporus rubidus has been reported for the first time to have laccase activity offering a promising possibility to develop an easy and cost effective method for degradation of dangerous dyes.
Subject(s)
Biodegradation, Environmental , Coloring Agents/metabolism , Laccase/metabolism , Polyporus/enzymology , Textile Industry , Water Pollutants, Chemical/metabolism , Water Purification/methodsABSTRACT
Pulp and paper mill effluents pollute water, air and soil, causing a major threat to the environment. Several methods have been attempted by various researchers throughout the world for the removal of colour from pulp and paper mill effluents. The biological colour removal process uses several classes of microorganisms--bacteria, algae and fungi--to degrade the polymeric lignin derived chromophoric material. White rot fungi such as Phanerochaete chrysosporium, Corius versicolor, Trametes versicolor etc., are efficient in decolourizing paper and pulp mill effluents. Gliocladium virens, a saprophytic soil fungus decolourised paper and pulp mill effluents by 42% due to the production of hemicellulase, lignin peroxidase, manganese peroxidase and laccase.